Кристаллическая форма 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-n-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида

Иллюстрации

Показать все

Изобретение относится к кристаллическому полиморфу гидрата 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида, представляющему форму B, характеризуемую наличием в порошковой рентгеновской дифрактограмме по меньшей мере рефлексов при следующих значениях угла 2θ: 17,433, 18,586, 20,207, 20,791, 21,41, 22,112, 23,182, 24,567, 27,844. Изобретение относится к композиции для защиты животного от беспозвоночного вредителя-паразита, содержащей паразитицидно эффективное количество полиморфной формы B. Также изобретение относится к способу борьбы с беспозвоночным вредителем-паразитом, включающему взаимодействие беспозвоночного вредителя-паразита или среды его обитания с биологически эффективным количеством полиморфной формы B. При этом среда обитания представляет собой растение или животное. Технический результат - термически стабильный кристаллический полиморф гидрата 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида. 3 н. и 3 з.п. ф-лы, 1 ил., 6 табл., 20 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к твердой форме 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Твердая форма химических соединений может быть аморфной (т.е. в расположении атомов отсутствует дальний порядок) или кристаллической (т.е. атомы расположены упорядоченным повторяющимся мотивом). Хотя для твердой формы многих соединений известна лишь одна кристаллическая форма, для некоторых соединений были обнаружены полиморфы. Термин «полиморф» относится к конкретной кристаллической форме (т.е. структуре кристаллической решетки) химического соединения, которое в твердом состоянии может существовать более чем в одной кристаллической форме. Полиморфы могут различаться по таким химическим и физическим (т.е. физико-химическим) свойствам, как форма кристалла, плотность, твердость, окраска, химическая устойчивость, температура плавления, гигроскопичность, скорость суспендирования и растворения, а также таким биологическим свойствам, как биодоступность.

Предсказание физико-химических свойств, таких как температура плавления, для кристаллической формы или кристаллических форм, в которых химическое вещество может существовать в твердом состоянии, остается нерешенной задачей. Более того, невозможно даже предсказать, может ли химическое вещество в твердом состоянии существовать в более чем одной кристаллической форме.

В патентной публикации PCT WO 09/002809 описаны 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамид и способы его получения, а также возможность применения данного соединения в качестве средства для борьбы с беспозвоночными вредителями. В настоящее время обнаружена новая твердая форма данного соединения.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к твердой форме 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида (соединение 1). Более конкретно настоящее изобретение относится к кристаллическому полиморфу соединения 1, представляющему форму B, характеризуемую наличием в порошковой рентгеновской дифрактограмме по меньшей мере рефлексов при значениях угла 2θ, равных 17,433; 18,586; 20,207; 20,791; 21,41; 22,112; 23,182; 24,567 и 27,844 градусов.

Настоящее изобретение также относится к композициям, содержащим твердую форму соединения 1, и способам борьбы с беспозвоночными вредителями, включающим взаимодействие беспозвоночного вредителя или среды его обитания с биологически эффективным количеством твердой формы соединения 1 или композиции, содержащей твердую форму соединения 1.

КРАТКОЕ ОПИСАНИЕ ФИГУР

На фиг.1 показаны порошковые рентгеновские дифрактограммы полиморфных и псевдополиморфных кристаллических форм соединения 1 в виде абсолютной интенсивности рефлекса в зависимости от его положения по углу 2θ.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Используемые в настоящем документе термины «содержит», «содержащий», «включает», «включающий», «имеет», «имеющий» или любые другие их варианты означают неисключающее включение. Например, композиция, способ, изделие или устройство, содержащее список элементов, не обязательно ограничено только перечисленными элементами, но может также включать и другие элементы, не указанные явно или подразумеваемые для такой композиции, процесса, способа, изделия или устройства. Кроме того, если в прямой форме не установлено иное, союз «или» относится к включающему «или», а не к исключающему «или». Например, условие «A или B» выполняется в любой из следующих ситуаций: A истинно (или присутствует) и B ложно (или не присутствует), A ложно (или не присутствует) и B истинно (или присутствует), и оба условия A и B истинны (или присутствуют).

Также употребление единственного числа при описании элемента или компонента, составляющего предмет настоящего изобретения, не ограничивает количество копий (экземпляров) элемента или компонента. Следовательно, элемент или компонент в единственном числе должен восприниматься как «один или по меньшей мере один», и употребление элемента или компонента в единственном числе также включает и множественное число, за исключением случаев, когда число очевидным образом равно единице.

