Штамм бактерий escherichia coli - продуцент фумаровой кислоты и способ получения фумаровой кислоты с использованием этого штамма

Иллюстрации

Показать все

Группа изобретений относится к штамму бактерий Escherichia coli FUM1.0, являющемуся продуцентом фумаровой кислоты, и способу получения фумаровой кислоты с использованием данного штамма. Штамм получен путем инактивации генов ackA, pta, poxB, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG и усиления экспрессии генов galP и glk в штамме Escherichia coli K-12 MG1655. Способ получения фумаровой кислоты предусматривает культивирование указанного штамма в подходящих условиях с последующим выделением фумаровой кислоты из культуральной жидкости. Группа изобретений обеспечивает высокую продукцию фумаровой кислоты. Коэффициент конверсии глюкозы в фумаровую кислоту при культивировании предложенного штамма составляет 1,31 моль/моль, что составляет 65,5% от теоретически возможного максимума. 2 н. и 1 з.п. ф-лы, 1 табл., 2 пр.

Реферат

Настоящее изобретение относится к биотехнологии, в частности, к штамму бактерий Escherichia coli - продуценту фумаровой кислоты, способному к эффективной продукции фумаровой кислоты из глюкозы, а так же к способу получения фумаровой кислоты, с использованием этого штамма, с улучшенным показателем коэффициента конверсии субстрата в целевой продукт.

Фумаровая кислота, непредельная четырехуглеродная дикарбоновая кислота, находящая широкое применение в различных отраслях химической, пищевой и фармацевтической промышленности.

В настоящее время мировой рынок фумаровой кислоты оценивается в 90000 т/год. Фумаровую кислоту используют в качестве полупродукта в производстве бумаги (~31500 т/год), полиэфирных смол (~13500 т/год), алкидных пластмасс (~5500 т/год) и пластификаторов (~4500 т/год), а также в косметической (~15000 т/год) и пищевой промышленности (~20000 т/год) (Roa Engel, С.А. et al., 2008, Fumaric acid production by fermentation. Appl. Microbiol. Biotechnol. 78, 379-389). Нетоксичная природа фумаровой кислоты позволяет использовать ее в производстве напитков и выпечки, а также пшеничного и ржаного хлеба, фруктовых соков, желеобразных десертов (Yang, S.T. et al., 2011, Fumaric acid. In: Moo-Young, BulterMichael, editors. Comprehensive biotechnology, 2nd Edition, 3, 163-77). Фумаровую кислоту добавляют в рацион крупного рогатого скота, что приводит к значительному снижению, более чем на 70%, выброса животными метана (Mcginn, S.M. et al., 2004, Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast and fumaric acid. J. Anim. Sci. 82, 3346-3356). В медицине эфиры фумаровой кислоты, такие как моноэтилфумарат, монометилфумарат и диэтил- и диметил- фумараты используют при лечении псориаза (Moharregh-Khiabani, D. et al., 2009, Fumaric acid and its esters: an emerging treatment for multiple sclerosis. Curr. Neuropharmacol. 7, 60-64), значительно улучшая качество жизни пациентов.

Фумаровую кислоту рассматривают также в качестве перспективного "строительного блока" для получения широкого спектра химических веществ с высокой добавленной стоимостью, синтезируемых из нефтепродуктов. Наиболее значимым из них является 1,4-бутандиол (БДО). БДО применяют в таких отраслях промышленности как: электроника (в качестве растворителя и раствора для удаления фоторезиста, обезжиривания и очистки); фармацевтика (в качестве растворителя и средства экстракции); тонкий органический синтез (в качестве предшественника в синтезе тетрагидрофурана (ТГФ) и γ-бутиролактона (ГБЛ), полибутилентерефталатных резин для автомобильной промышленности, эластана и др.) (Paster, M. et al., 2003, Industrial bioproducts: today and tomorrow. Energetics Inc., Columbia, MD, USA).

В настоящее время фумаровую кислоту производят нефтехимическим синтезом при цис-транс изомеризации малеиновой кислоты, которую, в свою очередь; получают из малеинового ангидрида. Промышленный синтез малеинового ангидрида осуществляют при окислении бензола и ряда других ароматических соединений. Ьднако, из-за возросшей цены на бензол, на многих предприятиях в качестве исходного сырья стали использовать н-бутан (Lorences, M.J. et al., 2003, Butane oxidation to maleic anhydride: kinetic modeling and byproducts. Ind. Eng. Chem. Res. 42, 6730-6742). Реакция протекает в газовой фазе на висмутовых катализаторах с удалением паров воды при частичной конденсации. Поглощение малеинового ангидрида из газовой фазы осуществляют парами органических растворителей, с последующей фракционной перегонкой полученной смеси для выделения целевого продукта и возвращения растворителя в сорбционную колонну. Полученная гидролизом малеинового ангидрига малеиновая кислота подвергается цис-транс изомеризации в фумаровую кислоту с использованием в качестве катализаторов неорганических кислот, пероксидов или же тиомочевины (Lohbeck, К. et al., 1990, Maleic and fumaric Acids. Ullmann′s Encyclopedia of Industrial Chemistry, vol. A16. VCH, Weinheim, Germany, 53-62). Выделение и очистку продукта обычно осуществляют кристаллизацией из водной фазы.

