Способ выравнивания здания, сооружения
Иллюстрации
Показать всеИзобретение относится к строительству и может быть применено для подъема и выравнивания многоэтажных зданий и различных сооружений, получивших сверхнормативные крены, в частности из-за осадки грунтов. Способ выравнивания здания, сооружения включает их исследование, подготовку здания, в том числе изготовление и монтирование распределительных поясов, домкратных ниш и установку домкратной системы, состоящей из плоских домкратов и насосной станции, а также внутренней системы контроля, состоящей из резисторных датчиков малых перемещений, формирование внешней системы контроля. После монтирования распределительных поясов производят бурение скважин вдоль несущих стен либо по площади фундаментной плиты, в которые забивают металлические инъекторы. К инъекторам, установленным со стороны, противоположной крену здания, сооружения, крепят высокочастотные вибраторы. После подъема здания, сооружения домкратной системой через установленные инъекторы производят увлажнение просадочного грунта до влажности 0,75-0,85, близкой к проявлению грунтом просадочных свойств. Затем на увлажненный грунт передают высокочастотные колебания, далее путем включения домкратной системы производят корректировку положения здания. Технический результат состоит в повышении эксплуатационной надежности здания, снижении материалоемкости и трудоемкости при выравнивании сооружения и его фундамента, повышении несущей способности грунтов при подъеме и выравнивании домкратами зданий и сооружений на естественных основаниях. 11 з.п. ф-лы, 9 ил.
Реферат
Изобретение относится к строительству и может быть применено для подъема и выравнивания многоэтажных зданий и различных сооружений, получивших сверхнормативные крены, в частности из-за осадки грунтов.
Известны различные способы подъема и выравнивания зданий и сооружений. Например, известен способ и устройство для непрерывного подъема и выравнивания зданий, по патенту РФ №2090703 на изобретение (МПК E02D 35/00). Данный способ включает в себя: исследование здания, на основе результатов которых разрабатывают проект, далее выполняют подготовку здания, в том числе изготавливают и монтируют силовые пояса, изготавливают домкратные ниши и устанавливают домкратную систему, состоящую из плоских домкратов и насосной станции, также внутреннюю систему контроля, состоящую из датчиков малых перемещений, формируют внешнюю систему контроля, затем выполняют отрыв здания от фундаментов и далее осуществляют его выравнивание путем задания равномерной скорости подъема каждой домкратной ниши и управления величиной подъема фактором времени работы каждого домкрата. Но данный аналог имеет ряд недостатков. Так, процесс подъема здания осуществляется пошагово, каждый цикл подъема разбивается на подциклы, в каждом из которых поступают таким образом, что после включения гидравлической системы контролируют перемещения всех домкратных ниш. После подъема на заданную величину всех домкратных ниш, домкраты, расположенные вдоль одной из основных осей здания (например, Y), выключают, далее через заданный интервал времени отключают домкраты, находящиеся на ближайшей параллельной оси (Y1), далее, через следующий заданный интервал времени, отключают домкраты, находящиеся на следующей параллельной оси (Y2), и так далее до момента отключения домкратов, находящихся на второй коллинеарной основной оси здания. Такая методика обеспечивает пошаговое выравнивание здания при одинаковой на всех домкратах скорости подъема и управление величинами подъема фактором времени. При этом на каждой оси, вдоль которой останавливаются домкраты, происходит деформирование здания, так как данная ось является осью вращения. В соответствии с этим выравниваемые здания претерпевают дополнительные деформации и, как следствие, дополнительные разрушения.
Известен способ выравнивания основания сооружения методом регулируемого замачивания (СНиП 2.01.09-91 Приложение 2. «Особенности проектирования зданий и сооружений с учетом их выравнивания в период эксплуатации»), сущность которого заключается в бурении скважин в сжимаемой толще грунта со стороны, противоположной крену, и нагнетанию в них воды. При этом просадочные грунты увлажняются и сжимаются, что приводит к осадке здания в направляемую сторону. Положительной стороной известного способа является то, что здание выравнивается вместе с фундаментом. Недостатком этого способа является его практическая неуправляемость. Можно либо не довести здание до необходимого положения, либо оно может приобрести крен на другой угол.
