Монитор прогресса доставки активности

Иллюстрации

Показать все

Группа изобретений относится к медицине и медицинской технике. Способ мониторинга хода выполнения процедуры инъекции радиофармацевтического средства включает измерение и мониторинг активности радиофармацевтического средства, остающегося в части одноразового набора для введения радиофармацевтического средства, которые выполняют во время процедуры инъекции радиофармацевтического средства. При этом отображают активность радиофармацевтического средства, остающегося в части одноразового набора для введения во время процедуры инъекции радиофармацевтического средства. Детектируют, отличается ли активность радиофармацевтического средства, остающегося в части одноразового набора для введения, от ожидаемого значения активности радиофармацевтического средства, остающегося в части одноразового набора для введения, в заданное время. Определяют возникновение проблемы доставки, если активность радиофармацевтического средства, остающегося в части одноразового набора для введения, отличается от ожидаемого значения активности радиофармацевтического средства, остающегося в части одноразового набора для введения, в заданное время. Раскрыты система управления для мониторинга хода выполнения процедуры инъекции, машиночитаемый носитель данных, хранящий программное обеспечение для мониторинга, устройство доставки радиофармацевтического средства и способы определения расхода. Изобретения обеспечивают раннее обнаружение проблем доставки. 6 н. и 18 з.п. ф-лы, 25 ил.

Реферат

ЗАЯВЛЕНИЕ ПРИОРИТЕТА

[0001] Настоящая заявка заявляет приоритет Предварительной заявки США с серийным номером №61/351480, поданной 4 июня 2010 и имеющей название «Activity Delivery Progress Monitor», при этом данная предварительная заявка включена в данный документ ссылкой в ее полноте.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Область изобретения

[0002] Данное раскрытие относится к введению фармацевтических веществ, типично по своей природе вредных или токсичных фармацевтических веществ, таких как радиоактивные фармацевтические вещества, общеизвестные как радиофармацевтические средства, субъектам-людям и животным и, более специфически, к способу и системе для измерения активности радиофармацевтического средства во время процедуры инъекции.

Описание известного уровня техники

[0003] Введение радиоактивных фармацевтических веществ или лекарственных средств, обычно имеющих название радиофармацевтические средства, часто используется в области медицины для обеспечения информации или получения изображений внутренних структур и/или функций организма, включая, но не ограничиваясь, следующее: кость, сосудистая система, органы и системы органов и другая ткань. Дополнительно, такие радиофармацевтические средства могут быть использованы как терапевтические средства, чтобы уничтожить или ингибировать рост клеток- мишеней или ткани-мишени, таких как раковые клетки.

[0004] Два типа процедур получения изображения, использующих радиофармацевтические средства, представляют собой процедуры позитронно-эмиссионной томографии (PET) или однофотонной эмиссионной компьютерной томографии (SPECT). PET и SPECT являются неинвазивными, трехмерными процедурами получения изображения, которые обеспечивают информацию, относящуюся к физиологическим и биохимическим процессам у пациентов. PET и SPECT изображения, например, мозга или другого органа, получают путем инъекции пациенту дозы радиофармацевтического средства и затем создания изображения на основании радиации, излученной радиофармацевтическим средством. Радиофармацевтическое средство, как правило, включает радиоактивное вещество, такое как радиоизотоп, которое может быть поглощено определенными клетками в мозге или других органах, концентрирующих его там.

[0005] Радиоизотопы, особенно таковые с короткими периодами полураспада, могут быть относительно безопасно введены пациентам в форме меченого субстрата, лиганда, лекарственного средства, антитела, нейромедиатора или другого соединения или молекулы, которое в норме перерабатывается или используется организмом, например, глюкоза). Радиоизотоп действует как индикатор специфических физиологических или биологических процессов. Например, фтордезоксиглюкоза (FDG) представляет собой нормальную молекулу глюкозы, главное энергетическое топливо клеток, к которой прикреплен радиоизотоп или радиоактивный фтор (т.е., 18F). 18F радиоизотоп получают в циклотроне, оснащенном установкой для синтеза FDG молекулы.

