Нетканое полотно

Иллюстрации

Показать все

Нетканое полотно (1) согласно настоящему изобретению представляет собой гидрофильное нетканое полотно, в котором присутствует волокнистая конструкция (11), где длинные волокна (2) скреплены с помощью термосклеивающего устройства (3). Нетканое полотно (1) содержит волокна (20), полученные путем разрыва некоторых длинных волокон (2), одни концевые части (20a) которых скреплены с помощью термосклеивающего устройства (3) и другие концевые части которых представляют собой свободные концевые части (20b), расположенные отдельно и выступающие из волокнистой конструкции (11). Степень гидрофильности волокон (20), имеющих свободные концевые части (20b), является ниже, чем степень гидрофильности волокон, составляющих волокнистую конструкцию (11). 4 н. и 9 з.п. ф-лы, 14 ил., 1 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение предлагает нетканое полотно, включающее длинные волокна.

УРОВЕНЬ ТЕХНИКИ

Для абсорбирующего изделия, такого как, например, подгузник или пеленка одноразового использования, часто используется фильерное нетканое полотно или имеющее низкую поверхностную плотность нетканое полотно (изготовленное пневматическим способом нетканое полотно или горячекатаное нетканое полотно) по той причине, что оно имеет высокую прочность на разрыв и превосходную пригодность к обработке, а также является экономичным. Однако у фильерного нетканого полотна или подобного волокна полностью отсутствует ощущение округлости вследствие способа его изготовления, и улучшение его текстуры оказывается затруднительным.

Заявителем настоящего изобретения ранее было предложено нетканое полотно, содержащее волокна, полученные путем разрыва некоторых длинных волокон, причем только одним концом эти волокна скрепляются с помощью термосклеивающего устройства, а свободные концевые части волокон с другого конца являются толстыми (см. патентный документ 1). При использовании нетканого полотна, описанного в патентном документе 1, несмотря на то, что является высокой прочность на разрыв, в полной мере присутствует ощущение округлости, улучшается амортизирующее свойство, а также улучшается текстура.

В качестве другого изделия, отличающегося от представленного выше, описано, например, в патентном документе 2, абсорбирующее изделие, содержащее проницаемый для жидкостей верхний лист, на обратную сторону которого нанесено поверхностно-активное вещество, которое придает более высокую степень гидрофильности, чем на стороне поверхности верхнего листа, без изменения плотности волокон, составляющих проницаемый для жидкостей верхний лист.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

ПАТЕНТНАЯ ЛИТЕРАТУРА

Патентный документ 1: японская патентная заявка JP2012-92475 A

Патентный документ 2: японская патентная заявка JP2005-87659 A

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

ТЕХНИЧЕСКАЯ ПРОБЛЕМА

Однако в патентном документе 1 отсутствует какое-либо описание в отношении того аспекта, что, например, нетканое полотно, описанное в патентном документе 1 используется в верхнем листе абсорбирующего изделия, такого как подгузник или пеленка одноразового использования, быстро перемещающий текучую среду организма, которую абсорбирует верхний лист, на сторону абсорбирующего элемента, и аспекта, что текучая среда организма, которая абсорбируется в абсорбирующем элементе, с трудом возвращается через верхний лист. В связи с этим, улучшение свойства пропускания жидкости в отношении быстрого перемещения абсорбированной текучей среда организма на сторону абсорбирующего элемента и затруднительного обратного течения жидкости, таким образом, что текучая среда организма, которая оказывается абсорбированной, находятся в компромиссной взаимосвязи, и поэтому одновременное обеспечение этих свойств становится затруднительным. Таким образом, существует дополнительная потребность сосуществования одновременно желательного улучшения свойства пропускания жидкости и затруднительного обратного течения жидкости.

Кроме того, в патентном документе 2 отсутствует какое-либо описание волокон, подлежащих ворсованию, и проницаемый для жидкостей верхний лист, описанный в патентном документе 2, представляет собой лист, у которого полностью отсутствует амортизирующее свойство. Кроме того, поскольку на проницаемый для жидкостей верхний лист, описанный в патентном документе 2, просто наносится только поверхностно-активное вещество таким образом, что плотность составляющих волокон существенно не изменяется, оказывается затруднительным улучшение свойство пропускания жидкости при перемещении текучей среды организма на сторону абсорбирующего элемента.