Изомеризация малеиновой кислоты в фумаровую кислоту с помощью химических катализаторов ограничена константой равновесия реакции. Кроме того, соответствующие химические превращения протекают при повышенных температурах, обуславливающих формирование побочных продуктов термической декомпозиции малеиновой и фумаровой кислот, и тем самым снижающих конечный выход целевого продукта ниже равновесного значения (US 5783428). Указанные недостатки химического процесса получения фумаровой кислоты обусловили интерес к альтернативным методам получения этого вещества.

Фумаровая кислота является интермедиатом центрального метаболизма множества организмов. Однако, спектр организмов, обладающих установленной на сегодняшний день природной способностью к заметной продукции фумаровой кислоты, весьма узок. К микроорганизмам, с относительно выраженной способностью к формированию детектируемых количеств фумаровой кислоты в средах культивирования, относятся отдельные представители родов Rhizopus, Mucor, Cunninghamella и Circinella. При этом наилучшими показателями конверсии субстрата в фумаровую кислоту обладают такие представители рода Rhizopus как R. nigricans, R. arrhizus, R. oryzae и R. formosa. (Roa Engel, С.A. et al., 2008. Fumaric acid production by fermentation. Appl. Microbiol. Biotechnol. 78, 379-389) Несмотря на то, что способность штаммов Rhizopus к продукции фумаровой кислоты была открыта еще в начале 20-го века, особенности физиологии данного микроорганизма и сложность модификации его метаболизма вплоть до настоящего времени не позволили разработать экономически оправданного процесса микробиологического синтеза фумаровой кислоты с использованием клеток Rhizopus (Straathof A.J.J, and van Gulik W.M, 2012, Production of Fumaric Acid by Fermentation. In X. Wang et al. (eds.), Reprogramming Microbial Metabolic Pathways, 11, 225-240).

Принимая во внимание, что в структуре цены готовой продукции микробиологического синтеза стоимость сырья составляет около 40%, очевидно, что стоимость субстрата и показатель коэффициента конверсии субстрата в конечный продукт оказывают значительное влияние на себестоимость целевого вещества. В силу относительной дешевизны и значительных объемов производства, предпочтительным субстратом для микробиологического получения фумаровой кислоты является глюкоза (Straathof A.J.J, and van Gulik W.M, 2012, Production of Fumaric Acid by Fermentation. In X. Wang et al. (eds.), Reprogramming Microbial Metabolic Pathways, 11, 225-240).

Факультативно анаэробная бактерия Escherichia coli не способна к формированию заметных количеств интермедиатов цикла трикарбоновых кислот, в частности и фумаровой кислоты, при утилизации глюкозы. Тем не менее, изученность метаболизма и развитость доступного генно-инженерного инструментария позволили создать на основе клеток Е. coli высокоэффективные рекомбинантные продуценты янтарной и яблочной кислот, которые, как и фумаровая кислота, не являются природными продуктами жизнедеятельности рассматриваемой бактерии (Cao, Y. et al., 2011, Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J Ind Microbiol Biotechnol. 38(6), 649-656; Lin, H. et al., 2005, Genetic Reconstruction of the Aerobic Central Metabolism in Escherichia coli for the Absolute Aerobic Production of Succinate. Biotechnol Bioeng. 89, 148-156; Zhang, X. et al., 2011, L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol. 77(2), 427-434; Thakker, C. et al., 2012, Succinate production in Escherichia coli. Biotechnol J. 7(2), 213-224).

Как и большинство микроорганизмов, клетки Ε. coli формируют фумаровую кислоту в ограниченном наборе биохимических процессов. Среди них - оксидативный цикл трикарбоновых кислот, реакции с участием глиоксилатного шунта и одна из ветвей смешаннокислотного брожения, называемая восстановительной ветвью цикла трикарбоновых кислот. Основными метаболическими предшественниками в данных биохимических процессах являются пировиноградная и щавелевоуксусная кислоты, а также фосфоенолпируват и ацетил-коферментА (ацетил-КоА). При утилизации глюкозы, эти вещества являются производными, формирующимися в реакциях с участием терминальных продуктов гликолиза, или же являются прямыми продуктами данного процесса.

Физиологические условия функционирования соответствующих путей различны. Оксидативный цикл трикарбоновых кислот активен в условиях аэрации, восстановительная ветвь цикла требует условий анаэробиоза, в то время как глиоксилатный шунт способен функционировать вне зависимости от условий аэрации.

При конверсии глюкозы в фумаровую кислоту с участием оксидативной части цикла трикарбоновых кислот одна молекула фумаровой кислоты образуется из одной молекулы глюкозы и, таким образом, коэффициент конверсии глюкозы в фумаровую кислоту составляет 1/1 или 1,0 моль/моль.

При превращении глюкозы в фумаровую кислоту с формированием целевого вещества в процессе с участием глиоксилатного шунта коэффициент конверсии субстрата в целевой продукт так же составляет 1/1 или же 1,0 моль/моль.

Сочетание двух указанных путей формирования фумаровой кислоты из глюкозы характеризуется формированием двух молекул фумаровой кислоты из двух молекул глюкозы и обуславливает коэффициент конверсии 2/2 или 1 моль/моль.

