Способ измерения и обработки переходных процессов с заземленной линией при импульсном возбуждении поля электрическим диполем с целью построения геоэлектрических разрезов и устройство для осуществления этого способа с помощью аппаратно-программного электроразведочного комплекса (апэк "марс")

Иллюстрации

Показать все

Изобретение относится к области геофизических методов исследований при поисках и разведке месторождений углеводородов, редких и благородных металлов, алмазов, при проведении инженерных изысканий и решении задач экологического мониторинга с помощью цифровой аппаратуры. Сущность: используют по меньшей мере один диполь, передающий прямоугольные разнополярные импульсы, измерение осуществляют одной или одновременно несколькими приемными установками, используя синхронизацию по спутниковой системе позиционирования. Проводят измерения переходных процессов элекромагнитного поля по времени с частотой не менее 100 кГц и динамическим диапазоном не менее 24 бит, записывают их в соответствующий массив первичных данных. Обрабатывают массив первичных данных с помощью робастного регрессионного анализа, используя следующую последовательность действий: подавление тренда в исходных данных от источника, возникающего под влиянием теллурических токов и поляризации электродов; точечное удаление выбросов (пиков) в записи, возникших под влиянием грозовой активности; осуществление фильтрации методом низкочастотной робастной фильтрации в двумерном скользящем окне по временным задержкам во всем временном диапазоне и расчет кривых становления с логарифмическим шагом по времени на нескольких десятках временных задержек, получая кривые переходных процессов. С целью наглядного отображения полевого материала и возможности идентификации объектов поиска минимизируют влияние геометрического положения источник-приемник на значения переходных процессов на каждой временной задержке путем вычисления значений переходных процессов с помощью процедуры робастного регрессионного анализа с использованием рассчитанных кривых переходных процессов от фонового разреза для той же геометрии приемной установки с тем же расположением источник-приемник и эмпирических зависимостей разности потенциала приемных. Технический результат: более точное прогнозирование наличия аномалеобразующего объекта. 2 н. и 8 з.п. ф-лы, 14 ил.

Реферат

Областью применения группы изобретений является применение устройства и способа в составе комплекса геофизических методов исследований при поисках и разведке месторождений углеводородов, редких и благородных металлов, алмазов, при проведении инженерных изысканий и решении задач экологического мониторинга с помощью цифровой аппаратуры.

Назначением устройства является расширение универсального инструментария исследований в виде аппаратно-программного электроразведочного комплекса «МАРС», в частности, для измерения и обработки переходных процессов в геологической среде с размещенной в ней заземленной линией при импульсном возбуждении поля электрическим диполем и построения геоэлектрических разрезов как методом срединного градиента, так и методом электромагнитных зондирований и вызванной поляризации (ЭМЗВП).

Целью предложенной группы изобретений является построение геоэлектрических разрезов и геоэлектрических разрезов и/или моделей по измерениям переходных процессов заземленной линией при импульсном возбуждении поля электрическим диполем с использованием универсальных методов и устройств.

Изобретательской задачей предложенного изобретения является наиболее точное прогнозирование наличия аномалеобразующего объекта поиска методами импульсной электроразведки с использованием заземленной приемной линии от поля электрического диполя, поэтому способ основан на комплексном анализе распределения удельного электрического сопротивления и параметров его частотной дисперсии, описывающих эффект вызванной поляризации. Одной из задач является реализация идеи метода электромагнитного зондирования и вызванной поляризации (ЭМЗВП), которая заключается в максимально полном использовании информации по замерам характеристик переходных процессов, возбуждаемых прямоугольными разнополярными импульсами, которые применяются в традиционных методах постоянного тока и методах вызванной поляризации (ВП).

В предложенном устройстве также обеспечена возможность применения гибридной измерительной установки, сочетающей установки срединного градиента и точечного зондирования.

