Доставка линейной молекулы днк в растения для стабильной трансформации с помощью пегилированных квантовых точек

Иллюстрации

Показать все

Изобретение относится к области биохимии, в частности к способу стабильного интегрирования представляющей интерес линейной молекулы нуклеиновой кислоты в клетку растения, имеющую клеточную стенку, с использованием положительно заряженной полупроводниковой наночастицы. Также раскрыт способ стабильного интегрирования представляющей интерес линейной молекулы нуклеиновой кислоты в растительный материал с использованием наночастицы, являющейся квантовой точкой. Изобретение позволяет эффективно и стабильно интегрировать представляющую интерес линейную молекулу нуклеиновой кислоты в клетку растения, имеющую клеточную стенку. 2 н. и 19 з.п. ф-лы, 3 ил., 5 пр.

Реферат

ЗАЯВЛЕНИЕ О ПРИОРИТЕТЕ

По настоящей заявке испрашивается приоритет по дате подачи предварительной заявки на патент США "ДОСТАВКА ЛИНЕЙНОЙ МОЛЕКУЛЫ ДНК В РАСТЕНИЯ ДЛЯ СТАБИЛЬНОЙ ТРАНСФОРМАЦИИ С ПОМОЩЬЮ ПЕГИЛИРОВАННЫХ КВАНТОВЫХ ТОЧЕК" с порядковым номером 61/362224, поданной 7 июля 2010 года.

УРОВЕНЬ ТЕХНИКИ

Наночастицы имеют уникальные свойства, которые были использованы для доставки ДНК в конкретные животные клетки. Наночастицы имеют уникальные свойства, которые использовались для доставки ДНК в конкретные животные клетки. Было найдено, что когда определенные наночастицы, покрытые ДНК, инкубируются с клетками, не имеющими клеточной стенки, клетки поглощают наночастицы и начинают экспрессировать гены, кодированные на ДНК. Полупроводниковые наночастицы (например, квантовые точки (QD)) в диапазоне размеров 3-5 нм также были использованы в качестве носителей для доставки молекул в клетки. ДНК и белки могут быть связаны с некоторыми лигандами, прикрепленными к поверхности QD. См., например, Patolsky, F. et al., J. Am. Chem. Soc. 125:13918 (2003). Покрытые карбоновой кислотой или амином QD могут быть сшиты с молекулами, содержащими тиоловую группу, см., например, Dubertret B. et al., Science 298:1759 (2002); Akerman et al., Proc. Natl. Acad. Sci. U.S.A. 99:12617 (2002); Mitchell et al., J. Am. Chem. Soc. 121:8122 (1999)), или N-гидроксисукцинимильную (NHS) эфирную группу, с использованием стандартных протоколов биоконъюгации. См., например, Pinaud, et al., Am. Chem. Soc. 126:6115 (2004); Bruchez, et al., Science 281:2013 (1998). Альтернативным путем для присоединения молекул к поверхности QD является способ конъюгации покрытых стрептавидином QD с биотинилированными белками, олигонуклеотидами или антителами. См., например, Dahan, et al., Science 302:442 (2003); Pinaud, et al., J. Am. Chem. Soc. 126:6115 (2004); Wu, et al., Nature Biotechnol. 21:41 (2003); Jaiswal, et al., Nature Biotechnol. 21:47 (2003); и Mansson, et al., Biochem. Biophys. Res. Commun. 314:529 (2004).

Доставка чужеродных молекул нуклеиновых кислот в растения является сложной задачей из-за наличия стенок у растительных клеток. Используемые способы для генетической трансформации растений основаны на инвазивной доставке. Клеточная стенка в клетках растений является барьером для доставки экзогенно вносимых молекул. Для достижения доставки генов и малых молекул в клетки растений с клеточной стенкой были использованы многочисленные инвазивные способы, такие как биолистическая доставка (генная пушка), микроинъекция, электропорация и опосредованная Agrobacterium трансформация, но доставка белков была достигнута только с использованием микроинъекции. Когда желательна доставка молекул нуклеиновых кислот в клетки растений, клеточную стенку удаляют перед добавлением частиц к протопластам растения (см. Torney, et al., Nature Nanotechnol. 2:295-300 (2007)).

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Здесь описаны способы и композиции для использования наночастиц и линеаризованных молекул нуклеиновых кислот для введения представляющей интерес молекулы в растительную клетку, которая имеет клеточную стенку. Некоторые воплощения раскрытых способов могут использоваться для продуцирования стабильно трансформированных генетически модифицированных фертильных растений. В некоторых воплощениях характерные свойства линейных молекул нуклеиновых кислот обеспечивают доставку специфических, представляющих интерес, генных последовательностей без последовательностей посторонних нуклеиновых кислот, которые могут иметь регуляторные функции для целевого трансгенного организма.