В отличие от процессов биосинтеза фумаровой кислоты из глюкозы протекающих в аэробных условиях, анаэробное формирование фумаровой кислоты с участием восстановительной ветви цикла трикарбоновых кислот требует поддержания баланса восстановленных и окисленных в ходе соответствующих реакций NAD+ и NADH эквивалентов. Процессы аэробного биосинтеза фумаровой кислоты из глюкозы основаны на реакциях окисления и в результате этого сопровождаются сопутствующим формированием значительного количества восстановленных эквивалентов. В присутствии кислорода избыточные восстановленные эквиваленты реокисляются в дыхательной электронтранспортной цепи. В условиях анаэробиоза электронтранспортная цепь не активна и реокисление образованных при утилизации глюкозы восстановленных эквивалентов должно быть сопряжено с реакциями брожения. Формирование фумаровой кислоты в восстановительной ветви цикла трикарбоновых кислот, являющейся частью процессов смешаннокислотного брожения, или же анаэробного дыхания, сопряжено с расходом восстановленных эквивалентов, сформированных при гликолизе.

Достижение внутриклеточного окислительно-восстановительного баланса при анаэробном биосинтезе фумаровой кислоты из глюкозы с вовлечением в формирование целевого вещества ацетил-СоА, т.е с участием реакций оксидативной части цикла трикарбоновых кислот и глиоксилатного шунта, невозможно.

Процесс прямого биосинтеза фумаровой кислоты из глюкозы в восстановительной части трикарбоновых кислот является NAD+/NADH сбалансированным и способен обеспечить коэффициент конверсии 2 моль/моль. Это обусловлено, с одной стороны, фиксацией ССЬ на стадии образования из гликолитических интермидиатов оксалоацетата - предшественника в анаэробном пути сбраживания глюкозы в фумаровую кислоту, а с другой стороны, тем, что тогда как конверсия каждой из двух молекул оксалоацетата, полученных из интермедиатов гликолитической утилизации глюкозы, в фумаровую кислоту требует одного восстановленного эквивалента (NADH), в ходе гликолиза формируются строго соответствующее количество восстановленных эквивалентов (2 NADH на одну молекулу глюкозы, т.е. строго по 1 NADH на каждую молекулу оксалоацетата).

Следует отметить, что возрастающая эмиссия парниковых газов и, в частности СО2, является одной из основных проблем современной технологической цивилизации. Возможность фиксации СО2 в процессах микробиологического синтеза веществ с высокой добавленной стоимостью расценивается как важнейшее преимущество. Расположение производства фумаровой кислоты на существующих мощностях по производству продукции спиртового брожения (этанол), сопровождающегося выбросом СО2, позволит исключить расходы на транспортировку данного компонента из структуры цены продукта.

Таким образом анаэробное сбраживание глюкозы, с формированием целевого вещества в восстановительной части цикла трикарбоновых кислот представляется наиболее эффективным процессом микробиологического получения фумаровой кислоты кислоты или ее солей.

Подходы к конструированию рекомбинантных штаммов-продуцентов полезных метаболитов включают несколько основополагающих принципов. Этими принципами являются: активация ключевых путей биосинтеза целевого вещества; активация биохимических путей биосинтеза метаболитов-предшественников; инактивация путей конкурентной утилизации предшественников в побочных биохимических путях; и инактивация путей деградации продукта. В случае создания анаэробных продуцентов продуктов брожения к этим принципам добавляется необходимость инактивации путей нецелевого реокисления восстановленных эквивалентов и поддержания внутреклеточного окислительно-восстановительного баланса.

Однако, поскольку биохимические пути образования фумаровой кислоты в клетках Е. coli различаются по физиологическим условиям функционирования, модификации метаболизма бактерии, направленные на достижение эффективного формирования фумаровой кислоты в конкретных биохимических процессах, различаются.