[0006] Клетки (например, в мозге), которые более активны в данный период времени, после инъекции FDG будут поглощать больше FDG, так как они имеют более высокий метаболизм и нуждаются в большем количестве энергии. F радиоизотоп в FDG молекуле испытывает радиоактивный распад, излучая позитрон. Когда позитрон сталкивается с электроном, происходит аннигиляция, высвобождая импульс энергии в форме двух пучков гамма-лучей в противоположных направлениях. PET сканер обнаруживает излучаемые гамма-лучи для составления трехмерного изображения.

[0007] Чтобы обеспечить клеточный захват радиофармацевтического средства, пациент типично находится в покое в течение периода времени (45-90 минут для FDG) после введения радиофармацевтического средства. После достаточного времени для того, чтобы произошел клеточный захват, пациента типично помещают на подвижную кровать, которая вдвигается в PET (или SPECT) или другой пригодный сканер. PET сканер включает несколько колец детекторов излучения. Каждый детектор излучает кратковременный импульс света каждый раз, когда он ударяется с гамма-лучом, идущим от радиоизотопа в организме пациента. Импульс света усиливается с помощью, например, фотоумножителя, и информация посылается на компьютер для формирования изображений пациента.

[0008] Чтобы минимизировать дозу облучения пациентов, радиофармацевтические средства, содержащие радиоизотопы, такие как фтор-18, технеций-99, углерод-11, медь-64, галлий-67, йод-123, азот-13, кислород-15, рубидий-82, таллий-201, хром-51, йод-131, йод-151, иридий-192, фосфор-32, самарий-153 и иттрий-90, имеющие относительно короткие периоды полураспада, типично используют для PET и SPECT процедур получения изображений и других радиотерапий. 18F, например, имеет период полураспада 109,7 минут.

[0009] Вследствие его короткого периода полураспада уровень радиоактивности радиоизотопа будет быстро снижаться после того, как он произведен в циклотроне или реакторе. Следовательно, затраченное время (и соответствующее снижение уровня радиоактивности радиоизотопа) после синтеза радиофармацевтического средства должно быть заложено в расчеты объема радиофармацевтического средства, который необходимо ввести инъекцией пациенту для доставки необходимой дозы радиоактивного излучения. Если временная задержка после синтеза является длительной относительно периода полураспада радиоизотопа или если рассчитанный объем радиофармацевтического средства, подлежащего введению инъекцией пациенту, является недостаточным для доставки необходимой дозы радиоактивного излучения, то доставленная доза радиоактивного излучения может быть слишком низкой, чтобы обеспечить изображения диагностического качества, приводя к непроизводительному времени и усилию и подвергая пациента и медицинский персонал ненужному облучению.

[0010] Кроме того, радиофармацевтические средства, используемые в процедурах получения изображений и терапевтических процедурах, являются вредными для обслуживающего медицинского персонала. Эти средства являются токсичными и могут иметь физические и/или химические эффекты на обслуживающий медицинский персонал, такой как врачи-консультанты, техники, отвечающие за получение изображений, медсестры и фармацевты. Излишнее радиационное воздействие является вредным для обслуживающего медицинского персонала вследствие профессионального повторного воздействия на них радиофармацевтических средств. Тем не менее, из-за короткого периода полураспада типичных радиофармацевтических средств и малых используемых дозировок, соотношение риск-польза радиационного воздействия для отдельных пациентов является приемлемым. Постоянное и повторное воздействие на медицинский персонал радиофармацевтических средств в течение увеличенного периода времени является существенной проблемой в области медицинской радиологии.