Наиболее близким по совокупности существующих признаков аналогом к заявленному изобретению (прототипом) является способ выравнивания зданий, осуществляемый регулируемым фундаментом с переменной жесткостью опорной части, по патенту РФ №99790 на полезную модель (МПК E02D 27/00). Данная полезная модель включает в себя: фундаментную ленту, цокольно-подвальную стену, распределительные пояса, домкратные проемы в цокольно-подвальных стенах, домкратные узлы, систему для подъема и выравнивания, при этом домкратные проемы устраиваются на различной высоте от подошвы фундамента, дополнительно образуя ломаную линию отрыва здания, разделяющую поднимаемую часть от опорной фундаментной части таким образом, что опорная фундаментная часть имеет различную жесткость, при подъеме и выравнивании здания усилия от домкратных узлов передаются на опорную фундаментную часть, происходит перераспределение усилий и обжатие грунтового основания за счет гибкости опорной фундаментной части. Недостаток данного фундамента - техническая сложность обустройства распределительных поясов и домкратных проемов в разных уровнях. А также невозможность выровнять сам фундамент, что может привести к крену здания в противоположную сторону после выравнивания, поскольку грунт со стороны, противоположной крену, менее спрессован, чем со стороны крена. Кроме того, недостатком данного фундамента является ломаная линия отрыва зданий, разделяющая поднимаемую часть и опорную фундаментную часть. При подъеме и выравнивании зданий, усилия от домкратных узлов передаются на опорную фундаментную часть. Происходит перераспределение усилий и обжатие грунтового основания за счет гибкости опорной фундаментной части. Все это ведет к дополнительной деформациям задний и дополнительным разрушениям.
Задача, которую поставил перед собой разработчик нового способа выравнивания здания, сооружения, состояла в создании такого способа, который бы позволил повысить дальнейшую эксплуатационную надежность здания, сооружения, сократить стоимость и время выравнивания здания, сооружения и его фундамента. А также повысить несущую способность грунтов при подъеме и выравнивании домкратами зданий и сооружений на естественных основаниях по сравнению с прототипом и другими аналогами.
Техническим результатом заявляемого способа является повышение несущей способности грунтов за счет их увлажнения и применения высокочастотных колебаний и, как следствие, повышение эксплуатационной надежности здания, сооружения, а также сокращение времени и стоимости выравнивания здания, сооружения.
Сущность изобретения состоит в том, что способ выравнивания зданий, сооружений включает их исследование, подготовку здания, в том числе изготовление и монтирование распределительных поясов, домкратных ниш и установку домкратной системы, состоящей из плоских домкратов и насосной станции, а также внутренней системы контроля, состоящей из резисторных датчиков малых перемещений, формирование внешней системы контроля, после монтирования распределительных поясов производят бурение скважин вдоль несущих стен, либо по площади фундаментной плиты, в которые забивают металлические инъекторы, к инъекторам, установленным со стороны, противоположной крену здания, сооружения, крепят высокочастотные вибраторы, после подъема здания, сооружения домкратной системой через установленные инъекторы производят увлажнение просадочного грунта до влажности 0,75-0,85, близкой к проявлению грунтом просадочных свойств, затем на увлажненный грунт передают высокочастотные колебания, далее путем включения домкратной системы производят корректировку положения здания.