В работе Сонга и соавторов (Song, C.W. et al., 2013, Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol. Bioeng. 110, 2025-2034) описано конструирование рекомбинантного штамма Ε. coli для аэробной продукции фумаровой кислоты из глюкозы. Первоначально авторами была осуществлена попытка получения штамма для анаэробной продукции фумаровой кислоты за счет делеций генов adhE, кодирующего алкоголь/альдегид дегидрогеназу, ldhA, кодирующего лактат дегидрогензу, и frdABCD, кодирующих компоненты фумарат редуктазного ферментативного комплекса. Предполагалось, что в результате данных модификаций в штамме будет предотвращен нецелевой расход метаболитов предшественников, ацетил-КоА и пировиноградной кислоты, в путях побочных по отношению к биосинтезу фумаровой кислоты, а также будет исключена возможность анаэробной конверсии фумаровой кислоты в янтарную. Однако соответствующий штамм CWF0 (W3110 ΔadhE ΔldhA ΔfrdABCD) не продуцировал фумаровой кислоты и был не способен к росту в условиях анаэробиоза. В результате последующего многоэтапного конструирования был получен штамм CWF811 (W3110 ΔiclR ΔfumC ΔfumA ΔfumB ΔarcA ΔptsG ΔaspA ΔlcI)/pTac15kppc, с инактивированными генами, кодирующими белок репрессор генов глиоксилатного шунта, три изофермента фумаразы, транскрипционный регулятор генов респираторного метаболизма, основную пермеазу глюкозы фосфоенолпируват зависимой системы транспорта Сахаров, аспартат аммоний лиазу, белок репрессор генов лактозного оперона, и обладающий повышенной экспрессией фосфоенолпируват карбоксилазы. Штамм CWF811 способен к аэробной продукции фумаровой кислоты из глюкозы с коэффициентом конверсии 0,65 моль/моль, то есть 65% от теоретически возможного значения для соответствующего процесса, протекающего в условиях аэрации. Дальнейшая попытка оптимизировать продукцию целевого вещества была предпринята при оверэкспрессии гена galP, кодирующего низкоаффиный Н+-симпортер галактозы, также способный к транспорту глюкозы. Однако, коэффициент конверсии субстрата в целевой продукт, демонстрируемый соответствующим штаммом CWF812 (W3110 ΔiclR ΔfumC ΔfumA ΔfumB ΔarcA ΔptsG ΔaspA ΔlacI PgalP::Ptrc)/pTac15kppc, не только не возрос, но и обнаружил незначительное снижение до 0,62 моль/моль. Основным побочным продуктом утилизации глюкозы обоими штаммами являлась уксусная кислота, что по-видимому обусловлено присутствием в штамме интактных генов рохВ и pta-ackA, кодирующих пируват оксидазу, фосфотрансацетилазу и ацетат киназу и ответственных за формирование уксусной кислоты из пировиноградной кислоты и ацетил-КоА, соответственно.

В патенте CN 102618570 приведено поэтапное конструирование штамма Е. coli для продукции фумаровой кислоты в анаэробных условиях. Итоговый штамм НН5 (ΔfumA, ΔfumB, ΔfumC, ΔarcA, ΔfrdB, ΔpflB, ΔldhA) получен путем направленной делеции следующих генов:

- fumA, fumB, fumC, кодирующих белки изоферменты фумаразы,

- arcA, кодирующего транскрипционный регулятор генов респираторного метаболизма,

- frdB, кодирующиего один из каталитических компонентов фумарат редуктазы,

- pflB, кодирующего пируват формат лиазу и

- ldhA, кодирующего лактат дегидрогензу.

За счет делений генов fumA, fumB, fumC в штамме НН5 исключена возможность интерконверсии яблочной и фумаровой кислот как в аэробной, так и в анаэробной ветвях цикла трикарбоновых кислот.Инактивация транскрипционного регулятора ArcA дерегулировала экспрессию генов, кодирующих ферменты оксидативной части цикла трикарбоновых кислот и глиоксилатного шунта. Инактивация фумарат редуктазного ферментативного комплекса, за счет делеции гена frdB, исключала одну из возможностей превращения фумаровой кислоты в янтарную. Делеция гена pflB предотвращала анаэробную конверсию пировиноградной кислоты в ацетил-КоА и, тем самым, должна была способствовать снижению эффективности побочной продукции штаммом уксусной кислоты и этанола. Инактивация гена IdhA, кодирующего лактат дегидрогензу, катализирующую образование молочной кислоты из пировиноградной с окислением эквимолярного количества NADH, способствовала как сбережению восстановленных эквивалентов, необходимых для биосинтеза фумаровой кислоты, так и препятствовала нецелевому расходу одного из метаболитов предшественников. Коэффициент молярной конверсии глюкозы в фумаровую кислоту, демонстрируемый штаммом НН5, составлял 0,7, в три раза уступая теоретически возможному максимуму.

В патенте CN 101240259 также описано конструирование штамма Е. coli для анаэробной продукции фумаровой кислоты. В качестве базового штамма для получения продуцента фумаровой кислоты использован штамм Е. coli NZN111 (W1485 Δpfl::Cam ΔldhA::Kan) с инактивированными генами ldhA и pflB, не способный анаэробно сбраживать глюкозу. После инактивации фумарат редуктазного ферментативного комплекса и введения на плазмиде гена sfcA, кодирующего малатный фермент, итоговый штамм JM125 (W1485 Δpfl::Cam ΔldhA::Kan Δfrd)/pTrc99a-sfcA восстанавливал способность анаэробно сбраживать глюкозу и приобретал способность к продукции фумаровой кислоты. Тем не менее коэффициент молярной конверсии глюкозы в фумаровую кислоту, демонстрируемый штаммом JM125, составлял 0,72, при максимально возможном значении коэффициэнта конверсии - 2,0.

Из вышеизложенного следует, что модификации, приводящие к получению штаммов Е. coli - продуцентов фумаровой кислоты, могут различаться по своему набору. Рациональный выбор генов мишений, основанный только на анализе доступной информации о функционировании целевых биохимических путей, не может надежно предопределить успеха в улучшении продукции фумаровой кислоты сконструированными штаммами. Более того, неочевидным является сохранение сконструированными штаммами способности к анаэробной утилизации глюкозы, при объединении в них генетических модификаций, влияющих на глобальную координацию метаболизма углерода и окислительно-восстановительного баланса клетки в условиях анаэробиоза.