Известно изобретение «Устройство для регистрации формы однократных быстропротекающих процессов», патент RU №2400762, опубл. 27.09.2010, МПК G01R 19/00, включающее буферный усилитель, операционный усилитель, АЦП, блок управления, оперативное запоминающее устройство, интерфейс связи, устройства для регистрации формы однократных быстропротекающих процессов. Изобретение позволяет ввести дополнительно два параллельных канала, каждый из которых состоит из операционного усилителя и аналого-цифрового преобразователя, а также достичь увеличения быстродействия всего устройства за счет так называемого "цифрового переключения" пределов, исключив также динамическую погрешность измерения, свойственную способу "аналогового переключения". Однако данное устройство может использоваться только в ядерной физике при исследовании физических параметров импульсных ядерных реакторов. Устройство по данному изобретению не обладает параметрами полевой геофизической аппаратуры (пылевлагозащищенность, широкий рабочий температурный диапазон, небольшая масса и небольшое энергопотребление и т.д.) и под быстропротекающими процессами в нем понимается весьма быстрые процессы, на порядок быстрее процессов в геологической среде. В данном устройстве по отношению к предложенному имеются различия в том, что в нем есть фазовая задержка в 3-х каналах, в предложенном изобретении такая задержка отсутствует, и измерения по этим каналам осуществляются для одних и тех же процессов, а в предложенном устройстве каналы соединены с различными электродами в разном сочетании.

Известно изобретение «Электроразведочная станция», патент RU №3329, опубл. 16.12.1996, МПК G01V 3/08, включающая измерительные каналы, блок управления и обработки, блок синхронизации, аналого-цифровой преобразователь, блок управления измерительными каналами. В станции используют активные импульсные источники сигналов, однако в ней отсутствует гибкость измерительной станции, она не обеспечивает произвольного положения питающих и приемных линий, не обеспечивает в режиме реального времени оперативной обработки сигналов. Кроме того, отсутствует GPS синхронизация, а источник и приемник связаны в одном корпусе и присоединены к одной косе, поэтому используется внутренняя синхронизация. В предложенном устройстве приемники с источником разнесены и, кроме того, преодолены вышеуказанные недостатки системы.

Известно изобретение «Генераторно-измерительный комплекс», патент RU №57020, опубл. 27.09.2006, МПК G01V 3/12, включающий задающий генератор, который состоит из системы управления, регулирования, защиты и автоматики и снабжен согласующим устройством, на соединительных линиях установлены датчики тока (ДТ) и датчики напряжения (ДН), соединенные с системой управления, регулирования, защиты и автоматики, и согласующее устройство подключено через параллельно включенный ограничитель грозовых перенапряжений. Генератор обеспечивает преобразование частоты и имеет звено постоянного тока, а также повышение мощности и надежности работы генераторно-измерительного комплекса в условиях наведенных помех. Однако в нем генерируются синусоидальные сигналы, а не прямоугольные, как в предложенном устройстве. Следовательно, измерительный комплекс принципиально отличается, в нем измерения проводятся в частотной области, а не во временной, как в предложенном устройстве.

Известно изобретение «Геофизическая электроимпульсная система», патент RU №80023, опубл. 20.01.2009, МПК G01V 3/12, включающая источник энергии с преобразователем, коммутатор, систему управления, диполь. Система позволяет изучить пространственно временное распределение напряженно-деформационного поля в сейсмоопасных зонах, а также увеличить площадь зондирования и обеспечить с высокой точностью крупномасштабное изучение глубинного строения земной коры и верхней мантии на обширной территории во всем спектре глубин. Однако эта система является стационарной с мощным генераторным диполем, не является универсальной и не обеспечивает синхронизацию и одновременную регистрацию и обработку сигналов в реальном времени. Предложенное устройство обеспечивает измерения, в том числе и с использованием предложенного диполя, но не ограничивается этим, поскольку данная система является частным случаем. Предложенная система не позволяет использовать произвольное положение питающих и приемных линий, а также использовать разного типа измерительные установки с несколькими регистраторами.

Известно изобретение «Устройство для геоэлектроразведки», патент RU №113025, опубл. 27.01.2012, МПК G01V 3/00, включающее питающую линию, которая подключена к соответствующему генератору импульсного тока, средства для измерения, включающие, по меньшей мере, один подключенный к измерителю приемный датчик, входы управления генераторов тока, которые соединены с соответствующими блоками управления, выполненными с возможностью синхронизации импульсов тока в питающих линиях, осуществляемой преимущественно от приемника GPS. Однако в этом устройстве измерения проводятся на одной линии с питающей линией, в то время как в предложенном устройстве измерения могут проводиться на нескольких линиях или в срединном градиенте просто сбоку. Кроме того, питающая линия в предложенном устройстве заземлена только в 2-х электродах - AB и отсутствует протекание одинаковых по величине и разных по полярности импульсных токов. Устройство не обеспечивает использования произвольного положения питающих и приемных линий, а также использования разного типа измерительных установок с несколькими регистраторами.