Также сущность заключается в том, что на увлажненный грунт передают высокочастотные колебания, частотой 1500-3000 колебаний/мин с вынуждающей силой 6,1-12,3 кН. Кроме того, производят бурение скважин диаметром от 32 мм до 48 мм. Также применяют инъекторы, представляющие собой металлическую трубу с внутренним диаметром от 32 мм до 50 мм и толщиной стенки 3 мм. Применяют инъекторы, выполненные с заглушенным и заостренным наконечником и перфорацией на глубину просадочной толщи. Распределительный пояс изготавливают из двух швеллеров, монтируемых по обе стороны несущих стен, связанных между собой шпильками, либо из монолитного железобетона. Параметры распределительного пояса рассчитывают в зависимости от веса здания и расстояниями между домкратными узлами. Внешнюю систему контроля формируют из светоотражающих марок, установленных на фасадах здания, геодезических пунктов, над которыми центрируют координатно-определяющие средства измерений. После корректировки положения здания, сооружения через установленные инъекторы производят закачку цементного раствора, предотвращающую какую-либо дальнейшую просадку здания, сооружения. После цементации грунта образовавшийся зазор между фундаментом и зданием выбирают металлическими пластинами с последующей расклинкой стальными клиньями. В образовавшийся зазор металлические пластины устанавливают одна на одну, а последние две пластины имеют клиновидную форму, их забивают с двух сторон стены здания навстречу друг другу до полного исчезновения зазора между ними. Вместе с тем, вдоль линии отрыва здания между домкратными проемами монтируют армокаркас, монтируют опалубку и замоноличивают бетонным раствором.
Изобретение поясняется чертежами, на которых:
на фиг.1 изображено здание, получившее крен, с установленными на нем инъекторами, распределительным поясом, плоскими домкратами, а также вибраторами, расположенными на инъекторах, установленных со стороны, противоположной крену здания;
на фиг.2 изображены плоские домкраты в сжатом состоянии;
на фиг.3 изображены плоские домкраты в расширенном состоянии;
на фиг.4 изображен распределительный пояс в разрезе стены;
на фиг.5 изображены установленная арматура и замоноличенный бетоном разрыв между поднимаемым зданием и фундаментом;
на фиг.6 показаны металлические пластины и стальные клинья, забиваемые перед извлечением плоских домкратов;
на фиг.7 изображен процесс выравнивания здания с фундаментной плиты;
на фиг.8 изображен процесс устранения образовавшегося зазора между фундаментом и зданием после окончательного устранения крена здания;
на фиг.9 изображена система внешнего наблюдения за изменением положения здания.
Заявляемый способ выравнивания зданий, сооружений состоит в следующем.
Вначале по всем несущим стенам 1 монтируют распределительный пояс 2. Распределительный пояс 2 представляет собой балку, воспринимающую нагрузку от здания 3 между расположенными домкратными пакетами 4. Распределительный пояс 2 изготавливают из двух швеллеров 5. Сечение швеллеров 5 подбирают из расчета в зависимости от веса здания 3 и расстояния между домкратными пакетами 4. Швеллеры 5 монтируют по обе стороны несущих стен 1 здания 3, связывают между собой шпильками 6. Распределительный пояс 2 располагают по несущим стенам 1 для перевода на него веса здания 3. Под распределительным поясом 2 выполняют домкратные проемы 7 для монтажа плоских домкратов 8. Плоские домкраты 8 устанавливают в сжатом состоянии. Затем монтируют внутреннюю систему контроля, состоящую из датчиков перемещений 9. Датчики перемещений 9 располагают возле каждого домкратного проема 7. Датчик перемещений 9 преобразует прямолинейное перемещение здания 3, с которым он связан механически, в электрический сигнал. Электрический сигнал позволяет оператору видеть в режиме реального времени перемещение здания 3 относительно фундамента 10. Далее формируют внешнюю систему контроля, которая представляет собой геодезическое наблюдение за положением здания 3 и фундамента 10. Геодезическое наблюдение за положением здания 3 и фундамента 10 позволяет оператору отслеживать в режиме реального времени положение здания 3 и фундамента 10 относительно горизонта. Внешняя система контроля состоит, например, из светоотражающих марок 11 и геодезических пунктов 12. Светоотражающие марки 11 устанавливают на фасадах 13 здания 3. Над геодезическими пунктами 12 центрируют координатно-определяющие средства измерений, например лазерные электронные тахеометры 14. Затем в толще просадочного грунта 15 вдоль несущих стен 1 здания 3 либо по площади фундаментной плиты 16 бурят скважины 17. Скважины 17 бурят с шагом 1 м на глубину просадочного грунта 15. Глубину просадочного грунта 15 определяют по результатам геологических изысканий. Скважины 17 бурят диаметром от 32 мм до 48 мм. Далее забивают металлические инъекторы 18 диаметром от 32 мм до 50 мм. Инъекторы 18 представляют собой металлическую трубу с