Известные из источников информации штаммы Е. coli - анаэробные продуценты фумаровой кислоты синтезируют целевое вещество из глюкозы с выходом не превышающим нижнего порогового значения, характерного для анаэробного процесса, т.е. менее 1 моль/моль.

Задачи настоящего изобретения включают:

- конструирование штамма Е. coli, способного продуцировать фумаровую кислоту с повышенной эффективностью;

- разработка способа получения фумаровой кислоты с использованием этого штамма.

Задачи решены путем

- констрирования штамма Escherichia coli FUM1.0 - продуцента фумаровой кислоты, обладающего инактивированными генами ackA, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG, кодирующими ацетат киназу, фосфотрансацетилазу, пируват оксидазу, лактат дегидрогеназу, алкоголь/альдегид дегидрогеназу, пируват формат лиазу, каталитические субъединицы фумарат редуктазного ферментативного комплекса, каталитические субъединицы сукцинат дегидрогеназного ферментативного комплекса, изоцитрат лиазу, малат синтазу и глюкозную пермеазу, соответственно, и усиленной экспрессией генов galP и glk, кодирующих Н+-симпортер галактозы и глюкокиназу;

- разработки способа получения фумаровой кислоты путем культивирования заявляемого штамма в подходящих условиях с последующим выделением фумаровой кислоты из культуральной жидкости.

Объектом настоящего изобретения является штамм бактерий вида Escherichia coli, обладающий способностью к эффективной продукции фумаровой кислоты.

Также объектом настоящего изобретения является штамм бактерий Escherichia coli с инактивированными генами аскА, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG, и усиленной экспрессией генов galP и glk - продуцент фумаровой кислоты.

Также объектом настоящего изобретения являются штамм бактерий Escherichia coli, в котором экспрессия генов galP и glk усилена за счет замены в хромосоме штамма нуклеотидных последовательностей природных промоторов, контролирующих экспрессию генов galP и glk, на более сильные промоторы.

Также объектом настоящего изобретения является способ получения фумаровой кислоты, включающий стадии культивирования штамма, описанного выше, в питательной среде; и выделения произведенной и накопленной фумаровой кислоты из культуральной жидкости.

Также объектом настоящего изобретения является описанный выше способ, в котором процесс культивирования штамма включает в себя аэробную стадию накопления биомассы и анаэробную стадию продукции фумаровой кислоты.

Штамм, согласно настоящему изобретению, - это штамм бактерий вида Escherichia coli, сконструированный в результате направленных генно-инженерных манипуляций.

Термин «штамм бактерий Escherichia coli с инактивированными генами ackA, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, асеА, асеВ и ptsG» означает, что указанная бактерия была модифицирована таким образом, что в результате модификации такая бактерия содержит пониженное количество белков AckA, Pta, РохВ, LdhA, AdhE, PflB, FrdA, FrdB, SdhA, SdhB, AceA, АсеВ и PtsG по сравнению с немодифицированной бактерией, или указанная бактерия не способна синтезировать белки AckA, Pta, РохВ, LdhA, AdhE, PflB, FrdA, FrdB, SdhA, SdhB, AceA, АсеВ и PtsG.

Термин «инактивация генов аскА, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG» означает, что естественная экспрессия модифицированных участков ДНК невозможна из-за делеций данных генов или их частей или модификации примыкающих к генам областей, которые включают последовательности, контролирующие экспрессию сответствующих генов, такие как промоторы, энхансеры, аттенуаторы, и т.д.

Наличие или отсутствие генов ackA, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, асеА, асеВ и ptsG на хромомсоме бактерии можно определить известными методами, включая ПЦР, блоттинг по Саузерну, и т.п.Кроме того, уровни экспрессии гена можно оценить определением количества транскрибируемой с гена РНК с использованием различных известных методов, включая блоттинг по Нозерну, количественную ОТ-ПЦР, и т.п. Количества или молекулярные массы кодируемых генами белков могут быть определены известными методами, включая SDS-ΠΑΑΓ- электрофорез с последующим иммуноблотингом ПЦР (блоттинг по Вестерну) и т.п..