В некоторых воплощениях наночастицы могут включать молекулы пегилированной линейной нуклеиновой кислоты. В конкретных воплощениях наночастицы могут быть полупроводниковыми наночастицами, такими как квантовые точки (QD). В некоторых воплощениях молекулой линейной нуклеиновой кислоты может быть линеаризованная плазмидная ДНК. В других воплощениях молекулы линейной нуклеиновой кислоты могут включать кодирующие последовательности фосфинотрицин-N-ацетилтрансферазы (PAT) и/или желтого флуоресцентного белка (YFP).

Также раскрыты способы введения представляющей интерес молекулы в клетку растения, имеющую клеточную стенку, где способы могут включать предоставление клетки растения, имеющей клеточную стенку; покрытие поверхности наночастицы ПЭГ для получения ПЭГилировнных наночастиц; покрытие ПЭГилировнных наночастиц по меньшей мере одной молекулой линейной нуклеиновой кислоты представляющей интерес; приведение в контакт друг с другом клетки растения, имеющей клеточную стенку, с ПЭГилировнными наночастицами, покрытыми молекулой(ами) линейной нуклеиновой кислоты представляющей интерес; и предоставления возможности поглощения наночастицы и молекулы(молекул) линейной нуклеиновой кислоты представляющей интерес в клетку, имеющую клеточную стенку.

Дополнительно раскрыты способы интогрессии генетического признака в растение. В некоторых воплощениях способ может включать предоставление растительной клетки; покрытие поверхности наночастиц ПЭГ для продуцирования ПЭГилированных наночастиц; покрытие ПЭГилированных наночастиц средствами экспрессии генетического признака в растении; приведение в контакт друг с другом клетки растения с ПЭГилировнными наночастицами, покрытыми средствами экспрессии генетического признака в растении; и обеспечение поглощения клеткой растения наночастицы со средствами экспрессии генетического признака в растении для получения трансформированной клетки растения; регенерацию целого растения из трансформированной растительной клетки; и репродукцию растения. В некоторых воплощениях генетический признак, который может быть интрогрессирован в соответствии со способами изобретения, включают признак, выбранный без ограничения из: мужской фертильности; устойчивости к гербицидам; устойчивости к насекомым; и устойчивости к бактериальному, грибковому заболеванию и/или вирусному заболеванию.

Также раскрытые способы по изобретению могут быть использованы для трансформации растений in planta. В некоторых воплощениях растение может быть выбрано из растений рода Arabidopsis, например A. thaliana. В конкретном воплощении, растение, трансформированное in planta, может быть выбрано из экотипа Колумбия растений A. thaliana.

Дополнительно раскрытыми являются генетически модифицированные (ГМ) растительные клетки и способы их получения, где клетки растений имеют одну или несколько нуклеиновых кислот, введенных в них посредством способов настоящего изобретения. В некоторых воплощениях плазмида, содержащая по меньшей мере один представляющий интерес ген и селектируемый маркер, может быть введена в клетку растения, имеющую клеточную стенку, посредством наночастицы в соответствии с настоящим изобретением. В дополнительных вариантах воплощениях могут быть отобраны стабильные трансформанты, которые имеют стабильно интегрированный по меньшей мере один представляющий интерес ген и/или селектируемый маркер. В альтернативных воплощениях клетка растения, которая уже содержит представляющий интерес ген, может быть размножена для получения других клеток, содержащих представляющую интерес молекулу. В других вариантах воплощениях клетка растений, уже содержащая представляющую интерес молекулу, может быть регенерируемой клеткой, которая может быть использована для регенерации целого растения, включающего представляющую интерес молекулу.

Дополнительно раскрытыми являются способы получения регенерируемых клеток растений, содержащих представляющую интерес молекулу, для применения в тканевых культурах. Эта тканевая культура может быть способной регенерировать растения, имеющие по существу тот же самый генотип, что и регенерируемые клетки. Регенерируемые клетки в таких тканевых культурах могут быть зародышами, протопластами, меристематическими клетками, каллусом, пыльцой, листьями, пыльниками, корнями, кончиками корней, цветками, семенами, стручками или стеблями. Кроме того, некоторые воплощения обеспечивают растения, регенерированные из тканевых культур этого изобретения.

