Очистка воздуха

Иллюстрации

Показать все

Изобретение относится к удалению воды, углекислого газа и закиси азота из воздушного потока перед криогенным разделением воздуха. В способе снижения воды, CO2 и N2O в сырьевом воздухе используются первый адсорбент, такой как оксид алюминия (25-40% по объему), и второй адсорбент, такой как цеолит X (60-75% по объему); время работы адсорбента определяется путем определения концентрации, измеренной с помощью анализатора для концентрации CO2 в положении в пределах длины второго адсорбента, когда максимальный уровень N2O получают одновременно на нижнем по потоку конце второго адсорбента в направлении подачи, где время работы - это время от начала прохождения сырьевого воздуха в первый и второй адсорбенты до измерения с помощью анализатора определенной концентрации СО2; по меньшей мере, второй адсорбент регенерируют с помощью нагретого регенерационного газа при температуре от 140 до 220°C и молярное отношение регенерирующего газа к сырьевому воздуху, подаваемому во время одной итерации цикла, составляет 0,08-0,5. 6 н. и 21 з.п. ф-лы, 11 табл., 5 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

[0001] Изобретение относится к удалению воды, углекислого газа и закиси азота, и в некоторых случаях также углеводородов, из воздушного потока перед криогенным разделением воздуха.

[0002] Криогенное разделение воздуха требует стадии предварительной очистки для удаления как высококипящих, так и опасных материалов. Основные высококипящие компоненты воздуха включают в себя воду и углекислый газ. Если удаление этих примесей из окружающего сырьевого воздуха не достигается, то вода и углекислый газ могут замерзнуть в холодных секциях способа разделения, таких как теплообменники и сборники жидкого кислорода (LOX). Это может привести к падению давления, изменениям расхода и эксплуатационным проблемам. Различные опасные материалы также должны быть восстановлены, в том числе ацетилен и другие углеводороды. Высококипящие углеводороды, если их не удалить, могут концентрироваться в секции жидкого кислорода колонны, что приводит к потенциальной опасности взрыва.

[0003] Известно, что оксиды азота также должны быть удалены. Минорный компонент воздуха - закись азота N2O, который присутствует в окружающем воздухе при приблизительно 0,3 части на миллион. Она имеет сходные физические свойства с углекислым газом и, следовательно, представляет собой потенциальную эксплуатационную проблему из-за образования твердых веществ в колонне и теплообменниках криогенной дистилляционной установки. Кроме того, закись азота, как известно, улучшает сгорание органических материалов и является ударочувствительной.

Таким образом, закись азота, также представляет угрозу безопасности. Углеводороды, такие как этилен, ацетилен, бутан, пропилен и пропан, являются дополнительными примесями, которые желательно удалить до криогенного разделения воздуха.

[0004] Предварительная очистка воздуха обычно проводится с помощью адсорбционных газопоглотительных способов. Они могут работать посредством адсорбции с переменной температурой (TSA), как описано в патенте США 4541851 и 5137548 или Ю. Гемминген ("Конструкции адсорбционных сушилок на заводах по разделению воздуха" Отчеты по технологии 54/1994, Линде), посредством адсорбции с переменным давлением (PSA), как описано в патенте США 4711645, 5232474 или С.В. Скарстром ("Безнагревное фракционирование газов над твердыми адсорбентами" т. II, 95, Н.В. Ли (Ед), CRC Press, Кливленд, Огайо 1972), или посредством вариаций этих способов, таких как термически улучшенная адсорбция с переменным давлением (TEPSA), как описано в патенте США 5614000, или адсорбция с переменной температурой и давлением, как описано в патенте США 5855650.

[0005] Как правило, предварительная очистка воздуха осуществляется путем адсорбции загрязняющих газовых компонентов из воздуха путем адсорбции на твердом адсорбенте с периодической регенерацией адсорбента. В таких способах воздух подается в контакте, по меньшей мере, с двумя слоями твердых адсорбентов, чтобы адсорбировать компоненты с целью удаления, концентрация этих компонентов постепенно увеличивается в адсорбентах. Концентрация каждого из удаленных газовых компонентов в адсорбенте не будет равномерной, но будет наибольшей на верхнем по потоку конце слоя адсорбента и будет уменьшаться постепенно по ходу зоны массообмена в адсорбенте. Если способ проводится в течение неопределенного времени, зона массообмена будет постепенно перемещаться ниже по потоку в слое адсорбента, пока компонент, который должен быть удален, не выйдет из нижнего по потоку конца слоя. Перед этим необходимо регенерировать адсорбент.