Соответственно, проблема, подлежащая решению согласно настоящему изобретению, заключается в том, чтобы предложить нетканое полотно, у которого улучшается амортизирующее свойство, а также улучшается свойство пропускания жидкости, и которое делает затруднительным обратное течение жидкости.

РЕШЕНИЕ ПРОБЛЕМ

Настоящее изобретение предлагает гидрофильное нетканое полотно, в котором присутствует волокнистая конструкция, где длинные волокна скреплены с помощью термосклеивающего устройства. Данное нетканое полотно содержит волокна, которые получают путем разрыва некоторых длинных волокон, где одни концевые части волокон скреплены с помощью термосклеивающего устройства, а другие концевые части представляют собой свободные концевые части, выступающие из волокнистой конструкции. Степень гидрофильности волокон, имеющих свободные концевые части, является меньше, чем степень гидрофильности волокон, составляющих волокнистую конструкцию.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 представляет перспективное изображение, иллюстрирующее нетканое полотно, которое составляет вариант осуществления настоящего изобретения.

Фиг. 2 представляет перспективное изображение, иллюстрирующее волокно, имеющее толстую свободную концевую часть, которую имеет нетканое полотно, представленное на Фиг. 1.

Фиг. 3 представляет схематическое изображение, иллюстрирующее способ измерения диаметра удаленного конца волокна нетканого полотна, представленного на Фиг. 1.

Фиг. 4 представляет схематическое изображение, иллюстрирующее способ измерения числа выступающих волокон нетканого полотна, представленного на Фиг. 1.

Фиг. 5 представляет схематическое изображение, иллюстрирующее подходящее устройство для изготовления нетканого полотна, используемое в способе получения согласно настоящему изобретению.

Фиг. 6 представляет схематическое изображение секции частичной растягивающей обработки, которой оборудовано устройство для изготовления, представленное на Фиг. 5.

Фиг. 7 представляет увеличенное в основной части изображение сечения секции частичной растягивающей обработки, представленной на Фиг. 6.

Фиг. 8 представляет схематическое изображение ворсовальной секции, которой оборудовано устройство для изготовления, представленное на Фиг. 5.

Фиг. 9 представляет изображение, разъясняющее примерный прикладной аспект нетканого полотна согласно настоящему изобретению и развернутый вид сверху, иллюстрирующей состояние, в котором надеваемый подгузник одноразового использования является развернутым и растянутым.

Фиг. 10 представляет изображение сечения, проведенного по линии I-I на Фиг. 9.

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Далее нетканое полотно согласно настоящему изобретению будет описано на основании соответствующего предпочтительного варианта осуществления со ссылками на Фиг. 1-4.

Нетканое полотно 1 согласно данному варианту осуществления (далее также называется просто "нетканое полотно 1") представляет собой гидрофильное нетканое полотно, которое составляет волокнистая конструкция 11, где длинные волокна 2 скреплены с помощью термосклеивающего устройства 3, как представлено на Фиг. 1. Нетканое полотно 1 содержит волокна 20, который получают путем разрыва некоторых длинных волокон 2, причем одни концевые части 20а волокон 2 скреплены с помощью термосклеивающего устройства 3, и другие концевые части представляют собой свободные концевые части 20b, выступающие из волокнистой конструкции 11, подлежащей ворсованию (далее также называется "волокна 20, имеющий свободные концевые части 20b"). В отношении нетканого полотна 1, как представлено на Фиг. 1, ниже приведено разъяснение, определяющее продольное направление нетканого полотна 1 как направление Y, а также определяющее поперечное направление нетканого полотна 1 как направление X. В связи с этим, в отношении нетканого полотна 1, согласно направлению ориентации составляющих волокон, машинное направление, параллельное направлению ориентации волокон, совпадает с продольным направлением (направление Y), в то время как поперечное направление, перпендикулярное машинному направлению, совпадает с направлением ширины (направление X), и в следующем разъяснении направление Y и машинное направление означают одно и то же направление, в то время как направление X и поперечное направление также означают одно и то же направление. Кроме того, нетканое полотно 1 составляет волокнистая конструкция 11, в которой содержатся волокна 20, имеющие свободные концевые части 20b, выступающие из волокнистой конструкции 11, петлеобразные волокна 23, выступающие в форме петель между термосклеенными частями 3, 3, описанными далее (волокна 20 и волокна 23 в совокупности называются "выступающие волокна"), и волокна, которые не подвергаются ворсованию, за исключением "выступающих волокон". Волокнистую конструкцию 11 составляют волокна, которые не подвергаются ворсованию, за исключением волокон 20, имеющих свободные концевые части 20b, которые выступают из волокнистой конструкции 11, и петлеобразные волокна 23 которые выступают в форме петель между термосклеенными частями 3, 3, описанными далее.