Варианты осуществления настоящего изобретения включают

Вариант осуществления 1. Кристаллическая твердая форма 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида, в которой по меньшей мере 90% твердой формы представляют собой полиморфную форму B.

Вариант осуществления 2. Кристаллическая твердая форма 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида, в которой по меньшей мере 80% твердой формы представляют собой полиморфную форму B.

Вариант осуществления 3. Кристаллическая твердая форма 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида, в которой по меньшей мере 70% твердой формы представляют собой полиморфную форму B.

Вариант осуществления 4. Кристаллическая твердая форма 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамида, в которой по меньшей мере 60% твердой формы представляют собой полиморфную форму B.

Вариант осуществления 5. Композиция, содержащая соединение 1, причем соединение 1 находится по меньшей мере на 90% в полиморфной форме B, и по меньшей мере один дополнительный компонент, выбранный из группы, состоящей из поверхностно-активных веществ (ПАВ), твердых разбавителей и жидких разбавителей, причем указанная композиция необязательно дополнительно содержит по меньшей мере одно дополнительное биологически активное соединение или средство.

Вариант осуществления 6. Композиция, содержащая соединение 1, причем соединение 1 находится по меньшей мере на 80% в полиморфной форме B, и по меньшей мере один дополнительный компонент, выбранный из группы, состоящей из ПАВ, твердых разбавителей и жидких разбавителей, причем указанная композиция необязательно дополнительно содержит по меньшей мере одно дополнительное биологически активное соединение или средство.

Вариант осуществления 7. Композиция, содержащая соединение 1, причем соединение 1 находится по меньшей мере на 70% в полиморфной форме B, и по меньшей мере один дополнительный компонент, выбранный из группы, состоящей из ПАВ, твердых разбавителей и жидких разбавителей, причем указанная композиция необязательно дополнительно содержит по меньшей мере одно дополнительное биологически активное соединение или средство.

Вариант осуществления 8. Композиция, содержащая соединение 1, причем соединение 1 находится по меньшей мере на 60% в полиморфной форме B, и по меньшей мере один дополнительный компонент, выбранный из группы, состоящей из ПАВ, твердых разбавителей и жидких разбавителей, причем указанная композиция необязательно дополнительно содержит по меньшей мере одно дополнительное биологически активное соединение или средство.

Кристаллический полиморф соединения 1, представляющий форму B, а также любые варианты осуществления настоящего изобретения можно использовать для защиты животного от беспозвоночного вредителя при помощи введения соединения животному.

Следовательно, подразумевается, что настоящее изобретение включает применение кристаллического полиморфа соединения 1, представляющего форму B, или любых вариантов осуществления настоящего изобретения в качестве ветеринарного лекарственного средства, или, более конкретно, антипаразитарного ветеринарного лекарственного средства. Лекарственное средство можно приготовить в любой стандартной лекарственной форме, включая формы для перорального, топического или парентерального введения.

Также предполагается, что настоящее изобретение включает использование кристаллического полиморфа соединения 1, представляющего форму B, или любых вариантов осуществления настоящего изобретения для производства лекарственного средства для защиты животного от беспозвоночного вредителя. Лекарственное средство можно приготовить в любой стандартной лекарственной форме, включая формы для перорального, топического или парентерального введения.

Также предполагается, что настоящее изобретение включает кристаллический полиморф соединения 1, представляющий форму B, или любые варианты осуществления настоящего изобретения, упакованный и представленный для защиты животного от беспозвоночного вредителя. Соединения, составляющие предмет настоящего изобретения, можно упаковать и приготовить в виде лекарственной формы для перорального, топического или парентерального введения.

Также предполагается, что настоящее изобретение включает способ производства композиции для защиты животного от беспозвоночного вредителя-паразита, характеризуемый тем, что кристаллический полиморф соединения 1, представляющий форму B, или любые варианты осуществления настоящего изобретения смешивают с по меньшей мере одним носителем. Соединения, составляющие предмет настоящего изобретения, можно упаковать и приготовить в виде любой стандартной в данной области лекарственной форме, включая лекарственные формы для перорального, топического или парентерального введения.