[0006] В системах адсорбции с переменным давлением (PSA), это делается путем остановки потока газа, подлежащего обработке, в адсорбенте, сброса давления в адсорбенте и, как правило, путем пропускания потока регенерирующего газа, с низким содержанием компонента, адсорбированного на слое, через слой противотоком к направлению подачи продукта. Поскольку компонент, который будучи удаленным, адсорбируют, в то время как слой находится в процессе работы, процесс адсорбции будет генерировать тепло адсорбции, вызывая тепловой импульс с целью продвижения ниже по потоку через адсорбент. В процессе регенерации, тепло должно подаваться для десорбции газового компонента, который был адсорбирован на слое. В системах адсорбции с переменным давлением PSA, одна направлена на начало регенерации до того, как тепловой импульс достиг нижнего по потоку конца слоя; направление движения теплового импульса меняют с помощью противоточного потока регенерирующего газа, и тепло, полученное от адсорбции газообразного компонента, о котором идет речь, используют для десорбции того компонента в процессе регенерации. Одна, таким образом, избегает необходимости подачи тепла во время стадии регенерации. Однако, короткое время цикла (время подачи обычно 10-15 мин), используемое для того, чтобы избежать теплового импульса, покидающего слой адсорбента, требует частого сброса давления слоя, во время которого сырьевой газ выпускают и утрачивают («распределительная потеря»). Кроме того, обычно используют два слоя адсорбента, причем один из них в процессе работы, в то время как другой регенерируют. Сброс давления и регенерация одного слоя должны происходить в течение короткого времени, при котором другой слой находится в процессе работы, и быстрое восстановление давления может привести к изменениям в переходном процессе в сырьевых и продуктовых потоках, которые могут негативно повлиять на работу установки.

[0007] Альтернативная процедура известна как адсорбция с переменной температурой (TSA). В TSA, время цикла увеличивают (время подачи обычно 2-12 ч) и упомянутому выше тепловому импульсу позволяют выходить из нижнего по потоку конца слоя адсорбента во время подачи сырья или в процессе работы. Для достижения регенерации, таким образом, необходимо подводить тепло для десорбции адсорбированного газового компонента. С этой целью, используемый регенерирующий газ нагревают в течение периода для производства теплового импульса, движущегося через слой, противотоком к нормальному направлению подачи. Этот поток нагретого регенерирующего газа обычно сопровождается потоком холодного регенерирующего газа, который продолжает перемещение теплового импульса через слой в направлении верхнего по потоку конца. TSA характеризуется длительным временем цикла по сравнению с PSA. TSA является энергоемким, так как необходимо подводить регенерирующий газ, нагретый до высокой температуры, такой как 150-200°С, чтобы обеспечить десорбцию наиболее сильно адсорбированного компонента из слоя. Обычно также предварительно охлаждают воздух, подлежащий обработке, с тем, чтобы свести к минимуму количество воды, которое должно быть адсорбировано на слое, что дополнительно увеличивает производственные и энергетические затраты.

[0008] В обычном способе TSA предварительной очистки воздуха, двойной слой используется для удаления, по существу, всей воды и углекислого газа, присутствующих в сырьевом потоке воздуха. Поскольку вода более тяжело адсорбируется двумя соединениями, слои, как правило, используют, пока углекислый газ не начинает прорываться через слой адсорбента. Больше СО2, чем N2O присутствует в сырьевом потоке воздуха, но поскольку 13X имеет большую способность для CO2, чем для N2O, если слои работают до прорыва CO2, значительное количество N2O прорвется из слоя, и может вызвать проблемы ниже по потоку в криогенной ректификационной установке.

[0009] Патенты США 4249915 и 4472178 раскрывают адсорбционный способ, в котором влага и углекислый газ удаляется из атмосферного воздуха путем адсорбции в отдельных соответствующих слоях. Содержащий влагу слой регенерируют путем PSA в течение относительно короткого рабочего цикла, в то время как слой, содержащий углекислый газ, регенерируют термически при значительно более длительных интервалах времени. Хотя есть определенные преимущества этого устройства, производственные затраты высоки из-за дублирования колонн и необходимости в дополнительном оборудовании для реализации обеих систем регенерации соответствующих слоев.

[0010] Веннинг ("Оксиды азота на установках разделения воздуха" У. Веннинг, Труды из MUST 96, пп. 32-36) описывает, как углекислый газ может вытеснить уже адсорбированную закись азота из цеолитного адсорбента, вызывая прорыв закиси азота в концентрации большей, чем того в окружающем воздухе.