[0011] С предыдущими предпосылками в данной области теперь будет описана иллюстративная существующая практика создания, получения и введения радиофармацевтических средств. Типичная радиофармацевтическая практика лечения в Соединенных Штатах включает наличие радиофармацевтического средства, изначально произведенного в месте, удаленном от места лечения, типично больнице, с помощью внешнего учреждения медицинской радиологии и затем доставленного к месту лечения для дальнейшего приготовления, например, индивидуального дозирования и введения. Место лечения, например больница, заказывает специфические радиоактивные вещества так, чтобы они были готовы в определенное время для определенных пациентов. Эти вещества готовят с помощью внешнего учреждения медицинской радиологии и с достаточной радиоактивностью, чтобы они имели необходимый уровень радиоактивности в назначенное время. Например, внешний поставщик в сфере медицинской радиологии может иметь устройство, оснащенное циклотроном или генератором радиоизотопов в, например, защищенном свинцом корпусе, где радиофармацевтическое средство, а именно, радиоактивный изотоп образуется или создается. Дальнейшие этапы очистки или приготовления дозы, а именно, помещение радиоизотопа в форму для инъекции, может происходить в месте, удаленном от места лечения. Таким образом, внешний поставщик может обеспечивать радиофармацевтическое вещество в место лечения, имеющее необходимый уровень радиоактивности в заданное время. Дальнейшее приготовление «индивидуальной» дозы радиофармацевтического средства может происходить в месте лечения. Альтернативно, внешний поставщик может обеспечивать «готовое» радиофармацевтическое средство, готовое для инъекции определенному пациенту в определенное время так, чтобы персоналу места лечения требовалось лишь подтвердить, что точная радиоактивная дозировка присутствует в радиофармацевтическом средстве, например, в автономном устройстве радиационной дозиметрии, как описано ранее. В ходе вышеописанного процесса, имеет место частый контакт в непосредственной близости с радиоактивными материалами со стороны персонала и, как описано ранее, необходимы радиоэкранирующие устройства для манипуляции и транспортировки для защиты этого персонала.

[0012] Транспортные емкости обычно используют для транспортировки радиофармацевтических средств, которые представляют собой индивидуальные дозы, приготовленные для отдельных пациентов, в лечебное учреждение. В лечебном учреждении данные относительно каждой унифицированной дозы вводят в компьютер учреждения либо вручную, либо посредством считывания штрихкода, гибкого магнитного диска или другого сходного формата данных, который может сопровождать или находится на транспортной емкости или контейнере для радиофармацевтического средства. Когда наступает время доставки определенный унифицированной дозы определенному пациенту, персонал лечебного учреждения должен удалить, например, шприц, содержащий радиофармацевтическое средство из транспортной емкости и подтвердить, что доза в шприце находится в пределах диапазона, назначенного для этого пациента. Альтернативно, обслуживающий персонал должен перенести радиофармацевтическое средство в радиозащитный шприц, как установлено выше и подтвердить дозировку. Если доза слишком высокая, некоторое количество отбирают в радиозащитный контейнер для отходов. Если доза слишком низкая, то или используют другой шприц, и/или дополнительное средство вводят в шприц, если оно в наличии. В то время как существует возможность того, чтобы обслуживающий персонал места лечения был вовлечен в приготовление дозировки, типичная практика Соединенных Штатов состоит в том, чтобы иметь радиофармацевтическое средство, доставленное в место лечения, которое будет иметь необходимый уровень радиоактивности в заданное время. Неавтоматизированная манипуляция с радиофармацевтическим средством в месте лечения ограничена на месте лечения из-за этой процедуры. Тем не менее, различные неавтоматизированные контроли необходимы, чтобы подтвердить, что правильная радиофармацевтическая доза готова к инъекции конкретному пациенту. Эти неавтоматизированные контроли включают визуальные осмотры и измерения радиоактивности, как указывалось выше.