Ген аскА (синонимы: ЕСК2290, b2296) кодирует белок AckA (синоним: В2296), проявляющий активность ацетаткиназы, классифицируемую как К.Ф. 2.7.2.1. Ген аскА (нуклеотиды с 2,411,492 по 2,412,694 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi: 49175990) расположен между открытой рамкой считывания yfbV и геном pta на хромосоме штамма Е. coli К-12. Нуклеотидная последовательность гена ackA и аминокислотная последовательность белка AckA, кодируемого геном ackA, приведены в Перечне последовательностей под номерами 1 (SEQ ID NO: 1) и 2 (SEQ ID NO: 2) соответственно. Ген pta (синонимы: ЕСК2291, b2297) кодирует белок Pta (синоним: В2297), проявляющий активность фосфотрансацетилазы, классифицируемую как К.Ф. 2.3.1.8. Ген pta (нуклеотиды с 2,412,769 по 2,414,913 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi: 49175990) расположен между геном ackA и открытой рамкой считывания yfcC на хромосоме штамма Е. coli К-12. Нуклеотидная последовательность гена pta и аминокислотная последовательность белка Pta, кодируемого геном pta, приведены в Перечне последовательностей под номерами 3 (SEQ ID NO: 3) и 4 (SEQ ID NO: 4) соответственно. Ген рохВ (синонимы: ЕСК0862, b0871) кодирует белок РохВ (синоним: В0871), проявляющий активность пируватоксидазы, классифицируемую как К.Ф. 1.2.5.1. Ген рохВ (нуклеотиды комплементарные нуклеотидам с 908,554 по 910,272 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi: 49175990) расположен между геном ltaE и геном hcr на хромосоме штамма Е. coli К-12. Нуклеотидная последовательность гена рохВ и аминокислотная последовательность белка РохВ, кодируемого геном рохВ, приведены в Перечне последовательностей под номерами 5 (SEQ ID NO: 5) и 6 (SEQ ID NO: 6) соответственно. Ген ldhA (синонимы: ECK1377, b1380) кодирует белок LdhA (синоним: В1380), проявляющий активность лактатдегидрогеназы, классифицируемую как К.Ф. 1.1.1.28. Ген ldhA (нуклеотиды комплементарные нуклеотидам с 1,439,878 по 1,440,867 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi: 49175990) расположен между геном hslJ и открытой рамкой считывания ydbH на хромосоме штамма Е. coli К-12. Нуклеотидная последовательность гена ldhA и аминокислотная последовательность белка ldhA, кодируемого геном ldhA, приведены в Перечне последовательностей под номерами 7 (SEQ ID NO: 7) и 8 (SEQ ID NO: 8) соответственно. Ген adhE (синонимы: ЕСК1235, b1241) кодирует белок AdhE (синоним: В1241), проявляющий активность алкоголь дегидрогеназы и альдегид дегидрогеназы, классифицируемые как К.Ф. 1.1.1.1. и К.Ф. 1.2.1.3. Ген adhE (нуклеотиды комплементарные нуклеотидам с 1,294,669 по 1,297,344 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi: 49175990) расположен между открытой рамкой считывания ychG и открытой рамкой считывания ychE на хромосоме штамма Е. coli К-12. Нуклеотидная последовательность гена adhE и аминокислотная последовательность белка AdhE, кодируемого геном adhE, приведены в Перечне последовательностей под номерами 9 (SEQ ID NO: 9) и 10 (SEQ ID NO: 10) соответственно. Ген pflB (синонимы: ЕСК0894, b0903) кодирует белок PflB (синоним: В0903), проявляющий активность пируватформатлиазы, классифицируемую как К.Ф. 2.3.1.54. Ген pflB (нуклеотиды комплементарные нуклеотидам с 950,495 по 952,777 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi: 49175990) расположен между геном pflA и геном focA на хромосоме штамма Е. coli К-12. Нуклеотидная последовательность гена pflB и аминокислотная последовательность белка PflB, кодируемого геном pfl, приведены в Перечне последовательностей под номерами 11 (SEQ ID NO: 11) и 12 (SEQ ID NO: 12) соответственно. Гены frdA и frdB (синонимы: ЕСК4150, b4154; ЕСК4149, b4153) кодируют белки FrdA и FrdB - субъединицы фумарат редуктазного ферментативного комплекса. Гены frdA и frdB (нуклеотиды, комплементарные нуклеотидам с 4,378,533 по 4,380,341, и нуклеотиды, комплементарные нуклеотидам с 4,377,806 по 4,378,540, соответственно, в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990) расположены между генами ертА и frdC на хромосоме Е. coli К-12. Нуклеотидные последовательности генов frdA и frdB и аминокислотные последовательности белков FrdA и FrdB, кодируемых генами frdA и frdB представлены в SEQ ID NO: 13, SEQ ID NO: 15 и SEQ ID NO: 14, SEQ ID NO: 16, соответственно. Гены sdhA и sdhB (синонимы: ECK0712, b0723; ECK0713, b0724) кодируют белки SdhA и SdhB - каталитические субъединицы сукцинат дегидрогеназного ферментативного комплекса. Гены sdhA и sdhB (нуклеотиды с 755,130 по 756,896, и нуклеотиды, с 756,912 по 757,628, соответственно, в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990) расположены между генами sdhD и sucA на хромосоме Е. coli К-12. Нуклеотидные последовательности генов sdhA и sdhB и аминокислотные последовательности белков SdhA и SdhB, кодируемых генами sdhA и sdhB представлены в SEQ ID NO: 17, SEQ ID NO: 19 и SEQ ID NO: 18, SEQ ID NO: 20, соответственно. Гены aceA и асеВ (синонимы: ЕСК4007, b4015; ЕСК4006, b4014) кодируют белки АсеА и АсеВ, проявляющие, соответственно, активность изоцитрат лиазы и малат синтазы, классифицируемые как К.Ф. 4.1.3.1. и К.Ф. 2.3.3.9. Гены асеА и асеВ (нуклеотиды с 4,215,132 по 4,216,436, и нуклеотиды, с 4,213,501 по 4,215,102, соответственно, в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990) расположены между генами metA и асеК на хромосоме штамма Е. coli К-12. Нуклеотидные последовательности генов асеА и асеВ и аминокислотные последовательности белков АсеА и АсеВ, кодируемых генами асеА и асеВ представлены в SEQ ID NO: 21, SEQ ID NO: 23 и SEQ ID NO: 22, SEQ ID NO: 24, соответственно. Ген ptsG (синонимы: ECK1087, b1101) кодирует белок PtsG (синоним: B1101), проявляющий активность пермеазы глюкозы фосфоенолпируват зависимой системы транспорта Сахаров. Ген ptsG (нуклеотиды с 1,157,092 по 1,158,525 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi: 49175990) расположен между открытой рамкой считывания ycfH и геном fhuE на хромосоме штамма Е. coli К-12. Нуклеотидная последовательность гена ptsG и аминокислотная последовательность белка PtsG, кодируемого геном ptsG, приведены в Перечне последовательностей под номерами 25 (SEQ ID NO: 25) и 26 (SEQ ID NO: 26) соответственно.