В подробном разъяснении в отношении нетканого полотна 1 согласно данному варианту осуществления нетканое полотно 1 представляет собой гидрофильное нетканое полотно 10, причем данное полотно составляют длинные волокна 2, скрепленные периодически с помощью термосклеивающего устройства 3. Гидрофильное нетканое полотно 10 будет описано ниже как исходное нетканое полотно (материал нетканого полотна) 10. Материал 10 нетканого полотна представляет собой нетканое полотно перед тем, как разрываются некоторые из длинных волокон 2. Здесь термин "длинное волокно" означает волокно, у которого длина составляет 30 мм или более, и материал 10 нетканого полотна предпочтительно составляют так называемые непрерывные длинные волокна, у которых длина волокна составляет 150 мм, поскольку тогда может быть получено нетканое полотно 1, имеющее высокий прочность на разрыв. В качестве такого материала 10 нетканого полотна используются фильерное нетканое полотно, или ламинированное нетканое полотно, имеющее фильерный слой и полученный аэродинамическим способом из расплава слой, горячекатаное нетканое полотно, получаемое способом кардочесания, и т.п. В качестве ламинированного нетканого полотна, используются, например, содержащее два фильерных слоя ламинированное нетканое полотно, содержащее три фильерных слоя ламинированное нетканое полотно, содержащее два фильерных слоя и между ними полученный аэродинамическим способом из расплава слой ламинированное нетканое полотно, содержащее два фильерных слоя, полученный аэродинамическим способом из расплава слой и фильерный слой ламинированное нетканое полотно и т.п.

Гидрофильный материал 10 нетканого полотна можно получать путем осуществления гидрофилизирующей обработки, например, заставляя гидрофилизирующее вещество прикрепляться к составляющим волокнам нетканого полотна или перемешивая гидрофилизирующее вещество с составляющими волокнами. Таким образом, гидрофильное нетканое полотно 10 изготавливают, осуществляя гидрофилизирующую обработку гидрофобных длинных волокон 2.

В качестве гидрофилизирующего вещества используются анионные, катионные, цвиттерионные и неионные поверхностно-активные вещества, причем можно использовать анионные поверхностно-активные вещества, такие как карбоксилатные анионные поверхностно-активные вещества, сульфонатные анионные поверхностно-активные вещества, содержащие соли сложных эфиров серной кислоты анионные поверхностно-активные вещества, содержащие соли сложных эфиров фосфорной кислоты анионные поверхностно-активные вещества (в частности, соль сложного эфира алкилфосфорной кислоты); неионные поверхностно-активные вещества, такие как сложный моноэфир многоатомного спирта и жирной кислоты, такой как сложный эфир сорбита и жирной кислоты, моностеарат диэтиленгликоля, моноолеат диэтиленгликоля, глицерилмоностеарат, глицерилмоноолеат или моностеарат пропиленгликоля, амид жирной кислоты, такой как амид олеиновой кислоты, амид стеариновой кислоты или амид эруковой кислоты, N-(3-олеилокси-2-гидроксипропил)диэтаноламин, соединение полиоксиэтилена и гидрированного касторового масла, соединение полиоксиэтилена, сорбита и пчелиного воска, соединение полиоксиэтилена и сесквистеарата сорбита, полиоксиэтиленмоноолеат, соединение полиоксиэтилена и сесквистеарата сорбита, полиоксиэтиленглицерилмоноолеат, полиоксиэтиленмоностеарат, полиоксиэтиленмонолаурат, полиоксиэтиленмоноолеат, полиоксиэтиленцетиловый простой эфир или полиоксиэтиленлауриловый простой эфир; катионные поверхностно-активные вещества, такие как четвертичные аммониевые соли, соли аминов или амины; цвиттерионные поверхностно-активные вещества, такие как алифатические производные вторичных или третичных аминов, содержащих карбоксильные, сульфонатные, сульфатные или гетероциклические алифатические производные вторичных или третичных аминов, и т.п. Это предпочтительные поверхностно-активные вещества, и сочетания предпочтительных поверхностно-активные веществах должны только содержать эти поверхностно-активные вещества, и они могут дополнительно содержать другие поверхностно-активные вещества и т.п.