[0013] В качестве примера вышесказанного, в PET получении изображений, пригодное для инъекции радиофармацевтическое средство, такое как, например, FDG (фтордезоксиглюкоза) производится в устройстве циклотрон во внешнем учреждении медицинской радиологии. После этого, FDG обрабатывают так, чтобы оно было в радиофармацевтической форме и переносят в контейнер для индивидуальной дозы (т.е., пробирка, флакон, шприц и т.д.) и контейнер загружают в транспортную емкость, чтобы предотвратить нежелательное радиационное воздействие на персонал, такой как радиофармаколог, техник и водитель, ответственный за создание, манипуляцию и транспортировку FDG от места циклотрона к месту получения изображения PET. Поскольку период полураспада FDG короткий, приблизительно 110 минут, необходимо быстро транспортировать FDG к месту получения изображения PET. В зависимости от временной транспортной задержки и начального уровня радиоактивности FDG во время производства, может быть необходимо заново измерить уровень радиоактивности FDG в месте получения изображения PET. В качестве примера, если уровень радиоактивности является слишком высоким, транспортный радиофармаколог или радиофармаколог в месте получения изображений PET может быть необходим для разведения FDG с помощью разбавителя, такого как, например, солевой раствор, и удаления части объема или экстрагировать жидкость для снижения радиоактивности перед инъекцией пациенту. В ходе этого целого процесса манипуляция с FDG от создания до инъекции пациенту могут быть полностью неавтоматизированными. В этом процессе радиоэкранирующие продукты, как описано ранее (т.е., транспортные емкости, экраны для шприцев, L-блоки и т.д.) используют для экранирования особ от FDG. В то время как экранирование может снижать радиационное воздействие на радиофармаколога, радиофармаколог может все еще подвергаться воздействию излучений от радиофармацевтического средства в ходе неавтоматизированного смешивания, снижения объема и/или процесса разведения, необходимых для получения необходимой дозы. После инъекции и часто после дополнительной задержки, чтобы позволить радиофармацевтическому средству достичь и абсорбироваться необходимыми участками, представляющими интерес в организме, пациента типично помещают на подвижную кровать, которая вдвигается с помощью дистанционного управления в круглое отверстие томографа, которое называется гантри. Вокруг круглого отверстия и внутри гантри расположены несколько колец детекторов излучения. В одном типе детектора излучения каждый детектор излучает короткий импульс света каждый раз, кода он сталкивается с гамма-лучем, идущим от радионуклида внутри организма пациента. Импульс света усиливается фотоумножителем, превращаясь в электронный сигнал и информация посылается на компьютер, который контролирует аппарат и записывает данные изображения.

[0014] Для полноты, следует понимать, что в Соединенных Штатах также известно о существовании радиофармацевтических средств, доставленных в многодозовом формате к месту лечения. В результате этот многодозовый формат, может быть доставлен в виде единичных доз для индивидуальных пациентов в место лечения.

[0015] Текущая система, описанная в данном документе выше, однако, не обеспечивает систему для автоматического и непрерывного мониторинга радиоактивности радиофармацевтического средства внутри одноразового набора для введения радиофармацевтического средства, обнаружения проблемы доставки исходя из контролируемой радиоактивности радиофармацевтического средства, а также регулировки доставки жидкости системы для исправления проблемы доставки.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0016] Следовательно, целью настоящего раскрытия является обеспечить способ и систему, которые преодолевают некоторые или все из недостатков и нехваток, очевидных в известном уровне техники. Более конкретно, системы и способы согласно настоящему раскрытию обеспечивают систему для автоматического и непрерывного мониторинга радиоактивности радиофармацевтического средства внутри одноразового набора для введения радиофармацевтического средства, обнаружения проблемы доставки исходя из контролируемой радиоактивности радиофармацевтического средства, а также регулировки доставки жидкости системы для исправления проблемы доставки. Указанная система обеспечивает раннее обнаружение проблем доставки, таких как пережатый набор для введения, что предоставляет оператору возможность своевременного вмешательства для исправления проблемы доставки.

[0017] Соответственно, обеспечивается способ для мониторинга прогресса процедуры инъекции радиофармацевтического средства. Способ предусматривает измерение и мониторинг активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, используемого с системой доставки жидкости радиофармацевтического средства; и отображение оператору активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения.