[0011] Патент США 5919286 учит, что слой цеолита (17% по объему) в продуктовом (нижнем по потоку) конце слоя оксида алюминия может быть использован для удаления оксидов азота в способе PSA.

[0012] EP 0992274 описывает способ удаления углекислого газа, воды и закиси азота из воздуха предпочтительно в способе TSA, в котором используется трехслойный адсорбент, с первым слоем, например, из оксида алюминия, преимущественно адсорбирующий воду, вторым слоем, например, из 13X, преимущественно адсорбирующий углекислый газ, и третьим слоем, например, из CaX, преимущественно адсорбирующий закись азота.

[0013] Патент США 5846295 описывает способ TSA удаления CO2 и H2O, в котором используют пропитанный оксид алюминия, в некоторых случаях в сочетании с цеолитом, таким как 13X, в продуктовом конце слоя. Способ работает до прорыва CO2 с конца слоя, и отношение времени нагрева ко времени работы, необходимой для десорбции CO2 и воды, адсорбированных на слое, между 54% и 38%.

[0014] Патент США 5614000 описывает способ удаления воды и СО2 из воздуха, в котором слой адсорбента, предпочтительно содержащий только оксид алюминия, может быть регенерирован частично посредством TSA и частично посредством PSA, с частью адсорбента, которая адсорбирует воду (верхняя по потоку часть), будучи регенерированной посредством PSA, тогда как остаток регенерируется посредством TSA, использующей температуру регенерирующего газа около 70°C. Такой способ известен под аббревиатурой TEPSA. Этот способ работает до прорыва CO2 с конца слоя, и отношение времени нагрева ко времени работы, необходимой для десорбции CO2 и воды, адсорбированных на слое, как правило, около 33% (Таблицы 2 и 3 показывают времени нагрева/время работы - 10/30 = 0,33).

[0015] Патент США 5855650 описывает способ удаления воды и СО2 из воздуха, в котором слой адсорбента, содержащего слой оксида алюминия и слой цеолита 13Х, или один слой полностью оксида алюминия, регенерируют посредством TSA, использующей температуру газа около 100°С в нижней по потоку части, в то время как верхняя по потоку часть, на которой адсорбируется вода, регенерируется частично TSA и частично PSA. Такой процесс известен под аббревиатурой TPSA. Этот способ работает до прорыва CO2 с конца слоя, и отношение времени нагрева ко времени работы, необходимой для десорбции CO2 и воды, адсорбированных на слое, составляет 46% и 35% в примерах 2 и 3 соответственно.

[0016] PCT/EP 2012/060317 описывает способ удаления закиси азота, углекислого газа и воды из сырьевого потока воздуха, в котором сырьевой поток воздуха пропускают через первый адсорбент, имеющий селективность по закону Генри по отношению к CO2 по сравнению с N2O, по меньшей мере, 12,5, и второй адсорбент, занимающий от 25% до 40% по объему от общего объема первого и второго адсорбента, чья константа по закону Генри для адсорбции СО2 меньше чем 1020 ммоль/г/атм и чья селективность по закону Генри по отношению к CO2 по сравнению с N2O, составляет не более 5, в котором регенерация адсорбентов осуществляется посредством первого регенерирующего газа, имеющего температуру между 20°С и 80°С и от 10°С до 60°С выше, чем температура сырьевого газа, и затем посредством второго регенерирующего газа, имеющего более низкую температуру, чем первый регенерирующий газ.

[0017] WO 2005/000447 описывает способ, в котором использование адсорбента, через который осуществляют маршруты радиального потока, обеспечивает снижение время цикла для способа TSA для удаления СО2 и Н2О из сырьевого потока воздуха, а также уменьшение потерь тепла и, следовательно, повышение эффективности процесса. Использование радиального слоя играет важную роль в предотвращении потери тепла к наружным частям адсорбирующего аппарата.

[0018] CA 804391 относится к способу сушки воздуха, и учит, что влагопоглотительный слой может быть использован эффективно, несмотря на колебания уровня влаги в сырьевом воздухе, путем контроля положения фронта адсорбции воды внутри слоя и регенерации слоя, как только фронт достиг выбранного положения внутри слоя.

[0019] Известно, что в некоторых местах, окружающий уровень СО2, присутствующий в воздухе, значительно вырос по сравнению с уровнями, что способы предшествующего уровня техники нуждались в решении. Например, когда установка разделения воздуха находится в районе, где есть тяжелая промышленность, часто бывает, что повышенный уровень СО2 будет наблюдаться в воздухе.