толщиной стенки 2-3 мм. Внутренний диаметр инъектора 18 составляет от 32 мм до 50 мм. Внутренний диаметр инъектора 18 экспериментально установлен по соотношению: удобства погружения, достаточной пропускной способности при нагнетании раствора. Инъекторы 18 выполняют с заглушенным и заостренным наконечником 19 и перфорацией 20 на глубину просадочного грунта 15. Перфорация 20 представляет собой просверленные или прожженные отверстия. Далее со стороны здания 3, противоположной крену, к установленным инъекторам 18 крепят высокочастотные вибраторы 21. Для выравнивания зданий, сооружений рассматриваемым способом используют вибратор площадочный ИВ-106 с мощностью 1,07 кВт, вес вибратора 50 кг. Вибраторы 21 крепят к установленным инъекторам 18, находящимся со стороны, противоположной крену здания 3. Высокочастотные колебания создаются благодаря трехфазному электродвигателю с короткозамкнутым ротором, оснащенным парными дисбалансами. Работает устройство от источника питания на 380 V. Количество вибраторов 21 определяют исходя из площади здания 3, находящейся на стороне, противоположной крену здания 3. Далее в плоские домкраты 8 подают рабочую жидкость 22, например гидравлическое масло. Подачу рабочей жидкости 22 осуществляют путем включения гидравлического насоса 23. Для подачи и нагнетания рабочей жидкости 22 используют гидравлический насос 23 типа НШ-10, массой 3 кг, с рабочим объемом 10 см3, с номинальным давлением на выходе 16 МПа, частотой вращения вала 3000 об/мин, объемной подачей 21 л/мин. Параметры гидравлического насоса 23 подбирают в зависимости от количества одновременно включаемых домкратов 8 и требуемой скорости подъема здания 3. При работающем гидравлическом насосе 23 напорный клапан 24 открыт, а клапан на сливной магистрали 25 закрыт. Управляющие команды подаются с пульта управления 26. Плоские домкраты 8 под действием давления рабочей жидкости 22 расширяются, и происходит отрыв здания 3 от фундамента 10. Затем в установленные инъекторы 18 начинают подачу воды.
При этом производят увлажнение просадочного грунта 15 в основании 27 здания 3. Увлажнение проводят до влажности 0,75-0,85, близкой к проявлению грунтом 15 просадочных свойств. Далее включают высокочастотные вибраторы 21. При этом частота колебаний составляет 1500-3000 колебаний/мин, с вынуждающей силой 6,1-12,3 кН. Высокочастотные вибраторы 21, установленные на инъекторах 18, передают высокочастотные колебания на увлажненный грунт 28. В результате проявляются тиксотропные свойства увлажненного грунта 28, следовательно, происходит его спрессовывание. Под тиксотропностью в данном случае понимается способность субстанции уменьшать вязкость (разжижаться) от механического воздействия и увеличивать вязкость (сгущаться) в состоянии покоя. Под воздействием тиксотропности и массы здания 3 производят поворот фундамента 10 и здания 3 в сторону, противоположную крену. При помощи светоотражающих марок 11 и геодезических пунктов 12 ведется непрерывный контроль за осадками здания 3. В случае если положение фундамента 10 приближается к заданному уровню, или движение фундамента 10 остановилось, или появилась тенденция к превышению расчетных значений, то высокочастотные вибраторы 21 отключают. Отключение высокочастотных вибраторов 21 приводит к исчезновению тиксотропных свойств увлажненного грунта 28 и прекращению подвижек основания 27 здания 3. Затем выполняют корректировку положения здания 3 при помощи плоских домкратов 8, собранных в домкратные пакеты 4. Далее через установленные инъекторы 18 производят закачку цементного раствора (выполняют цементацию грунтов). Цементацией грунтов предотвращают какую-либо дальнейшую просадку увлажненных грунтов 28 и, как следствие, изменение геометрического положения здания 3. Затем выполняют окончательную корректировку положения здания 3 при помощи плоских домкратов 8, собранных в домкратные пакеты 4. После завершения устранения крена здания 3 образовавшийся зазор между фундаментом 10 и зданием 3 выбирают металлическими пластинами 29. Затем металлические пластины 29 расклинивают клиновидными металлическими пластинами 30. В образовавшийся зазор между фундаментом 19 и зданием 3 устанавливают одна на одну металлические пластины 29. Последние две металлические пластины 30 имеют клиновидную форму. Клиновидные металлические пластины 30 забивают с двух сторон стены 1 здания 3 навстречу друг другу до полного исчезновения зазора между ними. Затем вдоль линии отрыва 31 здания 3 и между домкратными проемами 7 монтируют армокаркас 32. Армокаркас 32 представляет собой объединение конструкции, составленной из стержней одного направления противоположных зон армирования железобетонного элемента, соединяемых хомутами, косыми стержнями или поперечными монтажными стержнями. Далее монтируют опалубку 33 и замоноличивают бетонным раствором 34. Затем извлекают плоские домкраты 8 и замоноличивают домкратные проемы 7.