Дополнительно раскрытыми являются способы генерирования стабилизированных линий растений, содержащих желаемый генетический признак или представляющую интерес молекулу нуклеиновой кислоты, где желаемый генетический признак или представляющая интерес молекула нуклеиновой кислоты могут сначала вводиться за счет поглощения наночастицы через клеточную стенку растения. Способы генерирования стабилизированных линий растений хорошо известны специалисту с обычной квалификацией в данной области и могут включать, без ограничения, такие способы, как самоопыление, обратное скрещивание, получение гибридов, скрещивания с популяциями и т.п. Таким образом, также раскрыты растения и клетки растений, содержащие желаемый генетический признак или представляющую интерес молекулу нуклеиновой кислоты, впервые введенные в клетку растения (или в ее предшественники) поглощением наночастиц через клеточную стенку. Клетки растения, содержащие желаемый генетический признак или представляющую интерес молекулу нуклеиновой кислоты, впервые введенные в растение или в клетку (или в ее предшественники) поглощением наночастиц через клеточную стенку, могут быть использованы в скрещиваниях с другими, отличающимися, клетками растений для получения гибридных клеток первой генерации (F1), семян и/или растений с желаемыми характеристиками.

Кроме иллюстративных аспектов и вариантов воплощений, описанных выше, дополнительные аспекты и воплощения станут очевидными в свете следующих описаний.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 включает графическое описание нелинеаризованной плазмиды pDAB3831.

Фиг.2 включает графическое описание плазмиды pDAB3831, линеаризованной с помощью фермента рестрикции KpnI.

Фиг.3 включает выравнивание последовательностей между последовательностью ДНК фосфинотрицин-N-ацетилтрансферазы (PAT) из наночастиц с линейной ДНК трансформированного генома Arabidopsis и последовательностью PAT из базы данных NCBI.

СПИСОК ПОСЛЕДОВАТЕЛЬНОСТЕЙ

SEQ ID NO: 1 показывает последовательность прямого праймера, используемого для амплификации гена YFP:

TGTTCCACGGCAAGATCCCCTACG.

SEQ ID NO:2 показывает последовательность обратного праймера, используемого для амплификации гена YFP:

TATTCATCTGGGTGTGATCGGCCA.

SEQ ID NO:3 показывает последовательность прямого праймера, используемого для амплификации гена PAT:

GGAGAGGAGACCAGTTGAGATTAG.

SEQ ID NO:4 показывает последовательность обратного праймера, используемого для амплификации гена PAT:

AGATCTGGGTAACTGGCCTAACTG.

НАИЛУЧШИЕ ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

I. Обзор некоторых воплощений

Способы по изобретению, обеспечивающие неинвазивную передачу генов могут быть очень полезными для создания генетически модифицированных растений с желаемыми генетическими признаками. Неинвазивная передача генов может способствовать специфическому нацеливанию и корректированию молекулярных сайтов внутри клеток для применения в таких областях, как ведение желаемых показателей, достижение итогового результата и получение желаемых агрономических признаков культур растений. Описанные способы, как альтернатива для ГМО, также могут быть полезны для транзиентной трансформации растений, для расширения технологии интрогрессии генетических признаков и придания деревьям или овощным культурам устойчивости к патологиям, где технология в настоящее время ограничена.

Недавняя заявка на патент США No.60/978059 раскрывает неинвазивные средства доставки ДНК, основанные на наночастицах, используя различные несущие полезную нагрузку наночастицы, в том числе для доставки кольцевой плазмидной ДНК, и ясно демонстрирует стабильную интеграцию трансгенов в семена T1 растений Arabidopsis. Полученные так трансгенные растения, содержащие кольцевую плазмидную ДНК, демонстрируют желаемые толерантные к гербицидам фенотипы, и показывают высокий уровень толерантности при одновременном опрыскиванием в поле по меньшей мере четырехкратным количеством глюфосината аммония. Заявка США No.60/978059 показала, среди прочего, генетическую трансформацию в Arabidopsis за счет применения положительно заряженных наночастиц золота с кольцевой плазмидной ДНК. Настоящая работа описывает, в частности, применение линейных молекул нуклеиновых кислот для стабильной генетической трансформации растений.

Заявка США No.60/978059 описывает, в частности, доставку плазмидной ДНК, опосредованную положительно заряженными наночастицами. Однако до настоящего времени не сообщалось о достижении стабильной геномной интеграции трансгена при использовании для доставки линейных плазмид. Это изобретение описывает применение линейных молекул нуклеиновой кислоты с использованием положительно заряженных наночастиц для стабильный генетической трансформации растений. Молекулярный анализ показывается экспрессию PAT вместе с YFP в трансгенных растениях Arabidopsis T1, трансформированных геном pat и геном yfp способами по изобретению. Трансгенные растения T1 являются фертильными и продуцируют семена. Эти семена могут использоваться для размножения, и наряду с молекулярным и белковыми анализами может быть выполнен сегрегационный анализ.