[0020] Селективность, представленная адсорбентом для одного газа по сравнению с селективностью для другого газа, может быть выражена, как отношение констант по закону Генри (начальные угловые коэффициенты изотерм) для двух газов при 30°C.

[0021] Настоящее изобретение направлено на предоставление способа удаления высоких уровней воды, углекислого газа и закиси азота, и предпочтительно также углеводородов, таких как пропан, этилен, пропилен, ацетилен и/или бутан, присутствующих в окружающем воздухе. В частности, это задача настоящего изобретения предоставить более высокие уровни удаления N2O, которые получают в способах, описанных в патентах США 5846295, 5614000, 5855650 и WO 2005/000447. Без использования CaX в качестве конечного слоя адсорбента, если системы TSA в литературе работают, как описано, до прорыва CO2, то удаление N2O будет меньше, чем 30-70% в зависимости от условий эксплуатации и слоевых схем.

[0022] Дополнительная задача настоящего изобретения - предоставить способ, по которому уровень прорыва закиси азота и, если присутствуют, углеводородов зависит от уровня углекислого газа внутри адсорбента, так что обеспечение того уровня углекислого газа в выбранной точке в слое адсорбента ниже требуемого порога, гарантирует, что уровень закиси азота и, если присутствуют, углеводородов, также ниже требуемого порога.

[0023] Дополнительная задача настоящего изобретения - предоставить более экономичный способ обработки больших объемов воздуха на единицу объема слоя, чем предусмотрено в PCT/EP 2012/060317.

[0024] Дополнительная задача некоторых вариантов осуществления настоящего изобретения - уменьшить соотношение времени нагрева ко времени работы по сравнению с известными способами предшествующего уровня техники, использующими термическую регенерацию, по меньшей мере, части слоя адсорбента.

[0025] Дополнительная задача настоящего изобретения - избежать использования чрезвычайно чувствительных к влаге адсорбентов, таких как CaX. Так как способность CaX очень сильно зависит от водной нагрузки, использование этого адсорбента требует большой осторожности, будучи принятым, при загрузке и работе, чтобы гарантировать, что он не придет в контакт с водой, особенно там, где используют паровой нагреватель для подачи нагретого регенерирующего газа. Дополнительно, так как используется температура выше 220°С для регенерации CaX, чтобы удалить любую адсорбированную воду, исключение этого адсорбента предусматривает использование электрического нагревателя помимо парового нагревателя, надлежащего отмене.

[0026] Дополнительная задача настоящего изобретения - предоставить возможность существующей установке, настроенной для TSA, использующей три слоя для удаления H2O, CO2 и N2O, надлежащей улучшению, обеспечивать удаление N2O без использования CaX и без необходимости увеличивать размер слоя адсорбента.

[0027] Дополнительная задача некоторых вариантов осуществления настоящего изобретения - уменьшить молярное соотношение продувки к используемому воздуху, т.е. уменьшить количество необходимого регенерирующего газа по сравнению с количеством сырьевого газа, подаваемого во время работы, для слоя адсорбента, по сравнению с теми обычных способов PSA или TEPSA.

[0028] Еще одна дополнительная задача некоторых вариантов осуществления настоящего изобретения - предоставить способ определения условий, при которых удаление N2O, CO2 и воды можно проводить с заданным набором адсорбентов, чтобы обеспечить желаемую степень удаления CO2, N2O и H2O.

[0029] Еще одна дополнительная задача некоторых вариантов осуществления настоящего изобретения - предоставить диапазон рабочих условий, допускающих увеличение эффективного рабочего времени для слоя адсорбента, таким образом уменьшая распределительные потери, и/или уменьшая требуемую скорость регенерирующего потока.

[0030] Дополнительная задача некоторых вариантов осуществления настоящего изобретения - предоставить усовершенствование существующей установки с тем, чтобы она могла обеспечить улучшенное удаление закиси азота.

[0031] Дополнительная задача настоящего изобретения - предоставить установку и условия, при которых повышенные уровни СО2 и/или N2O, присутствующие в сырьевом воздушном потоке, могут быть удалены.