Известно изобретение «Устройство для измерения максимального значения импульсного аналогового сигнала », патент RU №2063048, опубл. 27.06.1996, МПК G01R 19/04, включающее аналого-цифровой преобразователь, блок индикации, запоминающие блоки и позволяющее повысить быстродействие устройства. Однако в предложенном устройстве происходит непрерывная регистрация сигнала с относительно высокой частотой дискретизации - не менее 100 кГц во время переходного процесса, а в данном устройстве осуществляется только выборочная фиксация выбросов. Вследствие этого она не может являться универсальной, не позволяет осуществлять измерения как установкой срединного градиента - с несколькими регистраторами, так и установками для дипольного электропрофилирования в различных модификациях, в том числе и методом ДНМЭ, а также не позволяет выделить на основе этих измерений дополнительные характеристики.

Известно изобретение «Устройство для геоэлектроразведки», патент RU №2148839, опубл. 10.05.2000, МПК G01V 3/08, включающее генератор прямоугольных импульсов тока, через датчик тока соединенный с электродами-заземлителями, а также измеритель, ЭВМ, спутниковый приемник. Изобретение позволяет расширить арсенал более совершенных производительных и рентабельных автоматизированных технических средств для геоэлектроразведки, однако не является универсальным, не обеспечивает использования произвольного положения питающих и приемных линий, а также использования разного типа измерительных установок с несколькими регистраторами. Кроме того, измерения проводятся в движении, что не является изобретательской задачей предложенного устройства, поскольку в нем измерения производятся в статике. И, помимо эффектов ВП, в предложенном устройстве измеряют раннюю стадию переходного процесса, в которой преобладает влияние индукционных процессов, что не позволяет сделать устройство по данному изобретению. За счет измерения ранней стадии переходного процесса, обеспечиваются глубинность и разрешающая способность метода. В устройстве по данному изобретению не используются неполяризующиеся электроды.

Наиболее близким техническим решением является устройство, которое используется в изобретении «Способ геоэлектроразведки», заявка RU №2002106846, опубл. 27.11.2003, МПК G01V 3/06, в этом устройстве в каждой отдельной геометрической точке возбуждают электромагнитное поле, измеряют на базе между двумя крайними измерительными заземлениями мгновенное значение осевой разности электрических потенциалов, четыре независимые от силы тока дипольного источника нормированные электрические параметры. Однако отличие состоит в том, что в предложенном устройстве и способе запись может идти в двух режимах: через некоторый интервал во время токового импульса и вся пауза или вся последовательность разнополярных импульсов (может быть и без паузы), а затем, с учетом привязки по сигналу точного времени от спутниковой позиционной системы, после обработки методами робастной статистики рассчитываются переходные процессы как на включение токового импульса, так и на выключение токового импульса (в случае с паузой). В заявке же обязательно измерять вторую осевую разность потенциалов. Это не позволяет использовать множество измерительных каналов. В предложенном же устройстве и способе универсальность обеспечивается за счет того, что в случае срединного градиента в разных позициях на профилях в пределах генераторного диполя AB одновременно можно проводить измерения первых разностей потенциалов AU (MN) столькими измерительными каналами, сколько позволит аппаратура, что и осуществляется в предложенном устройстве. Например, в перспективе можно использовать 48-канальную станцию для этих измерений. В предложенном же способе такая возможность отсутствует. Кроме того, он не обеспечивает применения универсальной измерительной установки, которая позволяет осуществлять измерения как установкой срединного градиента - с несколькими регистраторами, так и установками для дипольного электропрофилирования в различных модификациях, в том числе и методом ДНМЭ, а также не обеспечивает произвольного положения питающих и приемных линий.