Молекулы линейных нуклеиновых кислот имеют характерные свойства, которые отличают их от кольцевой плазмидной ДНК. Например, молекулы линейных нуклеиновых кислот могут иметь четко определенную генную кассету без остова несущего вектора и без селектируемого маркера - бактериального антибиотика.

Гербицид глюфосинат аммония (GLA), может быть распылен в поле с уровнем концентрации для скрининга трансгенов. Саженцы Arabidopsis T1, полученные с использованием способов по изобретению, показали устойчивость к гербицидам при пятикратном уровне дозирования глюфосината в поле, например, в режиме "через день", начиная с семи дней после появления всходов. Геномные ДНК этих трансгенных растений были проанализированы на предмет присутствия pat и yfp методом ПЦР, и результаты показали присутствие целевых последовательностей pat и yfp в ДНК. Секвенирование полученных продуктов ПЦР показало наличие правильных трансгенных последовательностей pat и yfp в Arabidopsis T1, полученных с использованием способов по изобретению.

II. Термины

В описании и таблицах, которые следуют далее, используется ряд терминов. Для того чтобы обеспечить ясное и единообразное понимание описания и формулы изобретения, в том числе объема притязаний, который должен поддерживаться таким терминам, представлены следующие определения.

Обратное скрещивание. Как используется здесь, термин "обратное скрещивание" может быть процессом, в котором селекционер многократно скрещивает гибридное потомство с одним из родителей, например, гибрид первой генерации F1 с одним из родительских генотипов этого гибрида F1.

Зародыш. Как используется здесь, термин "зародыш" может относиться к маленькому растению, содержащемуся в зрелом семени.

Наночастица. Как используется здесь, термин "наночастица" может относиться к микроскопической частице, имеющей по меньшей мере один нанометровый размер, например, меньше 100 нм. Наночастицы, подходящие для применения в настоящем изобретении, могут иметь размер 1 нм-0,84 мкм. Одним из классов наночастиц является "квантовая точка" (QD). Квантовая точка может иметь медианный диаметр 1 нм-10 нм, предпочтительно 2-4 нм. Другие варианты наночастиц включают, без ограничения: наночастицы золота; покрытые золотом наночастицы; пористые наночастицы; мезопористые наночастицы; наночастицы диоксида кремния; полимерные наночастицы, включая дендримеры; вольфрамовые наночастицы; желатиновые наночастицы, нанооболочки; наноядра; наносферы; наностержни; магнитные наночастицы и их комбинации.

Среди доступных наночастиц, люминесцентные полупроводниковые нанокристаллы (QD) обеспечивают многие известные применения при биологической визуализации и зондировании. Их полезность является следствием комбинации уникальных фото-физических характеристик и размеров, сопоставимым с размером большого белка. Гидродинамические радиус гидрофильных QD из CdSe-ZnS варьирует от 5 нм (для нанокристаллов, кэпирующих молекулярные лиганды) до 20 нм для нанокристаллов, инкапсулированных в блок-сополимеры. Один QD может быть конъюгирован с несколькими биомолекулами (например, с антителами, пептидами и молекулами нуклеиновых кислот), с получением многофункциональных биоконъюгатов QD с расширенной авидностью. Кроме того, их сильная устойчивость к химической и фото деградации может в целом обеспечить долгосрочный флуоресцентный мониторинг специфических биологических процессов. См. Nie и Emory, Science 275: 1 102-106 (1997). Множество схем нековалентных конъюгаций, основанных на самосборке из-за аффинности металлов и биотин-авидинового связывания, могут одновременно использоваться в рамках одного и того же комплекса, без необходимости дополнительной очистки, приводя к получению многофункциональных биоконъюгатов QD, которые являются стабильными даже во внутриклеточных средах. См. Yezhelyev et al., J. Am. Chem. Soc. 130(28):9006-12 (2008). Используя в среднем по 10 YFP плюс номинальное количество, равное 50, проникающих в клетку пептидов (CPP) на одну QD, может быть достигнута внутриклеточная доставка белковой нагрузки с молекулярным весом по меньшей мере 300 кДа и с пространственным размером 150 ангстрем. См. там же. Доставляемая нагрузка для QD-b-PE конъюгатов имеют гораздо больший диапазон размеров и молекулярных весов; например, доставленные сборки, из расчета в среднем 2,5 стрептавидин-b-PE на конъюгат, имеют молекулярный вес, который в целом превышает 103 кДа и пространственные размеры приближаются к 500 ангстремам. Молекулярный вес и размер может быть значительно увеличен, если используются конъюгаты с более высокими b-PE валентностями.