Соединение 1 представляет собой 4-[5-[3-хлор-5-(трифторметил)фенил]-4,5-дигидро-5-(трифторметил)-3-изоксазолил]-N-[2-оксо-2-[(2,2,2-трифторэтил)амино]этил]-1-нафталинкарбоксамид и имеет следующую химическую структуру:

Соединение 1 может существовать в более чем одной кристаллической форме (т.е. полиморфе). Специалист в данной области определит, что полиморф соединения 1 может иметь благоприятные свойства (например, возможность применения для получения подходящих составов, улучшенные биологические характеристики) по сравнению с другим полиморфом или смесью полиморфов того же соединения 1. Различия в таких характеристиках, как химическая устойчивость, фильтруемость, растворимость, гигроскопичность, температура плавления, плотность твердого вещества и текучесть, могут оказать значительное влияние на разработку способов производства и составов, а также на качество и эффективность средств для обработки растений.

Молекулярная структура соединения 1 может существовать в форме двух различных стереоизомеров (т.е. энантиомеров). Настоящее изобретение охватывает рацемическую смесь соединения 1, содержащую равные количества двух возможных энантиомеров.

Было обнаружено, что соединение 1 в твердом состоянии может быть получено в более чем одной твердой форме. Данные твердые формы включают аморфную твердую форму, в которой в расположении молекул отсутствует дальний порядок (например, пены и стекла). Данные твердые формы также включают кристаллические формы, в которых составляющие вещество молекулы расположены упорядоченным повторяющимся мотивом, проходящим во всех трех пространственных направлениях. Термин «полиморф» относится к конкретной кристаллической форме химического соединения, которое в твердом состоянии может существовать в более чем одной кристаллической структуре (например, решетке). Кристаллические формы соединения 1, составляющего предмет настоящего изобретения, относятся к вариантам осуществления, которые включают единственный полиморф (т.е. единственную кристаллическую форму), и к вариантам осуществления, которые включают смесь полиморфов (т.е. различных кристаллических форм). Полиморфы могут различаться по таким химическим, физическим и биологическим свойствам, как форма кристалла, плотность, твердость, окраска, химическая устойчивость, температура плавления, гигроскопичность, скорость суспендирования, скорость растворения и биодоступность. Специалист в данной области определит, что полиморф соединения 1 может иметь благоприятные свойства (например, возможность применения для получения подходящих составов, улучшенные биологические характеристики) по сравнению с другим полиморфом или смесью полиморфов соединения 1. Различия в таких характеристиках, как химическая устойчивость, фильтруемость, растворимость, гигроскопичность, температура плавления, плотность твердого вещества и текучесть, могут оказать значительное влияние на разработку способов производства и составов, а также на качество и эффективность средств для обработки растений. Было осуществлено получение и выделение конкретных полиморфов соединения 1.

Большинство полиморфов соединения 1 представляют собой псевдополиморфы (различные типы кристаллов, получаемые в результате гидратации или сольватации). Сольват представляет собой кристаллическую форму, в которой присутствует стехиометрическое или нестехиометрическое количество растворителя. Гидрат представляет собой сольват, в котором вода выступает в качестве растворителя.

Для исследования профиля кристаллического тела соединения 1 в твердом состоянии использовали различные экспериментальные процедуры. Были получены твердые кристаллические формы с восемью индивидуальными порошковыми рентгеновскими дифрактограммами (XRPD), а также рентгеноаморфный материал. Порошковые рентгеновские дифрактограммы для различных твердых форм показаны на фиг.1. Большинство твердых форм представляют собой сольваты или гидраты. Твердые формы, которые определенно состоят из единственной кристаллической фазы, обозначены как «форма Х», а твердые формы, указанные как «дифрактограмма Х», могут представлять собой смесь твердых форм. Идентифицировали две полиморфные формы (форма A и форма B). Эксперименты по исследованию профиля кристаллического тела в твердом состоянии можно суммировать, как показано в схеме 1.

Схема 1

Соединение 1 может существовать в форме аморфного твердого тела. На порошковой рентгеновской дифрактограмме соединения 1 в форме аморфного твердого тела отсутствуют выраженные рефлексы, и поэтому ее легко можно отличить от дифрактограмм кристаллических форм соединения 1.