В настоящее время требуется разработка устройства, которая позволит применить методику измерения, отличающуюся простотой и надежностью, свойственной методам постоянного тока. Однако известные методы постоянного тока имеют существенные ограничения, например, по синхронизации, т.к. при измерениях сигнала переходного процесса на ранних стадиях требуется высокая точность синхронизации между генератором тока и измерителями электрической и магнитной составляющих поля. В импульсных методах электроразведки, как правило, измеряются значения ЭДС в приемном контуре в зависимости от времени относительно момента начала (окончания) импульса тока в генераторном контуре, а также ток в генераторном контуре с целью нормирования результатов измерений. По результатам этих измерений оценивают кажущееся удельное сопротивление и параметры вызванной поляризации горных пород. Способ импульсной электроразведки - метод переходных процессов (метод становления поля и становления поля в ближней зоне). Он обладает более высокой разрешающей способностью по сравнению с методами, использующими гармонические поля на фиксированных частотах. Это связано с тем, что при импульсном возбуждении электромагнитное поле содержит множество частотных составляющих. Поэтому оно в более высокой степени зависит от изменения размеров и электрических свойств геологических образований. С другой стороны, повышение разрешающей способности связано также и с тем, что переходный процесс, как правило, измеряется в паузах между импульсами, т.е. в отсутствии интенсивного первичного возбуждающего поля, что снижает влияние собственных помех, создаваемых генератором. Однако искажается форма импульса тока в процессе его становления и возникают большие перенапряжения в нагрузке при выключении тока. Недостатком используемого устройства является относительно большая длительность измерений, связанная с регистрацией только одного значения сигнала за одну его реализацию. Попытки использовать для повышения отношения сигнал/шум увеличение числа накоплений выборки сигнала или интенсивности импульсов тока приводили к значительному увеличению времени измерения либо к необходимости многократного увеличения мощности и габаритов генератора импульсов электромагнитного поля. Проблема увеличения помехоустойчивости в этом устройстве решается путем компромисса между длительностью выборки, в которой интегрируется напряжение сигнала, и искажениями, которые вносит увеличение этой длительности. Чем больше длительность выборки, тем выше помехоустойчивость и тем хуже точность воспроизведения сигнала. Большинство современных измерительных систем метода переходных процессов используют общее свойство становления электромагнитного поля, заключающееся в том, что переходный процесс на ранних стадиях его регистрации меняется быстро и с течением времени скорость спада сигнала монотонно уменьшается. При этом длительность выборки выбирают самой короткой на ранних стадиях переходного процесса и последовательно увеличивают ее на более поздних стадиях этого процесса. А следовательно, если пауза стремится к нулю, то достигается наибольшая помехоустойчивость при условии, что измерительная установка позволяет сделать необходимое число замеров.

Существует необходимость в обеспечении возможности применения гибридной измерительной установки, сочетающей установки срединного градиента и точечного зондирования. Так, требуется установка, в которой система регистрации и обработки строится таким образом, чтобы учитывать воздействие и индукционных процессов, и процессов ВП, регистрируя достаточное количество информации для проведения инверсии в рамках одномерной или многомерной модели с учетом частотной дисперсии электропроводности. Кроме того, требуется обеспечить универсальность установки, которая позволит с целью качественного измерения и обработки показателей, полученных на полевом материале, снять зависимость полученных функций измеренных показателей от положения измерительной линии и питающей линии (питающего диполя).

Предложенное устройство для осуществления построения геоэлектрической модели с помощью аппаратно-программного электроразведочного комплекса (АПЭК "МАРС") позволяет достичь следующего технического результата:

- возможность произвольного положения питающих и приемных линий измерительной установки;

- осуществление измерения измерительной установкой так, как это обеспечивают установки срединного градиента - с несколькими регистраторами, и/или установки для дипольного электропрофилирования в различных модификациях, в том числе и методом ДНМЭ.

Кроме того, предложенное устройство обеспечивает наиболее простой способ измерения с использованием традиционных методов постоянного тока и вызванной поляризации, а также высокую универсальность и технологичность способа измерения.