С точки зрения одновременного обеспечения надлежащих значений обоих параметров (продолжительность прохождения жидкости и величина обратного течения жидкости), количество гидрофилизирующего вещества в нетканом полотне 1 составляет предпочтительно от 0,1 масс. % или более до 20 масс. % или менее и предпочтительнее от 0,3 масс. % или более до 5 масс. % или менее по отношению к массе нетканого полотна 1.

Дополнительное вещество, такое как окрашивающее полотно вещество, особое антистатическое вещество или мягчитель, можно добавлять в материал 10 нетканого полотна в дополнение к гидрофилизирующему веществу. В частности, когда мягчитель смешивается или наносится на материал 10 нетканого полотна, дополнительно усиливается эффект улучшения текстуры в течение контакта с кожей при ношении. В качестве мягчителя можно использовать, например, восковую эмульсию, мягчитель реакционного типа, кремнийсодержащее соединение, поверхностно-активное вещество и т.п. Кроме того, если это необходимый, в мягчитель можно добавлять известное вещество (содержащийся в малом количестве компонент) в качестве вторичной добавки.

Вследствие содержания мягчителя нетканое полотно 1, изготовленное из материала 10 нетканого полотна, приобретает хорошую текстуру, уменьшается выпадение пуха, становится низким трение кожи относительно поверхности полотна, и увеличивается его прочность на разрыв.

Использование мягчителя совместно со статистическим сополимером, который описан далее и представляет собой полимер, составляющий волокна материала 10 нетканого полотна, является предпочтительным, потому что он увеличивает эффект мягчителя, и возникновение налета шлама вследствие использования статистического сополимера в нетканом полотне 1, изготовленном из материала 10 нетканого полотна, можно уменьшать, используя мягчитель, что является еще более предпочтительным в отношении возможности получения материала, имеющего шелковистую текстуру.

Кроме того, когда материал 10 нетканого полотна изготавливают, используя ламинированное нетканое полотно, содержащее фильерный слой и полученный аэродинамическим способом из расплава слой, и фильерный слой материала 10 нетканого полотна состоит из множества слоев, например, содержащее фильерный слой, полученный аэродинамическим способом из расплава слой и фильерный слой ламинированное нетканое полотно, содержащее фильерный слой, фильерный слой, полученный аэродинамическим способом из расплава слой и фильерный слой ламинированное нетканое полотно и т.п., оказывается предпочтительным, замешивание мягчителя только в один фильерный слой, и можно осуществлять замешивание мягчителя во все фильерные слои и т.п. Когда мягчитель замешивается в один фильерный слой, применение технологического процесса, описанного далее, в отношении стороны слоя является предпочтительным с точки зрения возможности получения нетканого полотна 1, имеющего превосходную текстуру в течение контакта с кожей при ношении и высокую прочность на разрыв. Таким образом, с точки зрения текстуры в течение контакта с кожей при ношении и величина обратного течения жидкости, изготовление нетканого полотна 1 из материала 10 нетканого полотна, состоящего из единого материала фильерного нетканого полотна, является предпочтительным по сравнению с изготовлением нетканого полотна 1 из материала 10 нетканого полотна, состоящего из ламинированного нетканого полотна, содержащего фильерный слой и полученный аэродинамическим способом из расплава слой.

Составляющие волокна материала 10 нетканого полотна содержат, главным образом, термопластичный полимер, и в качестве термопластичного полимера, используются полиолефиновый полимер, сложнополиэфирный полимер, полиамидный полимер, акрилонитрильный полимер, виниловый полимер, винилиденовый полимер и т.п. В качестве полиолефинового полимера используются полиэтилен, полипропилен, полибутен и т.п. В качестве сложнополиэфирного полимера используются полиэтилентерефталат, полибутилентерефталат и т.п. В качестве полиамидного полимера используются нейлон и т.п. В качестве винилового полимера используются поливинилхлорид и т.п. В качестве винилиденового полимера используются поливинилиденхлорид и т.п. Можно использовать в чистом виде один из этих разнообразных полимеров, и можно смешивать и использовать совместно два или более из них. Можно использовать вещества, денатурирующие эти разнообразные полимеры. Кроме того, в качестве длинных волокон, составляющих материал 10 нетканого полотна, можно также использовать композитные волокна. В качестве композитных волокон можно использовать расположенные параллельно волокна, имеющие оболочку и сердцевину волокна, имеющие оболочку и сердцевину эксцентрически извитые волокна, разделенные волокна и т.п. Когда используются композитные волокна, оказывается предпочтительным использование имеющих оболочку и сердцевину волокон, в которых сердцевина состоит из полипропилена, и оболочка состоит из полиэтилена, потому что тогда может быть получено мягкое нетканое полотно 1. Диаметр волокна из числа длинных волокон 2 перед обработкой, описанной далее, составляет предпочтительно от 5 мкм или более до 30 мкм или менее и предпочтительнее от 10 мкм или более до 20 мкм или менее.