Аморфную форму соединения 1 также можно охарактеризовать при помощи циклической дифференциальной сканирующей калориметрии. Как описано в примере характеристики 2, температура стеклования аморфной формы соединения 1 составила приблизительно 72°C. Аморфная форма соединения 1 в чистой твердой форме физически неустойчива и легко кристаллизуется (показано в примере характеристики 3).

Аморфную твердую форму получали при помощи плавления полиморфной формы A с последующим быстрым охлаждением в бане из смеси ацетона и сухого льда.

Одна кристаллическая полиморфная форма соединения 1 представляет собой форму A. Данная твердая форма представляет собой десольватированный сольват. Десольватированный сольват образуется из сольватной кристаллической формы (содержащей соединение 1 и молекулы растворителя) в результате ухода молекул растворителя через каналы в кристалле в условиях нагревания при пониженном давлении, что приводит к получению десольватированной кристаллической формы с той же молекулярной упаковкой, что и в исходной сольватированной кристаллической форме. Форму A можно охарактеризовать при помощи порошковой рентгеновской дифракции (XRPD) и дифференциальной сканирующей калориметрии (ДСК).

Порошковая рентгеновская дифрактограмма полиморфной формы А соединения 1 показана на фиг.1. Соответствующие величины углов 2θ приведены в таблице 1 примера характеристики 1. Полиморфную форму A соединения 1 можно идентифицировать при помощи порошковой рентгеновской дифрактограммы, имеющей рефлексы по меньшей мере при следующих величинах угла 2θ:

16,196
19,389
20,324
21,494
22,263
22,797
23,766
25,672
27,492

Полиморфную форму A соединения 1 также можно охарактеризовать при помощи дифференциальной сканирующей калориметрии (ДСК). По результатам ДСК, температура плавления полиморфной формы A составляет приблизительно 113°C. Подробное описание эксперимента по ДСК приведено в примере характеристики 2. Полиморфная форма A является негигроскопичной и представляет собой десольватированный сольват твердой фазы с дифрактограммой G, которая представляет собой ацетонитриловый сольват формы A (показано в примерах характеристики 3 и 5).

Полиморфную форму A соединения 1 можно получить при помощи процедуры, описанной в патентной публикации PCT WO 09/025983 (например, см. пример синтеза 7). После перекристаллизации неочищенного твердого продукта из ацетонитрила обычно получают смесь твердой фазы с дифрактограммой G и формы A соединения 1. Смешанный сольватированный/десольватированный продукт перекристаллизации можно перевести в форму A при помощи вакуумной сушки (50°C, 4-24 часа).

Вторая кристаллическая полиморфная форма соединения 1 представляет собой форму B. Данная твердая форма представляет собой гидрат.

Порошковая рентгеновская дифрактограмма полиморфной формы B соединения 1 показана на фиг.1. Соответствующие величины углов 2θ приведены в таблице 2 примера характеристики 1. Полиморфную форму B соединения 1 можно идентифицировать при помощи порошковой рентгеновской дифрактограммы, имеющей рефлексы по меньшей мере при следующих величинах угла 2θ:

17,433
18,586
20,207
20,791
21,41
22,112
23,182
24,567
27,844

Полиморфную форму B соединения 1 также можно охарактеризовать при помощи дифференциальной сканирующей калориметрии (ДСК). По результатам ДСК, температура плавления полиморфной формы B составляет приблизительно 147°C. Подробное описание эксперимента по ДСК приведено в примере характеристики 2. Полиморфная форма B в чистой твердой форме физически устойчива и гидратирована (показано в примере характеристики 3). Более высокая температура плавления полиморфной формы B является благоприятной для использования в составах, приготовление которых включает измельчение активного компонента или суспензии активного компонента в жидких носителях.

Первую очищенную порцию кристаллов формы B получали медленной перекристаллизацией формы A из смеси метанол/вода, как описано в примере получения 1. Полиморфную форму B также получали при помощи суспендирования полиморфной формы A в смеси метанол/вода (1:2) при температуре 60°C в течение 3 дней с последующим охлаждением до 22°C и фильтрованием. Эффективное крупномасштабное получение формы B облегчается при помощи добавления предварительно приготовленных затравочных кристаллов формы B в раствор соединения 1 в смеси метанол/вода, что приводит к кристаллизации продукта в полиморфной форме B (см. примеры получения 2 и 3).