Применение нового способа выравнивания здания, сооружения позволит в строительстве значительно повысить дальнейшую эксплуатационную надежность здания, сооружения, сократить стоимость и время выравнивания здания, сооружения и его фундамента. А также повысить несущую способность грунтов при подъеме и выравнивании домкратами зданий и сооружений на естественных основаниях по сравнению с прототипом и другими аналогами.
1. Способ выравнивания здания, сооружения, включающий их исследование, подготовку здания, в том числе изготовление и монтирование распределительных поясов, домкратных ниш и установку домкратной системы, состоящей из плоских домкратов и насосной станции, а также внутренней системы контроля, состоящей из резисторных датчиков малых перемещений, формирование внешней системы контроля, отличающийся тем, что после монтирования распределительных поясов производят бурение скважин вдоль несущих стен либо по площади фундаментной плиты, в которые забивают металлические инъекторы, к инъекторам, установленным со стороны, противоположной крену здания, сооружения, крепят высокочастотные вибраторы, после подъема здания, сооружения домкратной системой через установленные инъекторы производят увлажнение просадочного грунта до влажности 0,75-0,85, близкой к проявлению грунтом просадочных свойств, затем на увлажненный грунт передают высокочастотные колебания, далее путем включения домкратной системы производят корректировку положения здания.
2. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что на увлажненный грунт передают высокочастотные колебания частотой 1500-3000 колебаний/мин с вынуждающей силой 6,1-12,3 кН.
3. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что производят бурение скважин диаметром от 32 мм до 48 мм.
4. Способ выравнивания зданий, сооружения по п. 1, отличающийся тем, что применяют инъекторы, представляющие собой металлическую трубу с внутренним диаметром от 32 мм до 50 мм и толщиной стенки 3 мм.
5. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что применяют инъекторы, выполненные с заглушенным и заостренным наконечником и перфорацией на глубину просадочной толщи.
6. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что распределительный пояс изготавливают из двух швеллеров, монтируемых по обе стороны несущих стен, связанных между собой шпильками.
7. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что параметры распределительного пояса рассчитывают в зависимости от веса здания и расстояниями между домкратными пакетами.
8. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что внешнюю систему контроля формируют из светоотражающих марок, установленных на фасадах здания, геодезических пунктов, над которыми центрируют координатно-определяющие средства измерений.
9. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что после корректировки положения здания, сооружения через установленные инъекторы производят закачку цементного раствора, предотвращающую какую-либо дальнейшую просадку здания, сооружения.
10. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что после цементации грунта образовавшийся зазор между фундаментом и зданием выбирают металлическими пластинами с последующей расклинкой стальными клиньями.
11. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что в образовавшийся зазор металлические пластины устанавливают одна на одну, а последние две пластины выполняют клиновидной формы, забивая их с двух сторон стены здания навстречу друг другу до полного исчезновения зазора между ними.
12. Способ выравнивания здания, сооружения по п. 1, отличающийся тем, что вдоль линии отрыва здания, сооружения между домкратными проемами монтируют армокаркас, монтируя опалубку и замоноличивая его бетонным раствором.