С точки зрения пригодности для прядения, оказывается предпочтительным, чтобы материал 10 нетканого полотна составлял полипропиленовый полимер, который представляет собой полиолефиновый полимер. С точки зрения гладкости и улучшения текстуры в течение контакта с кожей при ношении, а также с точки зрения легкости разрыва, оказывается предпочтительным, чтобы полипропиленовый полимер содержал, по меньшей мере, один вид статистического сополимера, гомополимера, блок-сополимера в количестве, составляющем от 5 масс. % или более до 100 масс. % или менее, предпочтительнее от 25 масс. % или более до 80 масс. % или менее. Кроме того, эти сополимеры и гомополимеры можно смешивать друг с другом, или с ними можно смешивать дополнительный полимер, но смесь гомополимера полипропилена и статистического сополимера является предпочтительной, поскольку при этом затрудняется возникновение обрыва нити. В результате этого кристалличность волокон уменьшается таким образом, что волокна, которые подвергаются ворсованию, становятся мягкими, и улучшается текстура в течение контакта с кожей, в то время как достигается хороший баланс между прочностью на разрыв нетканого полотна и легкостью резания выступающих волокон с помощью термосклеивающего устройства, такого как штамп. Таким образом, предотвращается отслаивание материала в термосклеивающем устройстве 3, таком как термосклеивающее устройство типа штампа, выступающие волокна становятся короткими, затрудняется выпадение пуха, и может быть получен превосходный внешний вид. Кроме того, поскольку становится более широким распределение температуры плавления, оказывается хорошим свойство термосклеивания. Кроме того, оказывается предпочтительным полимер, содержащий пропиленовый компонент в качестве основы, с которой сополимеризуется этилен или α-олефин, и более предпочтительным является сопополимер этилена и пропилена. С такой же точки зрения, В качестве пропиленового полимера, оказывается предпочтительным полимер, содержащий сополимер этилена и пропилена в количестве 5 масс. % или более, и более предпочтительным является полимер, содержащий данный сополимер в количестве 25 масс. % или более. Является предпочтительным сополимер этилена и пропилена, содержащий этилен в количестве от 1 масс. % или более до 20 масс. % или менее, и, в частности, более предпочтительным является сополимер этилена и пропилена, содержащий этилен в количестве от 3 масс. % или более до 8 масс. % или менее, с точки зрения того, что отсутствует липкость, становится легким растяжение при разрыве, уменьшается выпадение пуха, и сохраняется прочность на разрыв. Кроме того, с точки зрения защиты окружающей среды, оказывается предпочтительным полипропиленовый полимер, содержащий регенерированный полипропилен в количестве 50 масс. % или более, и более предпочтительным является полипропиленовый полимер, содержащий регенерированный полипропилен в количестве 70 масс. % или более. Эти условия остаются действительными и в том случае, когда нетканое полотно 1 составляет ламинированное нетканое полотно, содержащее фильерный слой и полученный аэродинамическим способом из расплава слой.

С точки зрения низкой стоимости, возможности получения превосходной текстуры в течение контакта с кожей при ношении и пригодности к обработке, поверхностная плотность нетканого полотна 1, состоящего из материала 10 нетканого полотна, составляет предпочтительно от 5 г/м2 или более до 100 г/м2 или менее и предпочтительнее от 5 г/м2 или более до 25 г/м2 или менее.

Кроме того, с точки зрения придания превосходной текстуре нетканому полотну 1, изготовленному, как описано выше, объемная мягкость нетканого полотна 1 составляет предпочтительно 10 сН или менее, предпочтительнее 5,9 сН или менее, причем она составляет предпочтительно 0,5 сН или более.