[0018] Способ может дополнительно предусматривать оповещение оператора о проблеме доставки, когда активность радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, отличается от известного значения активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, в данное время. Проблема доставки может быть полной или частичной закупоркой одноразового набора для введения. Способ может также включать: автоматическую регулировку, по меньшей мере, объема солевого раствора и расхода солевого раствора к одноразовому набору для введения для промывки радиофармацевтического средства, оставшегося по меньшей мере в части одноразового набора для подачи, в случае возникновения проблемы доставки; и завершение процедуры инъекции радиофармацевтического средства в случае, если этап автоматической регулировки, по меньшей мере, объема солевого раствора и расхода солевого раствора не способен исправить проблему доставки.

[0019] Этап отображения оператору активности радиофармацевтического средства, остающегося по меньшей мере в части одноразового набора для введения, может включать отображение представления активности радиофармацевтического средства, остающегося по меньшей мере в части одноразового набора для введения, на устройстве отображения системы доставки жидкости радиофармацевтического средства. Представление активности радиофармацевтического средства, остающегося по меньшей мере в части одноразового набора для введения, может быть в виде цифрового индикатора, столбцовой диаграммы, диаграмма в координатах X-Y или диаграммы разброса. Измеренная активность радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, может быть активностью, измеренной в зависимости от времени, расхода и/или объема.

[0020] Измерения и мониторинг активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, могут быть выполнены при помощи: ионизационной камеры, CZT кристаллического детектора, счетчика Гейгера-Мюллера и сцинтилляционного счетчика. Устройство доставки жидкости может включать следующее: одноразовый набор для введения для обеспечения потока жидкости радиофармацевтического средства от источника радиофармацевтического средства устройства доставки жидкости радиофармацевтического средства пациенту; блок измерения активности, функционирующий для определения уровня радиоактивности внутри, по меньшей мере, части одноразового набора для введения; блок управления, функционально соединенный с блоком измерения активности для преобразования измерений активности, полученных при помощи блока измерения активности, для представления активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения; и блок отображения, функционально соединенный с блоком управления для отображения оператору активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения.

[0021] Одноразовый набор для введения может быть одноразовым набором для введения множеству пациентов, и может содержать компонент медицинской жидкости; компонент радиофармацевтического средства; компонент змеевика, соединенный с компонентом медицинской жидкости и компонентом радиофармацевтического средства; и отработанный компонент, соединенный с компонентом медицинской жидкости, компонентом змеевика и компонентом радиофармацевтического средства. Компонент змеевика может быть частью одноразового набора для введения, который выполнен так, чтобы характеризоваться измеренной и контролируемой активностью радиофармацевтического средства, остающегося в нем.

[0022] Дополнительно обеспечивается изделие, содержащее машиночитаемый носитель данных, содержащий инструкции, которые, при выполнении, позволяют процессору выполнять следующее: измерение и мониторинг активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, используемого с системой доставки жидкости радиофармацевтического средства; и отображение оператору активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения.

[0023] Машиночитаемый носитель данных может дополнительно содержать инструкции, которые, при исполнении, позволяют процессору выполнять оповещение оператора о проблеме доставки, когда активность радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, отличается от известного значения активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, в данное время. Проблема доставки может быть полной или частичной закупоркой одноразового набора для введения. Машиночитаемый носитель данных может также содержать инструкции, которые, при выполнении, позволяют процессору делать следующее: автоматически регулировать, по меньшей мере, объем солевого раствора и расход солевого раствора к одноразовому набору для введения для промывки радиофармацевтического средства, оставшегося по меньшей мере в части одноразового набора для подачи, в случае возникновения проблемы доставки; и завершать процедуру инъекции радиофармацевтического средства в случае, если этап автоматической регулировки, по меньшей мере, объема солевого раствора и расхода солевого раствора не способен исправить проблему доставки.

[0024] Кроме того, обеспечивается программное обеспечение мониторинга прогресса, хранимое в носителе данных для мониторинга прогресса процедуры инъекции радиофармацевтического средства. Программное обеспечение включает инструкции по программированию, которые, при выполнении, позволяют процессору делать следующее: измерять и осуществлять мониторинг активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, используемого с системой доставки жидкости радиофармацевтического средства; и отображать оператору активность радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения.