Заявленный технический результат получают за счет того, что устройство для осуществления построения геоэлектрической модели с помощью аппаратно-программного электроразведочного комплекса АПЭК «МАРС» включает измерительную установку, в которой размещены: дипольный электрический источник (А-В) (обычно просто обозначают дипольный источник АВ в виде генераторной линии, расположенной, как правило, по оси заданного профиля и заземленной в точках А и В для возбуждения электромагнитного поля в толще исследуемой среды), при пропускании через нее (среду) периодической последовательности прямоугольных импульсов тока с паузами после каждого из них (импульсов) или без пауз, и приемные электроды (M1-Min) (от 1-го и до более 4-х); и от N1 до Nin) (тут каждому электроду М соответствует электрод N, то im=in), объединенные в одну или несколько приемных линий, расположенные (приемные электроды) эквидистантно к заданному профилю в пределах дипольного электрического источника (А-В) или за его пределами при заданной базе и на заданном расстоянии от дипольного электрического источника (А-В), с помощью которых в каждый период последовательности прямоугольных импульсов измеряют первую и, при необходимости, в зависимости от выбранной схемы измерения, вторую осевые разности электрических потенциалов, по которым из значений всех измеренных разностей электрических потенциалов переходных процессов, возникающих в среде на включение и выключение токового импульса в дипольном источнике (А-В) рассчитывают параметры этих переходных процессов, независимые от силы тока дипольного источника АВ за счет нормировки амплитуды переходного процесса и значения его производной на поле в момент пропускания, а также кажущегося удельного электрического сопротивления, рассчитанного по известной формуле: коэффициент установки (безразмерный), умноженный на разность потенциалов (в вольтах) момента пропускания тока и деленную на амплитуду токового импульса (в амперах); генератора разнополярных импульсов тока, формирующего заданную последовательность разнополярных импульсов тока, и одного регистратора или нескольких регистраторов разности потенциалов.

Устройство отличается тем, что в измерительной установке имеются приемные электроды в различных сочетаниях Min и Nin и по меньшей мере один дипольный электрический источник (А-В). При этом может быть несколько источников, но они работают последовательно, т.е. сначала запись производится от одного источника для заданного положения приемных линий, потом для другого положении источника. Они объединены в приемные и питающие линии, соответственно, с произвольно заданным положением питающих и приемных линий измерительной установки для формирования требуемой геометрии измерительной установки, устройство дополнительно снабжено одним или несколькими спутниковыми синхронизаторами, подключенными к спутниковой системе позиционирования (например, GPC или Глонасс) и обеспечивающими синхронизацию измерительной установки и регистраторов, а также устройство дополнительно снабжено программно-аппаратным электроразведочным комплексом (АПЭК), в котором по меньшей мере один регистратор разности потенциалов снабжен двумя приемными каналами, управляемый через USB или WiFi, программой и файловой базой данных, и АПЭК включает (убрано:) по меньшей мере один АЦП, снабженный: блоком планирования с вшитой специальной программой планирования полевых работ, осуществляющей управление регистраторами; блоком сбора полевых данных с вшитой специальной программой для хранения необработанных файлов данных с измерительных линий и служебной информацией; блоком с файловой базой данных; блоком обработки с вшитой программой обработки полевого материала для повышения уровня сигнал/шум путем применения современных методов обработки с использованием робастной статистики и процедур многомерного статистического анализа; блоком реляционной базы данных, имеющим обратную связь с блоком планирования и обеспечивающим хранение данных о проведении работ, процессе и результатах обработки данных и моделирования геоэлектрических моделей исследуемой поляризующейся среды; блоком интерпретации с вшитой программой проведения инверсии полученных данных посредством решения обратной задачи геоэлектрики для сред с частотной дисперсией электропроводности и диэлектрической проницаемости и блоками интерфейсного приложения для базы данных, причем АПЭК снабжен также модулем сохранения первичных данных на флэш-носитель и USB и/или WiFi интерфейсами для подключения ПК или КПК, а спутниковые синхронизаторы включены в него самостоятельными блоками (в АПЭК «Марс»).