Относительную устойчивость полиморфных форм A и B соединения 1 охарактеризовали при помощи экспериментов по их взаимному превращению в суспензии (см. пример характеристики 4). Относительная физическая устойчивость твердых форм соединения 1 зависит от растворителя, используемого в эксперименте с суспензией. Твердая фаза с дифрактограммой G является наиболее устойчивой твердой формой в ацетонитриле. Полиморфная форма A представляет собой метастабильную твердую форму по отношению к твердой фазе с дифрактограммой G в ацетонитриле и иногда образуется из ацетонитрила в смеси с твердой фазой с дифрактограммой G. Твердую фазу с дифрактограммой G можно перевести в полиморфную форму A при помощи десольватации при вакуумной сушке. Полиморфная форма B является наиболее устойчивой твердой формой в смесях органический растворитель/вода, особенно в смеси метанол/вода.

Другая кристаллическая твердая форма соединения 1 представляет собой «твердую фазу с дифрактограммой C». Твердую фазу с дифрактограммой C охарактеризовали при помощи порошковой рентгеновской дифракции и дифференциальной сканирующей калориметрии. Порошковая рентгеновская дифрактограмма твердой фазы соединения 1 с дифрактограммой C показана на фиг.1. По результатам ДСК, твердая фаза с дифрактограммой C показала единственный эндотермический пик при температуре 101°C, сопровождавшийся потерей 9,4% массы образца. В 1H ЯМР спектре материала обнаружили сигнал этилацетата, указывающий, что твердая форма представляет собой сольват с этилацетатом. Твердую фазу с дифрактограммой C получали растворением соединения 1 в этилацетате при температуре 80°C с последующим медленным охлаждением до 22°C и фильтрованием.

Другая кристаллическая твердая форма соединения 1 представляет собой «твердую фазу с дифрактограммой D». Твердую фазу с дифрактограммой D охарактеризовали при помощи порошковой рентгеновской дифрактометрии и дифференциальной сканирующей калориметрии. Порошковая рентгеновская дифрактограмма твердой фазы соединения 1 с дифрактограммой D показана на фиг.1. По результатам ДСК, твердая фаза с дифрактограммой D показала единственный эндотермический пик при температуре 105°C, сопровождавшийся потерей 5,1% массы образца. В 1H ЯМР спектре материала обнаружили сигнал диоксана, указывающий, что данная твердая форма представляет собой сольват с диоксаном. Твердую фазу с дифрактограммой D получали путем растворения соединения 1 в диоксане с последующим быстрым выпариванием под струей газообразного азота при температуре 22°C.

Другая кристаллическая твердая форма соединения 1 представляет собой «твердую фазу с дифрактограммой E». Твердую фазу с дифрактограммой E охарактеризовали только при помощи порошковой рентгеновской дифракции (фиг.1). Твердую фазу с дифрактограммой E получали путем растворения соединения 1 в изопропиловом спирте с последующим быстрым выпариванием под струей газообразного азота при температуре 22°C.

Другая кристаллическая твердая форма соединения 1 представляет собой «твердую фазу с дифрактограммой F». Твердую фазу с дифрактограммой F охарактеризовали при помощи порошковой рентгеновской дифракции и дифференциальной сканирующей калориметрии. Порошковая рентгеновская дифрактограмма твердой фазы соединения 1 с дифрактограммой F показана на фиг.1. По результатам ДСК, твердая фаза с дифрактограммой F показала единственный эндотермический пик при температуре 87°C, сопровождавшийся потерей 10% массы образца. В 1H ЯМР спектре материала обнаружили сигнал 1-пропанола, указывающий, что твердая форма представляет собой сольват с 1-пропанолом. Твердую фазу с дифрактограммой F получали суспендированием соединения 1 в смеси 1-пропанол/вода (9:1) при температуре 40°C в течение 4 дней с последующим охлаждением до 22°C и фильтрованием.

Другая кристаллическая твердая форма соединения 1 представляет собой «твердую фазу с дифрактограммой G». Твердую фазу с дифрактограммой G охарактеризовали при помощи порошковой рентгеновской дифракции и дифференциальной сканирующей калориметрии. Порошковая рентгеновская дифрактограмма твердой фазы соединения 1 с дифрактограммой G показана на фиг.1. По результатам ДСК, твердая фаза с дифрактограммой G показала единственный эндотермический пик при температуре 73°C, сопровождавшийся потерей 7% массы образца. В 1H ЯМР спектре материала обнаружили сигнал ацетонитрила, указывающий, что твердая форма представляет собой сольват с ацетонитрилом. Твердую фазу с дифрактограммой G получали суспендированием соединения 1 в смеси ацетонитрил/вода (1:1) при температуре 40°C с последующим медленным охлаждением до 22°C и фильтрованием. Твердую фазу с дифрактограммой G воспроизводимо получали из ацетонитрила в различных условиях перекристаллизации.