[0025] Носитель данных может дополнительно содержать инструкции по программированию, которые, при исполнении, позволяют процессору выполнять оповещение оператора о проблеме доставки, когда активность радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, отличается от известного значения активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, в данное время. Проблема доставки может быть полной или частичной закупоркой одноразового набора для введения. Носитель данных может также содержать инструкции по программированию, которые, при выполнении, позволяют процессору делать следующее: автоматически регулировать, по меньшей мере, объем солевого раствора и расход солевого раствора к одноразовому набору для введения для промывки радиофармацевтического средства, оставшегося по меньшей мере в части одноразового набора для подачи, в случае возникновения проблемы доставки; и завершать процедуру инъекции радиофармацевтического средства в случае, если этап автоматической регулировки, по меньшей мере, объема солевого раствора и расхода солевого раствора не способен исправить проблему доставки.

[0026] Дополнительно обеспечено устройство доставки жидкости радиофармацевтического средства для проведения процедуры инъекции радиофармацевтического средства, которое содержит: одноразовый набор для введения для обеспечения потока жидкости от источника радиофармацевтического средства устройства доставки жидкости радиофармацевтического средства пациенту; блок измерения активности, функционирующий для определения уровня радиоактивности внутри, по меньшей мере, части одноразового набора для введения; блок управления, функционально соединенный с блоком измерения активности для преобразования измерений активности, полученных при помощи блока измерения активности, для представления активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения; и блок отображения, функционально соединенный с блоком управления для отображения оператору во время процедуры инъекции активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения.

[0027] Оператор может быть оповещен о проблеме доставки, когда активность радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, отличается от известного значения активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, в данное время. Проблема доставки может быть закупоркой одноразового набора для введения. По меньшей мере одно из объема солевого раствора и расхода солевого раствора в одноразовый набор для введения может быть отрегулировано для промывки радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, в случае возникновения проблемы доставки. Процедура инъекции радиофармацевтического средства может быть прекращена в случае, если этап регулировки, по меньшей мере, одного из объема солевого раствора и расхода солевого раствора не способен исправить проблему доставки.

[0028] Блок измерения активности может быть одним из: ионизационная камера, CZT кристаллический детектор, счетчик Гейгера-Мюллера и сцинтилляционный счетчик. Блок отображения может отображать представление активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, на устройстве отображения системы доставки жидкости радиофармацевтического средства. Представление активности радиофармацевтического средства, остающегося по меньшей мере в части одноразового набора для введения, может быть по меньшей мере одним из: цифровой индикатор, столбцовая диаграмма, диаграмма в координатах X-Y и диаграмма разброса.

[0029] Одноразовый набор для введения может быть одноразовым набором для введения множеству пациентов. Одноразовый набор для введения может содержать: компонент медицинской жидкости; компонент радиофармацевтического средства; компонент змеевика, соединенный с компонентом медицинской жидкости и компонентом радиофармацевтического средства; и отработанный компонент, соединенный с компонентом медицинской жидкости, компонентом змеевика и компонентом радиофармацевтического средства. Компонент змеевика может быть частью одноразового набора для введения, который выполнен так, чтобы характеризоваться измеренной и контролируемой активностью радиофармацевтического средства, остающегося в нем.

[0030] Также предоставляется способ определения расхода жидкости в инъекционной системе. Способ включает следующее: накачивание радиофармацевтического средства из ионизационной камеры посредством добавления солевого раствора в ионизационную камеру; непрерывный мониторинг радиоактивности жидкости в ионизационной камере для определения нескольких измеренных величин активности; вычисление спада радиоактивного излучения исходя из нескольких измеренных величин активности для определения спада излучения; и вычисление скорости, с которой радиофармацевтические средства замещаются солевым раствором, исходя из спада излучения и объема камеры. Скорость, с которой маркированная жидкость замещается дополнительной жидкостью, соответствует расходу жидкости.