Кроме того, измерительная установка может быть выполнена с одной или более приемными линиями и одной питающей линией, где первая приемная линиями включает электроды М1 и N1, а вторая и более приемные линии включают электроды М2, М3, … Min; N2, N3….Nin, и питающая линия включает дипольный электрический источник АВ. В частном случае, в установке приемные электроды (M1; N1) и (М2 и N2) … (Min и Nin) в приемной линии могут регистрировать разность потенциалов между парой электродов М и N посредством одной измерительной линии (канала), размещены на площади работ по профилям с равным расстоянием между профилями и равным шагом вдоль по профилю и переходные процессы на включение и выключение токового импульса в питающей линии АВ снимают по методу срединного градиента. Или в установке приемные электроды (M1; N1) и (М2; N2) … (Min и Nin) могут быть размещены на измерительной линии и характеристики переходных процессов для каждой пары приемных электродов снимают во времени методом дипольного электропрофилирования, когда расстояние существенно не изменяется между АВ и приемной линией с одной или более парой приемных электродов MN. Генератор разнополярных импульсов тока, формирующий заданную последовательность разнополярных импульсов тока в частности, состоит из: генератора, выпрямителя, коммутатора, блока управления, обеспечивающего подачу импульсов в измерительную установку с токовой паузой между импульсами или без нее. Блок управления генератора разнополярных импульсов обеспечивает подачу токостабилизированных импульсов в питающей линии (генераторный диполь) для небольших токов - до 4 А с токовой стабилизацией. Например, берут генератор мощностью не менее 5 кВт, при этом осуществляются непрерывная регистрация и запись устройством записи тока, обеспечивающим непрерывную регистрацию токовых импульсов с помощью АЦП с сохранением данных генерируемой последовательности токовых импульсов. Или подают больший ток - больше 4-5 А (меньше 4 А не удается стабилизировать имеющимся силовым оборудованием, поэтому берут, как правило, большим 4-5 А) без токовой стабилизации, при этом форму токового импульса регистрируют отдельным регистратором тока с целью дальнейшего точного учета при вычислениях. В частном случае аппаратная часть программно-аппаратного электроразведочного комплекса (АПЭК) «Марс» включает несколько регистраторов разности потенциалов, при этом каждый снабжен одним или более каналами, управляемый (регистратор) через USB или WiFi программой и файловой базой данных, и каждый регистратор подключен к приемной линии с гальванически заземленными приемными электродами MN. При этом могут одновременно регистрировать несколькими регистраторами от нескольких приемных линий (одновременно несколькими приемными линиями только от одной питающей линии, но положение питающей линии (питающего или генераторного диполя) можно сменить и при том же положении приемных линий сделать новую запись), при этом регистрируют одной приемной линией несколько разностей потенциалов (Mim и Nin) при одном положении питающей лини АВ. Например, в установке используют измерительную установку срединного градиента, с использованием одновременно несколько регистраторов. Или с помощью измерительной установки АПЭК «Марс» проводят дипольное электропрофилирование в различных модификациях: ДЭП (дипольное электропрофилирование) или СЭП (симметричное электропрофилирование) или ДНМЭ.

Таким образом, при реализации способа измерения и обработки переходных процессов с заземленной линией при импульсном возбуждения поля электрическим диполем с целью построения геоэлектрических разрезов используют для дипольно симметричного электропрофилирования (АВ-MN) или измерения методом срединного градиента (А-MN-В), по меньшей мере, один диполь, передающий прямоугольные разнополярные импульсы. Диполи объединены в заземленную передающую линию или линии, которые создают (линии) электромагнитное поле на исследуемой площади, регистрируемое (поле) приемными установками в переходные процессы этого электромагнитного поля на включении и выключении токовых импульсов и измерение осуществляют одной или одновременно несколькими приемными установками, используя синхронизацию по спутниковой системе позиционирования.

Новым для осуществления предложенного способа является то, что в измерительной установке приемные электроды в различных сочетаниях Min и Nin и дипольный электрический источник (А-В) объединены в приемные и питающую линии, соответственно, с произвольно заданным положением питающих и приемных линий измерительной установки для формирования требуемой геометрии измерительной установки. Основными блоками измерительной установки являются АПЭК с высокоточным и быстродействующим АЦП, блок сохранения полученного массива измерений и блок обработки этой информации.

Кроме того, в измерительной установке используют программно-аппаратный электроразведочный комплекс (АПЭК), включающий, по меньшей мере, один прецизионный АЦП (аналого-цифровой преобразователь) с частотой дискретизации не менее 100 кГц и разрядностью не менее 24 бит, блок сохранения массива данных и блок обработки этих данных.

Предложенное техническое решение устройства поясняется и демонстрируется чертежами. Представленные варианты устройства не являются исчерпывающими и только демонстрируют основные принципы данного устройства.