КРАТКОЕ ОПИСАНИЕ

[0032] Авторы настоящего изобретения стремились обеспечить условия, при которых удаление СО2 и воды из сырьевого потока воздуха, плюс сокращение до желаемой степени уровня N2O в этом сырьевом потоке воздуха, может быть достигнуто без использования высокочувствительных к воде и дорогих адсорбентов и не понеся больших распределительных потерь или не требуя чрезмерно высоких температур регенерации. С этой задачей в сознании, авторы изобретения приступают к доопределению, несмотря на то, что эффективные условия могли бы быть достигнуты для снижения уровней СО2, N2O и воды на слое, имеющем первый адсорбент, такой как оксид алюминия, и второй адсорбент, такой как 13X. Чтобы сделать это вопреки учению, например, EP 0992274, который учит, что третий слой адсорбента, имеющий высокую селективность N2O/CO2, такой как CaX, в дополнение к первым двум адсорбентам, требуется для того, что могут быть удалены оксиды азота.

[0033] Ссылаясь на фиг. 1, авторы настоящего изобретения определили прорывные кривые для закиси азота и углекислого газа на слое адсорбента, содержащем 320 мм оксида алюминия и 705 мм 13X, используя сырьевую концентрацию 500 частей на миллион CO2 и 320 частей на миллион N2O. Анализаторы, измеряющие концентрацию CO2 и N2O, были размещены на выходе (т.е. нижнем по потоку конце) слоя 13X. Можно видеть, что, если этот адсорбент остается в работе до прорыва углекислого газа (1 часть на миллион) при примерно 390 мин, как описано в предшествующем уровне техники, можно было бы ожидать концентрацию N2O, выходящего из слоя, по меньшей мере, 475 частей на миллиард, которая является большей прорывной концентрацией, чем сырьевая концентрация, так как углекислый газ, при совместной адсорбции с закисью азота, как известно, вытесняет уже адсорбированный N2O, вызывая высокий концентрационный импульс N2O, чтобы покинуть слой непосредственно перед прорывом CO2.

[0034] Авторы настоящего изобретения поняли, что, если пространство предоставляется в 13X только для адсорбции N2O, этого вытеснения посредством СО2 не происходит, и поэтому как СО2 так и N2O могут быть эффективно удалены на 13X, и характеристики массообмена двух адсорбатов могут быть смоделированы, как если оба адсорбируются независимо. Когда количество 13X, которое потребовалось бы, чтобы адсорбировать 95% ожидаемого N2O в обычном сырьевом потоке воздуха, было рассчитано из известных адсорбирующих способностей и параметров адсорбента и сравнено с количеством CaX, необходимым для той же цели, обнаружено, что для этого определенного набора условий процесса, объема 13X, предоставленного только для адсорбции N2O, должно быть примерно вдвое больше, чем CaX, предоставленного на установке предшествующего уровня техники в соответствии с EP 0992274. Поэтому можно рассчитать необходимые пропорции оксида алюминия и 13X (или альтернативных подходящих адсорбентов, как определено ниже), чтобы удалить требуемую степень воды, углекислого газа и закиси азота, опираясь на ожидаемые исходные концентрации тех компонентов и предполагаемое время работы установки, путем расчета количества оксида алюминия плюс 13X, необходимых для удаления всей воды (только на оксиде алюминия) и 99% СО2 (на оксиде алюминия и 13X), и затем добавления количества 13X, рассчитанного с целью удаления ожидаемого количества N2O.

[0035] Авторы настоящего изобретения затем столкнулись с проблемой определения, когда слой адсорбента нуждался бы в регенерации, то есть случай, при котором ожидаемая максимальная концентрация N2O, прорывающего через слой, была бы превышена. Как правило, способы предшествующего уровня техники работают до прорыва CO2 из слоя, что не целесообразно здесь, как объяснено выше. Определение прорыва N2O было бы возможно, но не целесообразно делать точно заданную значительно меньшую концентрацию N2O в сырьевом потоке воздуха (концентрация частей на миллиард, а не частей на миллион). На ожидаемом уровне удаления N2O, концентрация CO2, прорывающего через слой, была бы равна нулю или очень мала (см., например, фиг. 1 на 240 мин), и, таким образом, не целесообразно определять время работы, основываясь на одной концентрации СО2 на выходе. Таким образом, авторы настоящего изобретения решили контролировать концентрацию CO2 в выбранном положении внутри слоя адсорбента, путем сопоставления максимальной концентрации N2O на выходе из слоя с концентрацией СО2 в выбранном положении внутри того слоя. Время работы может быть затем определено путем измерения сопоставленной концентрации СО2 с помощью анализатора внутри слоя адсорбента. Соотношение концентрации CO2 и концентрации N2O может быть определено путем размещения анализатора для CO2 внутри слоя адсорбента, а анализатора для N2O на выходе из слоя адсорбента, и соотнесения концентрации, определенной с помощью каждого анализатора при заданном времени работы. С другой стороны, время работы для заданного адсорбента может быть выбрано на основе уровня прорыва N2O, приведенного в исследовании так, как это изображено на фиг.1, и анализатор СО2 может быть размещен внутри слоя, а концентрация, измеренная тем анализатором в конце времени работы, определена. Соответствующее положение анализатора СО2 может быть выведено из ожидаемых относительных количеств адсорбентов, которые могут быть заняты CO2 и N2O, основываясь на кривых прорыва для данной системы, так как на фиг. 1.