[0031] Дополнительно предоставляется способ определения расхода жидкости радиофармацевтического средства в инъекционной системе во время процедуры инъекции. Способ включает следующее: измерение и мониторинг активности радиофармацевтического средства жидкости радиофармацевтической средства, остающейся, по меньшей мере, в части одноразового набора для введения, используемого с системой доставки жидкости радиофармацевтического средства, для определения нескольких значений активности радиофармацевтического средства во время процедуры инъекции; и определения расхода жидкости радиофармацевтического средства, проходящей через одноразовый набор для введения.

[0032] Расход жидкости радиофармацевтического средства, проходящей через одноразовый набор для введения, может быть определен с использованием линейной регрессионной модели. Способ может дополнительно включать этапы: определение местонахождения объема радиофармацевтического средства внутри одноразового набора для введения исходя из расхода жидкости радиофармацевтического средства, проходящей через одноразовый набор для введения; и автоматическая регулировка параметров процедуры инъекции исходя из местонахождения жидкости радиофармацевтического средства внутри одноразового набора для введения. Измерения и мониторинг активности радиофармацевтического средства, остающегося, по меньшей мере, в части одноразового набора для введения, могут быть выполнены при помощи одного из следующего: ионизационной камеры, CZT кристаллического детектора, счетчика Гейгера-Мюллера и сцинтилляционного счетчика.

[0033] Эти и другие признаки и характеристики настоящего раскрытия, а также способы функционирования и функции связанных элементов структур и комбинация частей и меры экономии при производстве, станут более очевидными при рассмотрении следующего описания и приложенной формулы изобретения со ссылкой на приложенные графические материалы, все из которых образуют часть этого описания изобретения, где одинаковые позиционные обозначения обозначают соответствующие части на различных чертежах.

Следует ясно понимать, тем не менее, что графические материалы предназначены исключительно для цели иллюстрации и описания и не предназначены для ограничения объема данного раскрытия. Как использовано в описании изобретения и формуле изобретения, форма единственного числа включает ссылки на формы множественного числа, если только контекст четко не диктует обратное.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[0034] ФИГ.1А представляет собой перспективное изображение системы доставки жидкости согласно варианту осуществления;

[0035] ФИГ.1В представляет другое перспективное изображение системы доставки жидкости ФИГ.1А с радиозащитным покрытием на нем в выдвинутом положении;

[0036] ФИГ.1C представляет собой вид сверху системы доставки жидкости, показанной на ФИГ.1А и 1В с различными компонентами линии тока, расположенными в ней;

[0037] ФИГ.1D представляет собой вид в поперечном сечении, взятого вдоль линии 1D-1D ФИГ.1А;

[0038] ФИГ.1Е представляет собой вид в поперечном сечении, взятого вдоль линии 1Е-1Е ФИГ.1А;

[0039] ФИГ.1F представляет собой блок-схему, иллюстрирующую систему управления для применения с системой доставки жидкости ФИГ.1А;

[0040] ФИГ.2А представляет собой схематическое изображение набора линий тока для многочисленных пациентов и его компонентов согласно варианту осуществления;

[0041] ФИГ.2В представляет собой изображение в разобранном виде, показывающее набор линий тока для многочисленных пациентов, показанный на ФИГ.2А, соединенный с источником жидкости и размещенный над системой доставки жидкости, показанной на ФИГ.1А-1Е;

[0042] ФИГ.3А представляет собой вид сбоку предпочтительного варианта осуществления змеевик в сборе согласно варианту осуществления;

[0043] ФИГ.3В представляет собой вид в парциальном сечении ФИГ.3А;

[0044] ФИГ.3С представляет собой горизонтальную проекцию (в парциальном сечении), взятого вдоль линии 3С-3С ФИГ.3А;

[0045] ФИГ.3D представляет собой вид в поперечном сечении, взятого вдоль линии 3D-3D ФИГ.3А;