В связи с этим, с точки зрения получения мягкого материала и превосходной текстуры материала 10 нетканого полотна, объемная мягкость материала 10 нетканого полотна составляет предпочтительно 15 сН или менее и предпочтительнее 10 сН или менее, причем она составляет предпочтительно 3 сН или более и предпочтительнее 5 сН или более. В частности, объемная мягкость материала 10 нетканого полотна составляет предпочтительно от 3 сН или более до 15 сН или менее и предпочтительнее от 5 сН или более до 10 сН или менее.

Объемная мягкость измеряется следующим способом.

Способ измерения объемной мягкости

Для измерения объемной мягкости нетканого полотна 1 из нетканого полотна 1 вырезают образец, имеющий длину 150 мм в направлении Y (продольное направление) и ширину 30 мм в направлении X (поперечное направление) в условиях температуры 22°C и относительной влажности 65%, и края образца нетканого полотна 1 скрепляют в двух верхних и нижних частях в форме кольца, имеющего диаметр 45 мм, используя степлер. При этом скобка степлера располагается в направлении Y (продольное направление).

Используя прибор для испытания на растяжение (например, прибор для испытания на растяжение Tensilon RTA-100, изготовленный компанией Orientec Co., Ltd.), в качестве объемной мягкости рассматривали измеренную максимальную нагрузку, получаемую, когда кольцо устанавливается в форме цилиндра на испытательном стенде, и это кольцо сжимается сверху при скорости сжатия 10 мм/мин плоской пластиной, приблизительно параллельной стенду.

В нетканом полотне согласно настоящему изобретению степень гидрофильности волокон 20, имеющих свободные концевые части 20b, отделенные и выступающие из волокнистой конструкции 11, является меньше, чем степень гидрофильности волокон, составляющих волокнистую конструкцию 11. Чем меньше значение краевого угла смачивания водой, тем выше степень гидрофильности. Другими словами, волокна 20, имеющие свободные концевые части 20b, являются более гидрофобными, чем волокна, составляющие волокнистую конструкцию 11, и волокна 20 показывают больший краевой угол смачивания деионизированной водой, чем волокна, составляющие волокнистую конструкцию 11. В частности, с точки зрения создания препятствия обратному движению текучей среды организма, которая была абсорбирована, краевой угол смачивания волокон 20, имеющих свободные концевые части 20b, составляет предпочтительно более чем 80°, предпочтительнее более чем 85°, еще предпочтительнее 90° или более. С точки зрения быстрого перемещения текучей среды организма в сторону абсорбирующего элемента, краевой угол смачивания деионизированной водой волокон, составляющих волокнистую конструкцию 11, составляет предпочтительно менее чем 90°, предпочтительнее менее чем 85°, еще предпочтительнее 80° или менее. С точки зрения хорошего баланса свойства пропускания жидкости и затруднительного обратного течения жидкости, краевой угол смачивания волокон 20, имеющих свободные концевые части 20b, составляет более чем краевой угол смачивания волокон, составляющих волокнистую конструкцию 11, причем их разность составляет 5° или более, и предпочтительнее разность составляет 10° или более. В связи с этим, наличие разности значений краевых углов смачивания, то есть разности степени гидрофильности означает, что разность значений краевых углов смачивания, измеренных описанным выше способом измерения, составляет 3° или более.

Конкретный способ измерения краевого угла смачивания осуществляется следующим образом. Чтобы измерить краевой угол смачивания, используется, например, прибор для измерения краевого угла смачивания MCA-J, изготовленный компанией Kyowa Interface Science Co., Ltd. В частности, немедленно после помещения на нетканое полотно 1 капли очищенной ионным обменом воды, объем которой составляет приблизительно 20 пл, измерение краевого угла смачивания осуществляется с помощью прибора для измерения краевого угла смачивания. В частности, в отношении краевого угла смачивания волокон 20, имеющих свободные концевые части 20b, измеряется срезанная часть волокон 20, имеющих свободные концевые части 20b. В отношении краевого угла смачивания волокон, составляющих волокнистую конструкцию 11, которые не подвергаются ворсованию, измеряется другая срезанная часть волокон, чем в случае волокон 20, имеющих свободные концевые части и петлеобразных волокон 23, выступающих между термосклеенными частями 3, 3 в форме петель в нетканом полотне 1, а именно, срезанная часть волокон, составляющих волокнистую конструкцию 11. Каждое измерение осуществляется в пяти или более точках, и среднее значение результатов измерения в этих точках определяется как краевой угол смачивания. Измерение осуществляется в условиях температуры 22°C и влажности 65%.