Поскольку у представителей различных штаммов вида Escherichia coli возможны Некоторые вариации в нуклеотидных последовательностях, понятие инактивируемого гена не ограничивается генами, последовательности которых приведены в Перечне последовательностей под номерами 1 (SEQ ID No: 1), 3 (SEQ ID No: 3), 5 (SEQ ID No: 5), 7 (SEQ ID No: 7), 9 (SEQ ID No: 9), 11 (SEQ ID No: 11), 13 (SEQ ID NO: 13), 15 (SEQ ID No: 15), 17 (SEQ ID No: 17), 19 (SEQ ID No: 19), 21 (SEQ ID NO: 21), 23 (SEQ ID No: 23), 25 (SEQ ID NO: 25), но также может включать и гены, гомологичные SEQ ID No: 1, SEQ ID No: 3, SEQ ID No: 5, SEQ ID No: 7, SEQ ID No: 9, SEQ ID No: 11, SEQ ID NO: 13, SEQ ID No: 15, SEQ ID No: 17, SEQ ID No: 19, SEQ ID NO: 21, SEQ ID No: 23, SEQ ID NO: 25, кодирующие варианты белков AckA, Pta, PoxB, LdhA, AdhE, PflB, FrdA, FrdB, SdhA, SdhB, АсеА, АсеВ и PtsG. Термин «вариант белка» в значении, в котором он используется в настоящем изобретении, означает белок, имеющий изменения в аминокислотной последовательности, а именно делении, вставки, добавления или замены аминокислот. Количество изменений в варианте белка зависит от положения аминокислотного остатка в трехмерной структуре или типа аминокислотного остатка. Количество изменений может быть от 1 до 30, предпочтительно от 1 до 15 и наиболее предпочтительно от 1 до 5 изменений в последовательностях SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 и SEQ ID NO: 26. Данные изменения в вариантах белка являются консервативными мутациями, при которых сохраняется функция белка. Другими словами, данные изменения могут иметь место в областях белка, некритичных для его трехмерной структуры. Это становится возможным благодаря тому, что некоторые аминокислоты обладают высокой гомологией друг к другу, и поэтому третичная структура при таких заменах не нарушается. Консервативная мутация - это мутация, при которой имеют место взаимные замены среди Phe, Trp, Tyr, если сайт замены - ароматическая аминокислота; среди Leu, Ile, Val, если сайт замены -гидрофобная аминокислота; между Gln, Asn, если сайт замены - положительно заряженная аминокислота; среди Lys, Arg, His, если сайт замены - основная аминокислота; между Asp, Glu, если сайт замены - кислая аминокислота и между Ser, Thr, если это аминокислота с гидроксильной группой. Консервативные замены являются типичными консервативными мутациями. Примеры консервативных замен включают замену Ala на Ser или Thr, замену Arg на Gin, His или Lys, замену Asn на Glu, Gin, Lys, His или Asp, замену Asp на Asn, Glu или Gin, замену Cys на Ser или Ala, замену Gin на Asn, Glu, Lys, His, Asp или Arg, замену Glu на Asn, Gin, Lys или Asp, замену Gly на Pro, замену His на Asn, Lys, Gin, Arg или Туr, замену Ile на Leu, Met, Val или Phe, замену Leu на Ile, Met, Val или Phe, замену Lys на Asn, Glu, Gin, His или Arg, замену Met на Ile, Leu, Val или Phe, замену Phe на Trp, Туr, Met, Не или Leu, замену Ser на Thr или Ala, замену Thr на Ser или Ala, замену Trp на Phe или Tyr, замену Tyr на His, Phe или Trp, и замену Val на Met, Ile или Leu. Описанные выше замены, делеции, вставки, добавления, перестановки и т.п. одного или нескольких аминокислотных остатков включают природные мутации (мутант или вариант) в зависимости от видовых различий или индивидуальных различий микроорганизмов, содержащих гены ackA, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG. Такие гены могут быть получены модифицированием нуклеотидной последовательности, показанной в SEQ ID No: 1, SEQ ID No: 3, SEQ ID No: 5, SEQ ID No: 7, SEQ ID No: 9, SEQ ID No: 11, SEQ ID NO: 13, SEQ ID No: 15, SEQ ID No: 17, SEQ ID No: 19, SEQ ID NO: 21, SEQ ID No: 23 и SEQ ID NO: 25 с использованием, например, сайт-специфического мутагенеза, таким образом, что I сайт-специфический аминокислотный остаток в соответствующем кодируемом белке включает замены, делеции, вставки или добавления.