Другая кристаллическая твердая форма соединения 1 представляет собой «твердую фазу с дифрактограммой H». Твердую фазу с дифрактограммой H охарактеризовали при помощи порошковой рентгеновской дифракции и дифференциальной сканирующей калориметрии. Порошковая рентгеновская дифрактограмма твердой фазы соединения 1 с дифрактограммой H показана на фиг.1. По результатам ДСК, твердая фаза с дифрактограммой H показала единственный эндотермический пик при температуре 97°C, сопровождавшийся потерей 3,5% массы образца. В 1H ЯМР спектре материала обнаружили сигнал изопропанола, указывающий, что твердая форма представляет собой сольват с изопропанолом. Твердую фазу с дифрактограммой H получили суспендированием соединения 1 в смеси изопропанол/вода (1:1) при температуре 40°C в течение 4 дней с последующим охлаждением до 22°C и фильтрованием.

ПРИМЕР ХАРАКТЕРИСТИКИ 1

Эксперименты по порошковой рентгеновской дифракции

Для определения кристаллизированных фаз соединения 1 использовали порошковую рентгеновскую дифрактометрию. Анализ методом порошковой рентгеновской дифракции (XRPD) проводили при помощи дифрактометра Inel XRG-3000, оснащенного изогнутым позиционно-чувствительным детектором (CPS) с диапазоном по углу 2θ 120°. Использовали прорези размером 5 мм на 160 мкм.

Анализ методом XRPD также проводили при помощи дифрактометра Shimadzu XRD-6000 с излучением Cu (Kα).

В качестве источника излучения использовали трубку Cu (Kα), 40 кВ, 30 мА. Образцы представляли собой упакованные порошки во вращающемся капилляре. Данные собирали с эквивалентным шагом по углам 2θ, равным 0,03 градуса, полное время исследования составляло 300 секунд.

Таблица 1
Значения 2θ для рефлексов в дифрактограмме для полиморфной формы A соединения 1
7,937 18,804 24,97 32,824 40,012 49,287
11,233 19,389 25,672 33,443 41,447 50,022
13,021 20,324 27,492 34,197 43,486 75,486
13,707 21,494 28,262 34,963 44,001
14,574 22,263 29,586 36,598 44,675
16,196 22,797 30,335 37,908 45,726
16,797 23,766 30,969 38,338 47,079
17,203 24,218 31,955 39,073 48,453
Таблица 2
Значения 2θ для рефлексов в дифрактограмме для полиморфной формы B соединения 1
9,393 17,433 23,182 28,828 39,273 48,635
11,117 18,586 24,567 29,967 40,593 50,172
12,452 20,207 25,103 32,39 42,034 59,533
14,023 20,791 25,853 34,83 43,237
14,744 21,41 26,942 36,301 44,906
15,361 22,112 27,844 37,286 47,078

ПРИМЕР ХАРАКТЕРИСТИКИ 2

Эксперименты по дифференциальной сканирующей калориметрии

Эксперименты по дифференциальной сканирующей калориметрии проводили на дифференциальном сканирующем калориметре Thermal Analysis Q2000. Образец помещали в алюминиевый поддон для ДСК и точно фиксировали вес. Лунку с образцом приводили в равновесие при температуре 25°C или -30°C и нагревали при продувке азотом со скоростью 10°C/мин до конечной температуры 250°C. В качестве калибровочного стандарта использовали металлический индий.

Эксперимент по циклической ДСК также проводили при помощи дифференциального сканирующего калориметра Thermal Analysis Q2000. Образец помещали в алюминиевый поддон для ДСК и точно фиксировали вес. Лунку с образцом приводили в равновесие при температуре 25°C и нагревали при продувке азотом со скоростью 10°C/мин до конечной температуры 140°C, затем быстро охлаждали до температуры -40°C и снова нагревали до конечной температуры 250°C. В качестве калибровочного стандарта использовали металлический индий. Температура стеклования (Tg) аморфного соединения 1 составила 72°C на полувысоте.