В нетканом полотне 1, с точки зрения быстрого перемещения текучей среды организма в сторону абсорбирующего элемента, доля волокон, у которых межволоконное расстояние составляет 150 мкм или более и 300 мкм или менее, в числе волокон, составляющих нетканое полотно 1, составляет предпочтительно 30% или более, предпочтительнее 35% или более, еще предпочтительнее 40% или более.

Межволоконное расстояние нетканого полотна 1 измеряется с помощью ртутного поромера от компании Shimadzu Corporation методом вдавливания ртути согласно японскому промышленному стандарту JIS R 1655. Метод вдавливания ртути представляет собой метод получения информации о физической форме волокнистой конструкции 11, согласно которому измеряется размер между волокнами, составляющими волокнистую конструкцию 11 (расстояние между волокнами) или объем волокнистой конструкции 11. Принцип метода вдавливания ртути заключается в том, что к ртути прилагается давление, чтобы вдавливать ртуть между составляющими волокнами нетканого полотна 1, которое представляет собой предмет измерения, и измерять соотношение между давлением, прилагаемым в данное время, и объемом вдавленной (внедренной) ртути. В настоящем документе будет описан способ измерения межволоконного расстояния нетканого полотна 1 с использованием ртутного поромера.

Способ измерения расстояния между волокнами, составляющими нетканое полотно 1

Сначала нетканое полотно 1 разрезают таким образом, чтобы получить образцы, имеющие размеры 24 мм ×15 мм. Всего изготавливают три образца, и эти вырезанные образцы помещают в ячейку для образцов ртутного поромера от компании Shimadzu Corporation, таким образом, чтобы они не перекрывались друг с другом, и измеряют объем пор. В частности, процесс измерения объема пор с использованием метода вдавливания ртути осуществляется следующим образом. А именно, в процессе постепенного изменения давления, которое прилагается к ртути, измеряется объем ртути, вдавленной в поры в данное время; другими словами, измеряется объем пор, и определяется соотношение между объемом пор и диаметром пор (расстоянием между волокнами) D, вычисленным согласно следующему уравнению (1). При этом диаметр сердцевины (мкм) определяется как межволоконное расстояние (мкм).

В этом уравнении D представляет собой диаметр пор (расстояние между волокнами), θ представляет собой поверхностное натяжение ртути, θ представляет собой краевой угол смачивания, и P представляет собой давление. Что касается условий измерения в приведенном выше уравнении (1), поверхностное натяжение ртути составляет 482,536 дин/см (Н/м), краевой угол смачивания составляет 130°, и абсолютное давление ртути составляет от 0 до 60000 фунтов на квадратный дюйм (413,7 МПа).

Получаемая кривая (дифференциальная/интегральная кривая) распределения диаметров пор (межволоконных расстояний) нетканого полотна 1 служит основанием, чтобы определить суммарный объем пор, имеющих диаметр в интервале от 0 мкм или более до 500 мкм или менее, как полный объем, и получается доля пор, у которых диаметр (межволоконное расстояние) составляет от 150 мкм или более до 300 мкм или менее, полном объеме. Измерения осуществляются три раза, и среднее значение результатов этих измерений определяется как процентная доля волокон, расстояние между которыми составляет от 150 мкм или более до 300 мкм или менее. Измерение осуществляется в условиях температуры 22°C и влажности 65%.

С точки зрения предотвращения разрыва нетканого полотна 1 в процессе использования и его пригодности к обработке, значение прочности на разрыв нетканого полотна 1 составляет предпочтительно 5,0 Н/50 мм или более и предпочтительнее от 8,0 Н/50 мм или более до 30,0 Н/50 мм или менее. В связи с этим, с точки зрения обеспечения прочность на разрыв нетканого полотна 1 на данном уровне, значение прочности на разрыв материала 10 нетканого полотна составляет предпочтительно 7,0 Н/50 мм или более и предпочтительнее от 10,0 Н/50 мм или более до 50,0 Н/50 мм или менее. Согласно способу ворсования, который описан далее, по сравнению с другим способом ворсования, значение прочности на разрыв изготовленного нетканого полотна 1 с трудом становится меньше, чем значение прочности на разрыв материала 10 нетканого полотна. Оказывается предпочтительным, что прочность на разрыв нетканого полотна 1 и соответствующего исходного материала 10 нетканого полотна в поперечном направлении находится в вышеупомянутых пределах. Соотношение прочности на разрыв нетканого полотна 1 и материал 10 нетканого полотна (прочность на разрыв нетканого полотна 1/прочность на разрыв материала 10 нетканого полотна) составляет предпочтительно от 0,5 или более до 1,0 или менее и предпочтительнее от 0,7 или более до 1,0 или менее. Прочность на разрыв измеряется следующим способом.