Следовательно, варианты белков, кодируемых генами аскА, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG, могут иметь гомологию не менее 80%, предпочтительно не менее 90%, и наиболее предпочтительно не менее 95%, по отношению к полной аминокислотной последовательности, показанной в Перечне последовательностей под номерами 2 (SEQ ID NO: 2), 4 (SEQ ID NO: 4), 6 (SEQ ID NO: 6), 8 (SEQ ID NO: 8), 10 (SEQ ID NO: 10), 12 (SEQ ID NO: 12), 14 (SEQ ID NO: 14), 16 (SEQ ID NO: 16), 18 (SEQ ID NO: 18), 20 (SEQ ID NO: 20), 22 (SEQ ID NO: 22), 24(SEQ ID NO: 24) и 26 (SEQ ID NO: 26), соответственно.

В связи с этим гены аскА, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG могут быть вариантами, которые гибридизуются в жестких условиях с нуклеотидными последовательностями, приведенными в Перечне последовательностей под номерами 1 (SEQ ID No: 1), 3 (SEQ ID No: 3), 5 (SEQ ID No: 5), 7 (SEQ ID No: 7), 9 (SEQ ID No: 9), 11 (SEQ ID No: 11), 13 (SEQ ID NO: 13), 15 (SEQ ID No: 15), 17 (SEQ ID No: 17), 19 (SEQ ID No: 19), 21 (SEQ ID NO: 21), 23 (SEQ ID No: 23), 25 (SEQ ID NO: 25), или с зондом, который может быть синтезирован на основе указанной нуклеотидной последовательности. «Жесткие условия» включают такие условия, при которых специфические гибриды, например, гибриды с гомологией! не менее 60%, предпочтительно не менее 70%, более предпочтительно не менее 80%, еще более предпочтительно не менее 90%, и наиболее предпочтительно не менее 95%, образуются, а неспецифические гибриды, например, гибриды с меньшей гомологией, чем указано выше, - не образуются. Практическим примером жестких условий является однократная отмывка, предпочтительно двух- или трехкратная, при концентрации солей 1×SSC, 0.1% SDS, предпочтительно 0.1×SSC, 0.1% SDS, при 60°С.Продолжительность отмывки зависит от типа используемой для блоттинга мембраны и, как правило, такова, как рекомендовано производителем. Например, рекомендуемая продолжительность отмывки для нейлоновой мембраны Hybond™ N+ (Amersham) при строгих условиях-15 минут. Предпочтительна двух- трехкратная отмывка. Длина зонда может быть выбрана в зависимости от условий гибридизации, обычно от 100 н.п. до 1000 н.п.

Гомология между последовательностями аминокислот может быть определена с использованием известных методов, например, компьютерной программы BLAST 2.0.

Экспрессия генов аскА, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, aceB и ptsG может быть ослаблена введением мутации в соответствующий ген на хромосоме, при которой внутриклеточная активность белка, кодируемого геном, снижена или отсутствует по сравнению с немодифицированным штаммом. Такой мутацией гена может быть вставка гена устойчивости к антибиотику, или делеция гена или его части (Qiu, Ζ. and Goodman, M.F., J., 1997, Biol. Chem., 272, 8611-8617; Kwon, D.H. et al., 2000, J. Antimicrob. Chemother., 46, 793-796). Экспрессия генов ackA, pta, рохВ, ldhA, adhE, pflB, frdA, frdB, sdhA, sdhB, aceA, асеВ и ptsG также может быть ослаблена модификацией регуляторных последовательостей, таких как промотор или последовательность Shine-Dalgarno (SD) (заявка РСТ WO 95/34672; Carrier, Т.А. and Keasling, J.D., 1999, Biotechnol Prog 15, 58-64).

Следующие методы могут быть применены для введения мутаций путем генной рекомбинации. Конструируется мутантный ген, и бактерия для ее модификации трансформируется фрагментом ДНК, содержащим мутантный ген. Затем нативный ген на хромосоме замещается гомологичной рекомбинацией мутантным геном, отбирается полученный штамм. Такое замещение гена с использованием гомологичной рекомбинации может быть проведено методом с использованием линейной ДНК, известным как "Red-зависимая интеграция" или "интеграция посредством Red-системы" (Datsenko, K.Α., Wanner, B.L., 2000, Proc. Natl. Acad. Sci. USA, 97, 12, 6640-6645) или методом с использованием плазмиды, репликация которой чувствительна к температуре (патент США 6,303,383 или патентная заявка Японии JP 05-007491 А). Далее, введение сайт-специфической мутации путем замещения гена с использованием вышеупомянутой гомологичной рекомбинации может также быть осуществлено с использованием плазмиды с пониженной способностью к репликации в клетке хозяина.

Экспрессия гена также может быть ослаблена вставкой транспозона или IS фактора в кодирующую область гена (патент США 5,175,107), или традиционными методами, такими как мутагенез с использованием УФ излучения или обработка нитрозогуанидином (N-метил-N′-нитро-N-нитрозогуанидин).

Инактивация гена также может быть осуществлена традиционными методами, такими как мутагенез с использованием УФ излучения или обработка нитр