[0036] В первом аспекте, настоящее изобретение предоставляет способ определения условий для уменьшения, перед криогенной дистилляцией, уровня воды, углекислого газа и закиси азота в сырьевом потоке воздуха, причем способ содержащий: (а) пропускание упомянутого сырьевого потока воздуха при давлении подачи в направлении подачи через первый адсорбент, который имеет селективность по закону Генри по отношению к углекислому газу по сравнению с закисью азота, измеренную при 30°С, по меньшей мере, 12,5, и последовательно через второй адсорбент, чья константа по закону Генри для адсорбции N2O, измеренная при 30°С, составляет менее чем 500 ммоль/г/атм и чья селективность по закону Генри по отношению к CO2 по сравнению с N2O составляет не более 5;

(b) прекращение пропускать упомянутый сырьевой поток воздуха в упомянутые, первый и второй, адсорбенты после первого временного периода;

(с) сброс давления газа в контакте с первым и вторым адсорбентами до второго давления, меньшего, чем давление подачи;

(d) пропускание регенерирующего газа при втором давлении и при первой температуре, находящейся в диапазоне от 140 до 220°С, во, по меньшей мере, второй адсорбент в направлении, противоположном направлению подачи, в течение второго временного периода и затем пропускание регенерирующего газа при втором давлении и второй температуре, меньшей чем первая температура, во второй и первый адсорбенты в направлении, противоположном направлению подачи, в течение третьего временного периода;

(е) прекращение пропускания регенерирующего газа в первый и второй адсорбенты;

(f) восстановление давления газа в контакте с первым и вторым адсорбентами до давления подачи;

(g) повторение стадий от (а) до (f);

где первый адсорбент занимает от 25% до 40% по объему от общего объема, занимаемого первым и вторым адсорбентами; и где молярное отношение регенерирующего газа к сырьевому воздуху, подаваемому во время каждой итерации стадий от (а) до (f), составляет от 0,08 до 0,5; чей способ содержит:

(I) размещение анализатора для измерения концентрации CO2 в выбранном положении в пределах длины второго адсорбента;

(II) определение пороговой концентрации, измеренной анализатором CO2, когда одновременно получают ожидаемый максимальный уровень N2O на нижнем по потоку конце второго адсорбента в направлении подачи;

(III) использование результата стадии (II) с целью определения максимальной продолжительности первого временного периода, такого что максимальная продолжительность первого временного периода является временем с начала пропускания сырьевого потока воздуха в первый и второй адсорбенты до измерения с помощью анализатора определенной пороговой концентрации СО2.

[0037] Во втором аспекте, настоящее изобретение предоставляет способ снижения уровня воды, углекислого газа и закиси азота в сырьевом потоке воздуха, перед криогенной дистилляцией, содержащий:

(а) пропускание упомянутого сырьевого потока воздуха при давлении подачи в направлении подачи через первый адсорбент, который имеет селективность по закону Генри по отношению к углекислому газу по сравнению с закисью азота, измеренную при 30°С, по меньшей мере, 12,5, и последовательно через второй адсорбент, чья константа по закону Генри для адсорбции N2O, измеренная при 30°С, составляет менее, чем 500 ммоль/г/атм и чья селективность по закону Генри по отношению к CO2 по сравнению с N2O составляет не более 5;

(b) прекращение пропускания упомянутого сырьевого потока воздуха в упомянутые, первый и второй, адсорбенты после первого временного периода;

(с) сброс давления газа в контакте с первым и вторым адсорбентами до второго давления, меньшего, чем давление подачи;

(d) пропускание регенерирующего газа при втором давлении и при первой температуре, находящейся в диапазоне от 140 до 220°С, во, по меньшей мере, второй адсорбент в направлении, противоположном направлению подачи, в течение второго временного периода и затем пропускания регенерирующего газа при втором давлении и второй температуре, меньшей чем первая температура, во второй и первый адсорбенты в направлении, противоположном направлению подачи в течение третьего временного периода;