Молекула нуклеиновой кислоты. Полимерные формы нуклеотидов, которые могут включать как смысловые, так и антисмысловые цепи РНК, кДНК, геномной ДНК, искусственных хромосом (ACE), и синтетические формы и смеси вышеуказанных полимеров. Нуклеотид относится к рибонуклеотиду, дезоксирибонуклеотиду или к модифицированной форме обоих типов нуклеотидов. Термин "молекула нуклеиновой кислоты", как используется здесь, является синонимом терминов "нуклеиновая кислота" и "полинуклеотид". Молекула нуклеиновой кислоты обычно имеет по меньшей мере 10 оснований по длине, если не указано иное. Этот термин включает одноцепочечные и двухцепочечные формы ДНК. Молекула нуклеиновой кислоты может включать как отдельно, так и вместе, природные и модифицированные нуклеотиды, которые связаны между собой естественными и/или не встречающимися в природе нуклеотидными связями.

Операбельно связанный. Первая последовательность нуклеиновой кислоты операбельно связана со второй последовательностью нуклеиновой кислоты, когда первая последовательность нуклеиновой кислоты находится в функциональной взаимосвязи со второй последовательностью нуклеиновой кислоты. Например, промотор является операбельно связанным с кодирующей последовательностью, если промотор влияет на транскрипцию или экспрессию кодирующей последовательности. При рекомбинантном продуцировании, последовательности операбельно связанных нуклеиновых кислот могут быть смежными, и, при необходимости, могут соединять две кодирующие области белка в той же рамке считывания. Однако для того чтобы быть операбельно связанными, нуклеиновые кислоты могут и не быть смежными.

Пегилированный. Как используется в настоящем документе, термин "пегилированный" может касаться наночастиц (например, квантовых точек), когда поверхности наночастиц были изменены с помощью полиэтиленгликоля (PEG, ПЭГ) для улучшения биосовместимости. Пегилированные наночастицы могут быть дополнительно покрыты различными нацеливающими лигандами, например, пептидами и антителами, для улучшения эффективности доставки к конкретным клеткам и тканям. ПЭГ был конъюгирован с наночастицами и с различными лекарственными веществами, липосомами и полимерными мицеллами, для того чтобы, например, продлить время циркуляции наночастиц с покрытием в крови, путем снижения неспецифической адсорбции белков за счет эффекта пространственной стабилизации.

Квантовая точка. Как используется в настоящем документе, термин "квантовая точка" (QD), также иногда ранее известные как нанокристаллы, может относиться к полупроводниковой наноструктуре, которая ограничивает движение электронов зоны проводимости и дырок валентной зоны, или экситонов (связанных пар электронов зоны проводимости и дырок валентной зоны) во всех трех пространственных направлениях. Это ограничение может быть обусловлено, например, электростатическими потенциалами (генерируемыми наружными электродами, за счет легирования, деформацией, примесями и т.п.), присутствием границы раздела между различными полупроводниковыми материалами (например, в нанокристаллических системах ядро-оболочка), присутствием полупроводниковой поверхности (например, у полупроводникового нанокристалла) или их комбинациями. Квантовая точка может иметь дискретный квантованный энергетический спектр. Соответствующие волновые функции могут быть пространственно локализованными в квантовой точке, но простираются на многие периоды кристаллической решетки. Квантовая точка содержит малое конечное число (например, порядка 1-100) электронов зоны проводимости, дырок зоны валентности или экситонов (т.е. имеет конечное число элементарных электрических зарядов).

Квантовые точки являются особым классом полупроводниковых материалов, которые могут быть кристаллами, состоящими из материалов элементов периодических групп II-VI, III-V или IV-VI. Их размеры могут варьироваться, например, от 2 до 10 нанометров (10-50 атомов) в диаметре. В некоторых воплощениях квантовые точки могут быть изготовлены в виде ядра и оболочки из селенида кадмия и сульфида цинка (CdSe/ZnS), и они имеют ряд полезных электрических и оптических свойств, которые различаются по своему характеру от характеристик исходного объемного материала.

Наночастицы в виде квантовых точек были исследованы как средство для визуализации in vivo и in vitro, из-за высокого квантового выхода, высокого коэффициента молярного поглощения и высокой стойкости к Фотообесцвечиванию.