На Фиг. 1 показана схема работы аппаратной части программно-аппаратного электроразведочного комплекса (АПЭК) «Марс».

На Фиг. 2 - схема размещения приемной и питающих линий для проведения работ методом ЭМЗВП с измерительной установкой срединного градиента.

На Фиг. 3 - блок-схема блоков программной части АЦП программно-аппаратного электроразведочного комплекса АПЭК «Марс».

На Фиг. 4 показаны: а) установка симметричного электропрофилирования (СЭП); б) установка дипольного профилирования (ДЭП); в) установка дифференциально-нормированного метода электропрофилирования (ДНМЭ).

На Фиг. 5 показана установка для срединного градиента.

На Фиг. 6 - комбинированная установка для работы в транзитной зоне.

Поскольку работа источника тока и регистраторов синхронизирована с помощью сигналов точного времени от GPS, то возможно произвольное положение питающих и приемных линий. Это дает возможность выполнять работы как установкой срединного градиента, используя одновременно несколько регистраторов (Фиг. 2), так и проводить дипольное электропрофилирование в различных модификациях (Фиг. 4), в том числе и методом ДНМЭ.

Устройство АПЭК устроено следующим образом. Генератор разнополярных импульсов тока (1) является устройством, формирующим заданную последовательность разнополярных импульсов тока. Он состоит из генератора, выпрямителя, коммутатора и блока управления. Возможно несколько режимов работы: с токовой паузой между импульсами и без нее. Токовая стабилизация предусмотрена для сравнительно небольших токов - до 4-5 А (гарантировано - до 2 А), для источника большей мощности предусмотрены непрерывная регистрация и запись генерируемой последовательности токовых импульсов.

Регистратор разности потенциалов электроразведочный (2) - это прибор, который осуществляет сбор данных и функционально состоит из АЦП, блока спутниковой синхронизации, блока сохранения первичных данных на флэш-носитель, USB и WiFi интерфейсов для подключения ПК или КПК.

Блок синхронизации, например по каналу GPS (3), - это устройство для синхронизации работы приемной и силовой аппаратуры для работы с разнесенными источниками возбуждения (4) и приема (5). Контроль качества записи осуществляется управляющей программой, блок управляющей программы (6), при помощи подключенного компьютера или КПК, на экране которого можно видеть и оценивать получаемую информацию и текущие настройки. Для этого в АЦП предусмотрены следующие блоки: блок планирования с вшитой специальной программой планирования полевых работ, осуществляющей управление регистраторами; блок сбора полевых данных (8) с вшитой специальной программой для хранения необработанных файлов данных с измерительных линий и служебной информацией; блок с файловой базой данных (9); блок обработки (10) с вшитой программой обработки полевого материала для повышения уровня сигнал/шум путем применения современных методов обработки с использованием робастной статистики и процедур многомерного статистического анализа; блок реляционной базы данных (11), имеющий обратную связь с блоком планирования (7) и обеспечивающий хранение данных о проведении работ, процессе и результатах обработки данных и моделирования геоэлектрических моделей исследуемой поляризующейся среды; блок интерпретации (12) с вшитой программой проведения инверсии полученных данных посредством решения обратной задачи геоэлектрики для сред с частотной дисперсией электропроводности и диэлектрической проницаемости; и блок (13) интерфейсного приложения для базы данных. АПЭК снабжен также блоком сохранения первичных данных на флэш-носитель и USB и/или WiFi интерфейсами для подключения ПК или КПК (Фиг. 3), а спутниковые синхронизаторы включены в него самостоятельными блоками. В АПЭК входит регистратор разности потенциалов (14), который снабжен двумя приемными каналами (15). Устройство для осуществления построения геоэлектрической модели с помощью аппаратно-программного электроразведочного комплекса АПЭК «МАРС» включает измерительную установку, в которой размещены: дипольный электрический источник (А-В) (16), (дипольный электрический источник - это в данном случае горизонтальная заземленная электрическая линия или генераторный диполь, или генераторная, она же питающая, линия, множество питающих диполей взято условно, т.к. при вычислениях в процессе интегрирования генераторная линия представляется именно как набор элементарных диполей), диполи (или точки диполя) которого размещены в заданной геометрической точке. При этом они могут быть размещены как по оси профиля, так и по площади профиля, и они возбуждают электромагнитное поле в толще исследуемой среды; при пропускании через нее (среду) периодической последовательности прямоугольных импульсов тока с паузами после каждого из них (импульсов) или без пауз приемные диполи, которые формируются из сочетания приемных электродов и приемных электродов (M1-im)(17) (от 1-го и до более 4-х); и от N1 до Nin), объединенных в одну или несколько приемных линий (18), расположенных (приемные электроды 17) эквидистантно к заданному профилю в пределах дипольного электрического источника (А-В) (16) (Фиг. 2) или за его пределами при заданной базе «С» и на заданном расстоянии «Н» от дипольного электрического источника (А-В) (16), генератора разнополярных импульсов тока (1), формирующего заданную последовательность разнополярных импульсов тока, и одного регистратора (6) или нескольких регистраторов разности потенциалов.