На кривой ДСК для полиморфной формы A соединения 1 присутствовал острый эндотермический пик при температуре 113°C.

На кривой ДСК для полиморфной формы B соединения 1 присутствовал острый эндотермический пик при температуре 147°C.

ПРИМЕР ХАРАКТЕРИСТИКИ 3

Эксперименты по определению устойчивости твердых форм соединения 1

Охарактеризовали физическую устойчивость аморфного материала. Аморфное соединение 1 в течение 2 дней выдерживали под парами ацетонитрила при температуре 25°C, что привело к появлению кристаллов неправильной формы, которые по результатам XRPD идентифицировали как материал с дифрактограммой G. Аморфное соединение 1 в течение 5 дней также суспендировали в смеси метанол/вода (1:1) при температуре 60°C, что привело к появлению кристаллов неправильной формы, которые по результатам XRPD идентифицировали как форму B. Это указывает на то, что аморфное твердое вещество было физически неустойчиво и легко кристаллизировалось.

Охарактеризовали физическую устойчивость полиморфной формы A. Образцы формы A после выдержки при относительной влажности в диапазоне от 5 до 95% при температуре 25°C (5 часов) лишь незначительно изменили свой вес, что указывает на негигроскопичность материала.

Охарактеризовали физическую устойчивость полиморфной формы B. Образцы формы B после выдержки при относительной влажности 75% (40°C) и относительной влажности 60% (25°C) в течение 1 месяца также не изменились по результатам XRPD, что указывает на устойчивость формы B в условиях проведенного теста.

ПРИМЕР ХАРАКТЕРИСТИКИ 4

Эксперименты по определению относительной устойчивости для полиморфной формы A и полиморфной формы B

Проводили эксперименты по взаимному превращению в суспензии в различных растворителях при разных температурах. Во флаконы с растворителями добавляли достаточные количества соединения 1, чтобы остался избыток нерастворившегося твердого вещества. Смеси перемешивали в запечатанных флаконах при выбранной температуре, по истечении выбранного времени твердый остаток отделяли фильтрованием и анализировали при помощи XRPD. После суспендирования соединения 1 в ацетонитриле в течение 3 дней при температуре 83°C или в течение 8 дней при температуре 0°C получили твердую фазу с дифрактограммой G. После суспендирования соединения 1 в смеси ацетонитрил/вода (9:1) в течение 3 дней при температуре 83°C получили полиморфную форму B. После суспендирования соединения 1 в смеси ацетонитрил/вода (9:1) в течение 8 дней при температуре 0°C получили твердую фазу с дифрактограммой G.

ПРИМЕР ХАРАКТЕРИСТИКИ 5

Эксперимент по вакуумной сушке

Превращение твердой фазы с дифрактограммой G в форму A осуществляли при помощи вакуумной сушки (4,80-9,07 Па (36-68 мТорр)) твердой фазы с дифрактограммой G при температуре 50°C в течение 4 часов. Проведение вакуумной сушки (6,80 Па (51 мТорр)) при температуре 70°C в течение 5 часов привело к превращению твердой фазы с дифрактограммой G в твердое стекло.

Соединение 1 можно получить в соответствии с процедурами, описанными в патентных публикациях PCT WO 09/025983 и WO 09/126668.

ПРИМЕР ПОЛУЧЕНИЯ 1

Первичное получение полиморфной формы B соединения 1

Неочищенное соединение 1 (10,2 г) добавляли в кипящий метанол (60 мл). Медленно добавляли воду (12 мл), а затем небольшое количество метанола. Убирали нагрев, реакционной смеси давали быстро остыть, а затем добавляли затравочные кристаллы формы A соединения 1. Реакционную смесь охлаждали до комнатной температуры (снова добавляли затравочные кристаллы до тех пор, пока они не переставали растворяться), а затем дополнительно охлаждали до температуры приблизительно 0°C в течение 24 часов. Реакционную смесь фильтровали для получения 6,0 г твердого вещества белого цвета, плавящегося при температуре 100-105°C (ЯМР указывает на контаминацию растворителя).