Устойчивый к глифосату. Устойчивость к дозе глифосата относится к способности растения выживать (т.е. растение не может погибнуть) под действием данной дозы глифосата. В некоторых случаях толерантные растения могут временно пожелтеть или иным образом проявить какое-либо повреждение, индуцированное глифосатом (например, избыточное побегообразование и/или замедление роста), но затем они восстанавливаются.

Стабилизированный. Как используется в настоящем документе, термин "стабилизированный" может относиться к характеристикам растения, которые репродуцибельно передаются от одной генерации к следующей генерации инбредных растений одного сорта.

Трансген. Как используется в настоящем документе, термин "трансген" может относиться к последовательности экзогенной нуклеиновой кислоты. В качестве одного из примеров, трансген представляет собой последовательность гена (например, гена устойчивости к гербициду), ген, кодирующий промышленно или фармацевтически полезное соединение, или ген, кодирующий желаемый сельскохозяйственный признак. В еще одном примере трансген представляет собой последовательность антисмысловой нуклеиновой кислоты, где экспрессия последовательности антисмысловой нуклеиновой кислоты ингибирует экспрессию последовательности целевой нуклеиновой кислоты. Трансген может содержать регуляторные последовательности, операбельно связанные с трансгеном (например, промотор). В некоторых воплощениях представляющая интерес молекула нуклеиновой кислоты, которая должна быть введена трансформацией посредством наночастиц, представляет собой трансген. Однако в других воплощениях, представляющая интерес молекула нуклеиновой кислоты представляет собой последовательность эндогенной нуклеиновой кислоты, для которой желательны дополнительные геномные копии последовательности эндогенной нуклеиновой кислоты, или молекулой нуклеиновой кислоты, которая находится в антисмысловой ориентации по отношению к целевой молекуле нуклеиновой кислоты в организме хозяина.

Поглощение. Как используется в настоящем документе, термин "поглощение" может относиться к транслокации частицы, такой как наночастица (например, квантовой точке), через клеточную стенку или клеточную мембрану, где транслокация имеет место не только как результат импульса, придаваемого этой частице чем-то другим, чем клетка, в которую эта частица поглощается. Неограничивающие примеры устройств или способов, которые вызывают транслокацию частицы через клеточную стенку или клеточную мембрану только в результате импульса, придаваемого частице, представляют собой биолистику, генную пушку, микроинъекцию и/или введение методом прокола с помощью наноматериалов (импалефекция).

III. Доставка молекул ДНК с помощью наночастиц для стабильной трансформации клеток растений

А. Обзор

Это изобретение описывает, в частности, новые способы трансформации растений, используя перенос посредством наночастиц линеаризованной плазмидной ДНК для генетической трансформации и развития стабильных трансгенных растений. Способы согласно некоторым воплощениям настоящего изобретения могут предоставить не только быструю генерацию трансгенного организма, но также и дополнительные возможности для желательных геномных модификаций, по сравнению с другими способами трансформации. Воплощения изобретения привели к стабильно трансформированному растению, о котором сообщается впервые, полученному посредством доставки линеаризованной плазмидной ДНК, опосредованной наночастицами. Раскрытые способы генетической модификации представляют собой отказ от традиционных способов генетической трансформации растений, и могут быть очень полезными для генерации трансгенных культур растений.

B. Молекулы ДНК

С появлением молекулярных биологических методик, которые обеспечили выделение и характеризацию генов, которые кодируют конкретный белок или РНК-продукты (например, интерферирующие РНК (RNAi), ученые в области биологии растений испытывали сильный интерес к созданию генома клеток, которые содержат и экспрессируют чужеродные гены, или дополнительные или модифицированные варианты нативных или эндогенных генов (возможно под управлением различных промоторов), для того чтобы, например, определенным способом изменить генетические признаки клетки. Такие чужеродные дополнительные и/или модифицированные гены упомянуты здесь общим термином "трансгены." Трансгены могут, например, кодировать представляющий интерес белок, или быть транскрибированы в RNAi. За последние пятнадцать - двадцать лет были разработаны несколько методов для продуцирования трансгенных клеток, и настоящее изобретение в специфических воплощениях касается вариантов трансформированных клеток, и методов их продуцирования посредством введения в клетки растения, имеющих клеточную стенку, одну или несколько линейных молекул нуклеиновой кислоты за счет поглощения наночастицы через стенку клетки. В некоторых воплощениях изобретения трансген может содержаться в линеаризовавшем векторе экспрессии.