Способ измерения прочности на разрыв

Исследуемый образец прямоугольной формы, имеющий размеры 200 мм в поперечном направлении и 50 мм в машинном направлении вырезают из нетканого полотна 1 или материала 10 нетканого полотна (например, фильерного нетканого полотна) в условиях температуры 22°C и относительной влажности 65%. Вырезанный исследуемый образец прямоугольной формы используется в качестве исследуемого образца. Данный исследуемый образец прикрепляется к зажимам прибора для испытания на растяжение (такого как, например, прибор для испытания на растяжение Tensilon RTA-100, изготовленный компанией Orientec Co., Ltd.), таким образом, что направление растяжения соответствует поперечному направлению. Расстояние между зажимами устанавливают равным 150 мм. Точка максимальной нагрузки, после достижения которой исследуемый образец разрывается при растяжении со скоростью 300 мм/мин, определяется как прочность на разрыв исследуемого образца в поперечном направлении. Кроме того, для измерений вырезают образец прямоугольной формы, имеющий размеры 200 мм в машинном направлении и 50 мм в поперечном направлении, который используется как исследуемый образец. Исследуемый образец прикрепляется к зажимам прибора для испытания на растяжение таким образом, что машинное направление образца соответствует направлению растяжения. Прочность на разрыв исследуемого образца в машинном направлении определяется согласно такой же процедуре, как в описанном выше способе измерения прочности на разрыв в поперечном направлении.

Нетканое полотно 1 также отличается тем, что его ощущаемая текстура является превосходной в контакт с кожей при ношении вступает поверхность, содержащая волокна 20, которые имеют свободные концевые части 20b.

Традиционно известны многочисленные характеристические значения, представляющие собой текстуру, в частности, общеизвестным является характеристическое значение, получаемое с помощью прибора KES, изготовленного компанией Kato Tech Co., Ltd. (см. справочный документ «Стандартизация и анализ ощущения» (второе издание), автор Sueo Kawabata, дата публикации: 10 июля 1980 г.). В частности, для представления ощущения округлости известны, главным образом, три характеристических значения LC (линейная кривая зависимости деформации при сжатии от сжимающей нагрузки), WC (величина работы при сжатии) и RC (сопротивление сжатию), которые называются "характеристики сжатия". Что касается этих характеристик, они вычисляются по величине деформации, которая получается во время приложения нагрузки, составляющей от 0,49 сН/см2 (0,50 гс/см2) или более до 49,0 сН/см2 (50,0 гс/см2) или менее (при высокочувствительных измерениях она составляет от 0,49 сН/см2 или более до 9,80 сН/см2 или менее (от 0,50 гс/см2 или более до 10,0 гс/см2 или менее)). Однако в случае очень тонкого полотна, такого как нетканое полотно, имеющее низкую поверхностную плотность, составляющую от 5 г/м2 или более до 25 г/м2 или менее, значительная разность не возникает, и, таким образом, корреляция с текстурой оказывается небольшой. Кроме того, поскольку нагрузка при контакте с абсорбирующим элементом в процессе ношения составляет приблизительно 0,98 сН/см2 (1,00 гс/см2), текстура ощущается при очень малой нагрузке, и на основании мысли о том, что характеристическое значение нагрузки, составляющее менее чем традиционная нагрузка, является полезным показателем натуральной текстуры, было определено новое характеристическое значение для нагрузки от 0,29 сН/см2 (0,3 гс/см2) до 0,98 сН/см2 (1 гс/см2) и соответствующего значения деформации. Характеристическое значение показано как численное значение, действительно представляющее различные текстуры фильерного нетканого полотна и изготовленного пневматическим способом нетканого полотна, и оно может представлять нетканое полотно как новое характеристическое значение, представляющее текстуру фильерного нетканого полотна.

Характеристическое сопротивление сжатию при малой нагрузке

В настоящем описании характеристическое сопротивление сжатию при малой нагрузке определяется как новое характеристическое значение, представляющее текстуру. Измерение осуществляется в условиях температуры 22°C и относительной влажности 65%. Для измерения данных, которые составляют основу хара