(е) прекращение пропускания регенерирующего газа в первый и второй адсорбенты;

(f) восстановление давления газа в контакте с первым и вторым адсорбентами до давления подачи;

(g) повторение стадий от (а) до (f); где первый адсорбент занимает от 25% до 40% по объему от общего объема, занимаемого первым и вторым адсорбентами; где способ дополнительно содержит:

(I) размещение анализатора для измерения концентрации CO2 в выбранном положении в пределах длины второго адсорбента;

(II) определение пороговой концентрации, измеренной анализатором CO2, когда одновременно получают ожидаемый максимальный уровень N2O на нижнем по потоку конце второго адсорбента в направлении подачи;

где максимальная продолжительность первого временного периода является временем с начала пропускания сырьевого потока воздуха в первый и второй адсорбенты до измерения с помощью анализатора определенной пороговой концентрации СО2; и где молярное отношение регенерирующего газа к сырьевому воздуху, подаваемому во время каждой итерации стадий от (а) до (f), составляет от 0,08 до 0,5.

[0038] Первый адсорбент и второй адсорбент могут быть предоставлены в отдельных резервуарах, но предпочтительно предоставлены как, соответственно, слои выше и ниже по потоку (по отношению к направлению подачи) от однослойного адсорбента.

[0039] Соответственно, первый временной период равен времени с начала пропускания сырьевого потока воздуха в первый и второй адсорбент до измерения с помощью анализатора определенной пороговой концентрации СО2.

[0040] Способ и процесс содержат измерение концентрации CO2 в выбранной точке внутри слоя адсорбента, выбранная точка которого является расположенной выше по потоку от выхода из слоя. Это гарантирует, что ожидаемую степень удаления N2O и СО2 получают путем контроля только концентрации CO2, а не (значительно более низкой) концентрации N2O. Точку контроля выбирают так, чтобы убедиться, что, при обнаруженном пороге CO2, существует достаточная способность в оставшемся цеолите, расположенном ниже по потоку от точки контроля, адсорбировать количество N2O, необходимое для получения ожидаемой степени удаления N2O. Это обеспечивает эффективное удаление N2O и СО2 без использования увеличения объема адсорбента (допуская усовершенствование установки без увеличения размера слоя) по сравнению с обычными трехслойными системами TSA, предназначенными для удаления N2O, CO2 и воды из сырьевого потока воздуха, и без применения дорогостоящих и высокочувствительных к влаге адсорбентов, таких как CaX, с целью удаления N2O.

[0041] Условия, при которых способ проводиться, выбирают так, что получают ожидаемую степень удаления воды, CO2 и N2O, делая наиболее эффективным возможное использование адсорбента. Эти условия изменяются в зависимости от исходной концентрации CO2 и N2O. Как правило, исходная концентрация CO2 100-600 частей на миллион, так как 300-500 частей на миллион считают типичной, в сопровождении исходной концентрации N2O около 0,3 частей на миллион. Тем не менее, недавно было отмечено, что в некоторых местах исходная концентрация CO2 400-1000 частей на миллион, так как 400-600 частей на миллион является типичной, в сопровождении исходной концентрации N2O 300-800 частей на миллиард, например, 300-600 частей на миллиард. Условия, при которых проводят способ по настоящему изобретению, могут быть адаптированы для обеспечения этих отличающихся диапазонов исходных концентраций СО2 и N2O таким образом, что ожидаемое низкое содержание обоих этих компонентов может быть получено ниже по потоку от адсорбентов.

[0042] Подходящее положение для анализатора может быть определено, как указано выше, со ссылкой на прорывные кривые для CO2 и N2O на адсорбентах и в условиях, представляющих интерес. Например, используя фиг. 1, можно увидеть, что если слой работает до прорыва CO2 (приблизительно 390 мин), весь слой используется для адсорбции СО2; если слой работает в течение только 180 мин, затем около 45% слоя используется для удаления СО2, а остальные 55% доступны для удаления 95% исходного N2O.

Таким образом, анализатор может быть расположен на уровне или близко к ожидаемой границе между объемом слоя, предназначенным для адсорбции СО2, и тем для адсорбции N2O, хотя это также будет в некоторой степени зависеть от концентрации СО2, она предназначена для обнаружения с помощью анализатора; более высокая концентрация будет обнаружена дополнительно выше по потоку от граничной точки. Соответственно, выбранное положение анализатора для СО2 в пределах длины второго адсорбента находится на расстоянии равном или меньшем 50%, предпочтительно равном или меньшем 45%, например, 41% пути по длине второго адсорбента в направлении ниже по потоку, когда слой работает.