[0046] ФИГ.3Е представляет собой перспективное изображение элемента активной зоны змеевика в сборе, показанного на ФИГ.3А;

[0047] ФИГ.3F представляет собой увеличенное изображение ФИГ.1D, показывающее змеевик в сборе в ионизационной камере системы доставки жидкости;

[0048] ФИГ.4А представляет собой вид сбоку системы, несущей экран флакона, и системы доступа к флакону согласно варианту осуществления;

[0049] ФИГ.4В представляет собой перспективное изображение, показывающее экран флакона, систему, несущую экран флакона, и систему доступа к флакону согласно ФИГ.4А;

[0050] ФИГ.4С представляет собой вид сбоку фармацевтического флакона, который может быть использован в системе доставки жидкости согласно варианту осуществления;

[0051] ФИГ.5 представляет собой упрощенное схематическое изображение системы доставки жидкости ФИГ.1А в первом состоянии эксплуатации согласно варианту осуществления;

[0052] ФИГ.6 представляет собой упрощенное схематическое изображение системы доставки жидкости ФИГ.1А во втором состоянии эксплуатации согласно варианту осуществления;

[0053] ФИГ.7 представляет собой упрощенное схематическое изображение системы доставки жидкости ФИГ.1А в третьем состоянии эксплуатации согласно варианту осуществления;

[0054] ФИГ.8 представляет собой упрощенное схематическое изображение системы доставки жидкости ФИГ.1А в четвертом состоянии эксплуатации согласно варианту осуществления;

[0055] ФИГ.9 представляет собой упрощенное схематическое изображение системы доставки жидкости ФИГ.1А в пятом состоянии эксплуатации согласно варианту осуществления;

[0056] ФИГ.10 представляет собой схему последовательности способа осуществления процедуры инъекции согласно варианту осуществления;

[0057] ФИГ.11 представляет собой столбцовую диаграмму, показывающую уровни активности, измеренные на различных этапах процедуры инъекции согласно варианту осуществления;

[0058] ФИГ. 12-23 представляют различные изображения графического интерфейса оператора для применения в процедурах инъекции согласно варианту осуществления;

[0059] ФИГ.24А-24С представляют собой виды мониторов активности согласно варианту осуществления, показывающие, как мониторы могут быть использованы для определения расхода; и

[0060] ФИГ.25 представляет собой схему последовательности, иллюстрирующую способ согласно одному варианту осуществления.

ПОДРОБНОЕ ОПИСАНИЕ

[0061] Для целей описания в данном документе далее выражения «верхний», «нижний», «правый», «левый», «вертикальный», «горизонтальный», «верх», «низ», «латеральный», «продольный», и их производные будут относиться к ориентации вариантов осуществления, раскрытых в изображенных чертежах. Тем не менее, следует понимать, что варианты осуществления могут принимать альтернативные изменения и последовательности этапов, за исключением того случая, когда четко определено обратное. Также следует понимать, что конкретные устройства и способы, проиллюстрированные в прикрепленных графических материалах, и описанные в нижеследующем описании изобретения, являются просто иллюстративными вариантами осуществления. Следовательно, конкретные размеры и другие физические характеристики, относящиеся к вариантам осуществления, раскрытым в данном документе, не должны рассматриваться как ограничивающие.

[0062] Следует понимать, что раскрытые варианты осуществления могут принимать различные альтернативные изменения и последовательности этапов, за исключением того случая, когда четко определено обратное. Также следует понимать, что конкретные устройства и способы, проиллюстрированные в прикрепленных графических материалах, и описанные в нижеследующем описании изобретения, являются просто иллюстративными вариантами осуществления.

[0063] Иллюстративная система доставки жидкости радиофармацевтического средства для применения с системой, раскрытой в данном документе, раскрыта в Публикации патентной заявки США №2008/0177126 Tate et al., раскрытие которой включено в данный документ ссылкой. Более конкретно, ФИГ. 1A-1F показывают иллюстр