На Фиг. 3 показана блок-схема блоков программной части АЦП программно-аппаратного электроразведочного комплекса АПЭК «Марс», которая состоит из следующих блоков с программными модулями, объединенными в одном пользовательском интерфейсе.

В блоке планирования (7) вшита программа планирования полевых работ и в нем проводятся заполнение необходимой информации по географической привязке профилей, пикетов в соответствии с выбранной измерительной установкой и сохранение этой информации в реляционной базе данных (БД). В блок сбора полевых данных (8) вшита программа сбора данных, с помощью которой осуществляют управление регистратором (14), имеющая следующие функции:

- производит регистрацию разности потенциалов на всех имеющихся каналах по сигналу блока GPS синхронизации;

- имеет возможность анализа входящего сигнала на его наличие, подстройку коэффициента усиления для оптимального динамического диапазона регистрируемого сигнала;

- сохраняет все полученные данные на флэш-носителе без потери информации.

Блок с файловой базой данных (9), в котором файловая база данных представляет собой хранилище для необработанных файлов данных с приемной линии (18) и служебной информации.

Блок обработки (10) полевых материалов, предназначенный для повышения уровня сигнал/шум путем применения современных методов обработки с использованием робастной статистики и процедур многомерного статистического анализа.

Блок реляционной базы данных (11), в котором реляционная база данных содержит в себе данные о проведении работ, процессе и результатах обработки и моделирования и т.д.

Блоки (13) интерфейсного приложения для БД, предназначенные для отображения функций, записанных в БД данных, а также для создания различных отчетных таблиц, анализа и выборки необходимых данных.

Блок интерпретации (12), позволяющий проводить инверсию полученных данных посредством решения обратной задачи геоэлектрики для поляризующихся сред.

Устройство работает следующим образом.

При работе устройства выполняют измерения многоэлектродной заземленной приемной линией переходных процессов от заземленного источника тока и проведена их обработка с целью одновременного определения кажущегося удельного сопротивления среды, индукционной составляющей и эффектов вызванной поляризации. На начальном этапе полевых опытно-методических работ с позиций сочетания надежности выделения объектов поиска с максимальной возможной скоростью съемки предполагается определить:

- шаг по профилю - 25 м или 50 м;

- форму последовательности импульсов тока (с паузой или без) и их длительность.

Эти характеристики, а также проходимость местности и количество задействованных измерительных каналов и вспомогательного персонала определяют производительность опытных работ.

Первоначально с помощью блока планирования (7) производят заполнение необходимой информации по географической привязке профилей, пикетов, в соответствии с выбранной измерительной установкой и сохранение этой информации в блоке реляционной базы данных (11). Затем с помощью блока сбора данных (8) осуществляют управление регистратором (14) и выполняют следующие действия: производят регистрацию разности потенциалов на всех имеющихся каналах по сигналу блока GPS синхронизации, осуществляют обработку (анализ) входящего сигнала на его наличие, подстройку коэффициента усиления для оптимального динамического диапазона регистрируемого сигнала и сохраняют все полученные данные на флэш-носитель без потери информации.

Последовательность работ и связи блоков показаны на примере двух схем - срединного градиента (Фиг. 2), а также на Фиг. 4 и 5 - для вариантов установок а, б, в, г и в комбинированной установке (Фиг. 6), который включает и метод дипольного электропрофилирования. Модификации дипол