[0043] Соответственно, как только достигается выбранная максимальная концентрация CO2, первый и второй адсорбенты регенерируют. Соответственно, выбранная максимальная концентрация CO2 составляет 200 частей на миллион, предпочтительно 100 частей на миллион, более предпочтительно 20 частей на миллион, например, 1 часть на миллион; с практической точки зрения концентрация СО2 должна быть, по меньшей мере, 20 частей на миллиард для того, чтобы быть обнаруженной. Эти значения являются текущими концентрациями CO2.

[0044] В конкретном варианте осуществления, настоящее изобретение предоставляет способ снижения уровня воды, углекислого газа и закиси азота в сырьевом потоке воздуха, перед криогенной дистилляцией, содержащий:

(а) пропускание упомянутого сырьевого потока воздуха при давлении подачи в направлении подачи через первый адсорбент, который имеет селективность по закону Генри по отношению к углекислому газу по сравнению с закисью азота, измеренную при 30°С, по меньшей мере, 12,5, и последовательно через второй адсорбент, чья константа по закону Генри для адсорбции N2O, измеренная при 30°С, составляет менее чем 500 ммоль/г/атм и чья селективность по закону Генри по отношению к CO2 по сравнению с N2O составляет не более 5;

(b) прекращение пропускания упомянутого сырьевого потока воздуха в упомянутые, первый и второй, адсорбенты после первого временного периода;

(с) сброс давления газа в контакте с первым и вторым адсорбентами до второго давления, меньшего, чем давление подачи;

(d) пропускание регенерирующего газа при втором давлении и при первой температуре, находящейся в диапазоне от 140 до 220°С, во, по меньшей мере, второй адсорбент в направлении, противоположном направлению подачи, в течение второго временного периода и затем пропускание регенерирующего газа при втором давлении и второй температуре, меньшей чем первая температура, во второй и первый адсорбенты в направлении, противоположном направлению подачи в течение третьего временного периода;

(е) прекращение пропускания регенерирующего газа в первый и второй адсорбенты;

(f) восстановление давления газа в контакте с первым и вторым адсорбентами до давления подачи;

(g) повторение стадий от (а) до (f); где первый адсорбент занимает от 25% до 40% по объему от общего объема, занимаемого первым и вторым адсорбентами; где максимальная продолжительность первого временного периода является отрезком времени от начала пропускания сырьевого потока воздуха в первый и второй адсорбенты до обнаружения 1 части на миллион CO2 в точке, равной или меньшей 45% пути по длине второго адсорбента в направлении подачи; и где молярное отношение регенерирующего газа к сырьевому воздуху, подаваемому во время каждой итерации стадий от (а) до (f), составляет от 0,08 до 0,5.

[0045] В конкретном вышеупомянутом варианте осуществления, использующем анализатор, который обнаруживает 1 часть на миллион CO2, возможно удалить 95% N2O из сырьевого потока воздуха, когда анализатор присутствует на 43% пути по второму адсорбенту; удалить 96%, когда анализатор - на 41% пути по второму адсорбенту, удалить 97%, когда анализатор - на 38% пути по второму адсорбенту, удалить 98%, когда анализатор - на 35% пути по адсорбенту, и 99%, когда анализатор - на равном или меньшем 27% пути по адсорбенту.

[0046] Специалист в данной области техники может установить требуемое положение анализатора, чтобы получить ожидаемую степень удаления закиси азота, поскольку анализатор обнаруживает различную концентрацию углекислого газа. В качестве альтернативы, положение анализатора может быть сохранено в выбранном положении внутри слоя, и уровень прорыва N2O, контролируемый путем изменения порогового уровня СО2, обнаруженного с помощью анализатора, вызывает регенерацию слоя; для данного положения анализатора, будет выше пороговая концентрация СО2, которая должна быть обнаружена с помощью анализатора, чтобы вызвать регенерацию слоя, будет выше уровень прорыва N2O из слоя. Это может быть разработано, чтобы дать приемлемое содержание N2O в воздухе ниже по потоку от адсорбента для данной цели обработанного воздуха.

[0047] Кроме того, измерение концентрации СО2 может быть проконтролировано только время от времени, а не в течение каждого периода времени, в течение которого сырьевой поток воздуха пропу