Трансформация клетки может включать конструирование вектора экспрессии, который будет функционировать в конкретной клетке. Такой вектор может включать последовательность нуклеиновой кислоты, которая включает ген под контролем регулирующего элемента или оперативно связанный с регулирующим элементом (например, с промотором, энхансером, последовательностью терминации или их комбинацией). Так, вектор экспрессии может содержать одну или несколько таких операбельно связанных комбинаций ген/регулирующий элемент. Вектор(ы) может быть в форме плазмиды, и может использоваться отдельно или в комбинации с другими плазмидами, для того чтобы обеспечить трансформацию клетки, используя методы трансформации как описано здесь, чтобы включить трансген(ы) в генетический материал клетки растения, содержащей клеточную стенку.

В иных воплощениях, представляющая интерес молекула нуклеиновой кислоты, может быть линейной молекулой нуклеиновой кислоты. Линейные молекулы нуклеиновой кислоты могут быть получены, например, расщеплением кольцевой плазмиды эндонуклеазой рестрикции. Эндонуклеазы рестрикции расщепляют плазмиду на одном или нескольких сайтах распознавания в пределах нуклеотидной последовательности плазмиды. Таким образом, могут быть созданы плазмиды, обеспечивающие продуцирование одной или нескольких специфических линейных молекул нуклеиновой кислоты, за счет расщепления специфической эндонуклеазой рестрикции. Альтернативно, данная нуклеотидная последовательность плазмиды может быть проанализирована с целью поиска сайтов распознавания одной или несколькими специфическими эндонуклеазами рестрикции, которые обеспечивают продуцирование одной или нескольких специфических линейных молекул нуклеиновой кислоты (нуклеиновых кислот). Путем выбора сайтов рестрикции, которые расщепляются по специфическим положениям в пределах кольцевой плазмиды или линейной молекулы нуклеиновой кислоты, могут быть получены линейные молекулы нуклеиновой кислоты, у которых отсутствует одна или несколько последовательностей молекулы нуклеиновой кислоты-предшественника. Например, может быть получена линейная молекула нуклеиновой кислоты в которой отсутствуют чужеродные нуклеиновокислотные последовательности (например, остов несущего вектор, маркеры селекции, такие как бактериальные маркеры селекции и не являющиеся необходимыми последовательности нуклеиновой кислоты, которые являются гомологичными геномной ДНК целевой клетки). Альтернативно, линейная молекула нуклеиновой кислоты может быть синтезирована так, чтобы в ней отсутствовали чужеродные нуклеиновокислотные последовательности.

В иных воплощениях, где представляющая интерес молекула включает один или несколько генов, ген(ы) может (могут) быть доминантной или рецессивной аллелью. Например, ген(ы) может (могут) придать такие признаки, как устойчивость к гербициду, устойчивость к насекомым, устойчивость к бактериальным заболеваниям, устойчивость к грибам, устойчивость к вирусным заболеваниям, мужская фертильность, мужская стерильность, улучшенное пищевое качество и промышленное использование. Гены, придающие эти и другие признаки, известны в данной области техники, и любой ген может быть введен в клетку, содержащую клеточную стенку, согласно способам изобретения.

Экспрессирующие векторы для линеаризации и поглощения посредством наночастиц: Маркерные гены

Экспрессирующие векторы могут необязательно включать по меньшей мере один генетический маркер, например, операбельно связанный с регуляторным элементом, который позволяет трансформированным клеткам, содержащим этот маркер, извлекаться либо отрицательным отбором (т.е. ингибированием роста клеток, которые не содержат этот ген селектируемого маркера) либо положительным отбором (т.е. скринингом продукта, кодируемого этим генетическим маркером). Многие гены селектируемых маркеров для трансформации хорошо известны в данной области техники и включают, например, без ограничения: гены, кодирующие ферменты, которые метаболически детоксифицируют селективный химический агент, который может быть антибиотиком или гербицидом; или гены, кодирующие измененную мишень, которая может быть нечувствительна к ингибитору. Специфические способы положительного отбора также известны в данной области техники.

Один ген селектируемого маркера, который может быть подходящим для трансформации растений некоторыми молекулами нуклеиновых кислот, представляет собой ген неомицинфосфотрансферазы II (nptII), необязательно под контролем регуляторных сигналов растения, который придает устойчивость к канамицину. См., например, Fraley et al., Proc. Natl. Acad. Sci. U.S.A., 80:4803 (1983). Другой ген селектируемого маркера, который может быть использован, представляет собой ген гигромицинтрансферазы, который придает устойчивость к антибиотику гигромицину. См., например, Vanden Elzen et al., Plant Mol. Biol., 5:299 (1985).