Полученный выше фильтрат выдерживали в течение приблизительно 30 дней при комнатной температуре, что привело к образованию второй порции кристаллов. Кристаллы выделяли фильтрованием, промывали водой, быстро подсушивали на воздухе, а затем досушивали при пониженном давлении при температуре 50°C для получения 2,9 г твердого вещества белого цвета, плавящегося при температуре 144-150°C.

ПРИМЕР ПОЛУЧЕНИЯ 2

Получение полиморфной формы B соединения 1 из полиморфной формы A

Форму A соединения 1 (15,3 г) добавляли в смесь метанола (120 г) и воды (50,4 г). Реакционную смесь нагревали до температуры 40°C и через 10 минут добавляли затравочные кристаллы соединения 1 (форма B). Реакционную смесь перемешивали при температуре 35°C в течение 72 часов, затем охлаждали до комнатной температуры и фильтровали. Выделенное твердое вещество высушивали в вакуумной печи при температуре 50-60°C для получения 13,4 г твердого вещества белого цвета, плавящегося при температуре 147-149°C.

ПРИМЕР ПОЛУЧЕНИЯ 3

Получение полиморфной формы B соединения 1

при помощи затравочных кристаллов

Соединение 1 (95 г) добавляли в метанол (408 г). Смесь механически перемешивали и нагревали до температуры 30°C для полного растворения твердого вещества. Затем по каплям добавляли воду (129 г) до помутнения раствора и добавляли затравочные кристаллы формы B. Смеси давали остыть до температуры 25°C, а затем перемешивали ее в течение 3,5 часа. Началось выпадение густого твердого осадка белого цвета, после чего смесь нагревали до температуры 45°C в течение 1 часа, а затем охлаждали до температуры 25°C в течение 45 минут. Смесь снова нагревали до температуры 45°C в течение 50 минут, а затем охлаждали до температуры 25°C в течение 40 минут и фильтровали. Данное циклическое изменение температуры позволяет кристаллам вырасти до большего размера, чтобы сделать возможным фильтрование. Кристаллы промывали холодной смесью метанол/вода (95 мл, 3:1) и высушивали в вакуумной печи при температуре 50°C в течение 16 часов для получения 82 г твердого вещества белого цвета, плавящегося при температуре 145-148°C.

Состав/применение в агрономических целях

Соединение, составляющее предмет настоящего изобретения, будет по существу применяться в качестве активного компонента в композиции, т.е. составе, для борьбы с беспозвоночными вредителями вместе с по меньшей мере одним дополнительным компонентом, выбранным из группы, состоящей из ПАВ, твердых разбавителей и жидких разбавителей, который выполняет функцию носителя. Компоненты состава или композиции выбирают так, чтобы они были совместимы с физическими свойствами активного компонента, способом применения и факторами окружающей среды, такими как тип почвы, влажность и температура.

Подходящие составы включают как жидкие, так и твердые композиции. Жидкие композиции включают растворы (включая эмульгируемые концентраты), суспензии, эмульсии (включая микроэмульсии и/или суспоэмульсии) и т.п., которые необязательно могут загустевать до консистенции геля. Общие типы водных жидких композиций представляют собой растворимый концентрат, концентрат суспензии, капсульную суспензию, концентрированную эмульсию, микроэмульсию и суспоэмульсию. Общие типы неводных жидких композиций представляют собой эмульгируемый концентрат, микроэмульгируемый концентрат, диспергируемый концентрат и масляную дисперсию.

Общие типы твердых композиций представляют собой мелкие порошки, порошки, гранулы, пеллеты, мелкокусковые композиции, пастилки, таблетки, наполненные пленки (включая дражирование семян) и т.п., которые могут быть диспергируемыми в воде («смачиваемыми») или растворимыми в воде. Для обработки семян особенно полезны пленки и покрытия, образованные из пленкообразующих растворов или текучих суспензий. Активный компонент можно (микро)капсулировать и дополнительно переводить в форму суспензии или твердого состава; в альтернативном варианте осуществления весь включающий активный компонент состав можно капсулировать (или «покрыть оболочкой»). Капсулированием можно регулировать или задерживать высвобождение активного компонента. Эмульгируемая гранула объединяют в себе как преимущества состава типа эмульгируемого концентрата, так и сухого гранулированного состава. Высококонцентрированные композиции преимущественно применяют в качестве промежуточных продуктов для получения дополнительных составов.

Распыляемые составы перед распылением, как правило, разводя