Дополнительные гены селектируемых маркеров, которые могут быть использованы в способах по изобретению, включают гены селектируемых маркеров бактериального происхождения, например, те, которые придают устойчивость к антибиотикам, таким как гентамицинацетилтрансфераза, стрептомицинфосфотрансфераза, аминогликозид-3'-аденилтрансфераза и блеомицин. См. Hayford et al., Plant Physiol. 86:1216 (1988), Jones et al., Mol. Gen. Genet, 210:86 (1987), Svab et al., Plant Mol. Biol. 14:197 (1990), и Hille et al., Plant Mol. Biol. 7:171 (1986). Другие гены селектируемых маркеров придают устойчивость к гербицидам, таким как глифосат, глюфосинат или бромоксинил. См. Comai et al., Nature 317:741-744 (1985), Gordon-Kamm et al., Plant Cell 2:603-618 (1990) и Stalker et al., Science 242:419-423 (1988).

Другие гены селектируемых маркеров, которые могут быть использованы для трансформации растений, включают гены небактериального происхождения. Эти гены включают, например, без ограничения, дигидрофолатредуктазу мыши, 5-енолпирувилшикимат-3-фосфатсинтазу растений и ацетолактатсинтазу растений. См. Eichholtz et al., Somatic Cell Mol. Genet. 13:67 (1987), Shah et al., Science 233:478 (1986), и Charest et al., Plant Cell Rep. 8:643 (1990).

Другой класс генов маркеров, подходящих для трансформации растений, может потребоваться для скрининга предположительно трансформированных клеток растений, а не для прямого генетического отбора трансформированных клеток на устойчивость к токсичному веществу, такому как антибиотик. Эти гены в частности применимы для количественного определения или визуализации пространственной картины экспрессии гена в конкретных тканях, и они часто называются "репортерными генами", поскольку они могут быть слиты с геном или регуляторной последовательностью гена для исследования экспрессии гена. Гены, обычно используемые для скрининга трансформированных клеток, включают, без ограничения, β-глюкуронидазу (GUS), β-галактозидазу, люциферазу и хлорамфениколацетилтрансферазу. См. Jefferson, R. A., Plant Mol. Biol. Rep. 5:387 (1987), Teeri et al., EMBO J. 8:343 (1989), Koncz et al., Proc. Natl. Acad. Sci. U.S.A. 84:131 (1987), и DeBlock et al., EMBO J. 3:1681 (1984).

Совсем недавно, гены, кодирующие флуоресцентные белки (например, GFP, EGFP, EBFP, ECFP и YFP), были использованы в качестве маркеров при экспрессии генов в прокариотических и эукариотических клетках. См. Chalfie et al., Science 263:802 (1994). Таким образом, флуоресцентные белки и мутанты флуоресцентных белков могут быть использованы как маркеры при скрининге в некоторых воплощениях изобретения.

Экспрессирующие векторы для поглощения посредством наночастицы: Промоторы

Гены, включенные в экспрессирующие векторы, могут запускаться нуклеотидной последовательностью, содержащей регуляторный элемент, например, промотор. Некоторые типы промоторов хорошо известны в области техники трансформации, также как и другие регуляторные элементы, которые могут быть использованы самостоятельно или в комбинации с промоторами.

Промотор представляет собой область ДНК, которая может находиться слева (в положении "апстрим") от старта транскрипции, и может быть включено узнавание и связывание РНК полимеразы и/или других белков, для того чтобы инициировать транскрипцию. "Промотор растения" может быть промотором, который способен инициировать транскрипцию в клетках растений. Примеры промоторов под контролем развития включают промоторы, которые преимущественно инициируют транскрипцию в конкретных тканях, таких как листья, корни, семена, волокна, сосуды ксилемы, трахеиды или склеренхима. Такие промоторы называются “тканепредпочтительными”. Промоторы, которые инициируют транскрипцию только в конкретных тканях, называют "тканеспецифическими". Промотор, специфический для "типа клетки", первоначально запускает экспрессию в определенных типах клеток в одном или нескольких органах, например, в клетках сосудов корней или листьев. "Индуцибельный" промотор может представлять собой промотор, который может быть под контролем окружающей среды. Примеры условий окружающей среды, которые могут влиять на транскрипцию под индуцибельными промоторами, включают, без ограничения, анаэробные условия или наличие света. Тканеспецифические, тканепредпочтительные, специфичные для типа клеток и индуцибельные промоторы образуют класс "неконститутивны