Применение нейрегулина для лечения повреждения периферических нервов
Иллюстрации
Показать всеИзобретение относится к медицине, а именно к неврологии, и касается применения нейрегулина для лечения повреждения периферических нервов. Для этого вводят эффективное количество нейрегулина. Это обеспечивает улучшение функции периферических, в частности кавернозных нервов, при их повреждении в результате хирургической процедуры. 14 з.п. ф-лы, 7 ил., 4 пр.
Реферат
Настоящая заявка испрашивает приоритет на основании предварительных заявок США под серийными номерами 61/251,583, поданной 14 октября 2009 г., 61/252,161, поданной 16 октября, 2009 г., каждая из которых полностью включена в настоящее описание путем ссылки.
ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к травме или повреждению нервов; конкретнее, к применению нейрегулина или его функциональных сегментов для предотвращения, лечения или облегчения повреждения периферических нервов.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТНИЯ
Периферические нервы обычно повреждаются в результате травм, включая автомобильные дорожно-транспортные происшествия, мотоциклетные дорожно-транспортные происшествия, хирургические вмешательства, ножевые и огнестрельные раны и родовые травмы и у ребенка, и у матери. Обычные хирургические причины повреждения нервов включают простатэктомию и мастэктомию. Другие обычные повреждения во время хирургических вмешательств являются результатом длительного позиционирования конечностей или неизбежной, или вызванной несчастным случаем компрессии нервов. После повреждения нервов, происходит потеря чувствительности и/или функции в областях организма, иннервируемых поврежденным нервом. Например, после повреждения нерва в результате простатэктомии обычно возникает эректильная дисфункция. После мастэктомии часто происходит потеря должной функции верхней конечности и/или лопатки. Кроме того, после родовой травмы или другой травмы с повреждением плечевого сплетения возникает дисфункция конечности, расположенной на стороне повреждения.
Любое лечение, которое может предотвратить или ограничить степень дисфункции после повреждения нерва, оказало бы существенное воздействие на современные терапевтические стратегии лечения повреждений периферических нервов. Существует потребность в дополнительных способах лечения по поводу повреждений периферических нервов.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Нейрегулины были задействованы в качестве факторов, оказывающих нейропротективные и нейровосстановительные эффекты на разнообразных экспериментальных моделях заболеваний и повреждений центральной нервной системы. Однако до настоящего изобретения никогда не устанавливалось, что нейрегулины способны предотвращать и/или лечить повреждения периферических нервов. Соответственно, определенные варианты осуществления настоящего изобретения направлены на способы лечения или облегчения повреждения периферических нервов введением нейрегулина (например, GGF2) или его функционального сегмента индивиду, у которого имеется повреждение периферических нервов или риск повреждения периферических нервов.
Настоящее изобретение демонстрирует, что лечение нейрегулином повреждения периферического нерва может ослабить потерю функции периферических нервов, облегчить или ослабить потерю функции периферических нервов при введении или до, или после повреждения нерва, и в некоторых случаях, восстановить функцию периферических нервов. В определенных вариантах осуществления удается избежать повреждения периферического нерва. В определенных вариантах осуществления устраняется существующее повреждение периферических нервов. В определенных вариантах осуществления повреждение периферических нервов полностью не исключается. В определенных вариантах осуществления, повреждение периферических нервов полностью не устраняется.
Модель эректильной дисфункции у крыс используется в качестве системы in vivo для демонстрации эффективности нейрегулинов при лечении повреждения периферических нервов. В определенных аспектах, изобретение направлено на лечение эректильной дисфункции в результате повреждения периферических нервов, но настоящее изобретение не ограничивается только эректильной дисфункцией. Нейрегулин может быть эффективным в качестве монотерапии по поводу любого повреждения периферических нервов и не требует одновременного лечения натуральными или искусственными нервными каналами или одновременного лечения со способами клеточной терапии, такими как шванновские клетки.
Определенные варианты осуществления направлены на способы лечения повреждения периферических нервов, включающие введение эффективного количества нейрегулина индивиду, имеющему повреждение периферических нервов, или индивиду с риском возникновения повреждения периферических нервов. Определенные варианты осуществления направлены на способы профилактики или предотвращения повреждения периферических нервов, включающие введение эффективного количества нейрегулина индивиду с риском возникновения повреждения периферических нервов. Термин «индивид» включает млекопитающих и, в частности, людей.
В определенных вариантах осуществления повреждение периферического нерва является результатом травмы, включая без ограничения автомобильные дорожно-транспортные происшествия, мотоциклетные дорожно-транспортные происшествия, хирургические вмешательства, ножевые и огнестрельные раны и родовые травмы. В определенных вариантах осуществления, повреждение периферических нервов является результатом хирургического вмешательства, такого как простатэктомия, мастэктомия и тому подобные. В контексте по существу любого хирургического вмешательства, повреждение периферических нервов может являться прямым результатом рассечения ткани, резекции ткани и/или возникать вследствие позиционирования и/или компрессии конечностей. В конкретном варианте осуществления нейрегулин применяется для лечения или предотвращения повреждения периферических нервов, которые могут привести к эректильной дисфункции.
Другие варианты осуществления направлены на лечение эректильной дисфункции в результате хирургического повреждения периферических нервов, связанных с эректильной функцией, таких как нерв пещеристого тела и/или нерв пениса. Повреждение нерва пещеристого тела часто возникает в результате резекции рака предстательной железы; данное повреждение может вызвать эректильную дисфункцию (ED).
Современные фармацевтические вмешательства лечат итоговую функциональную недостаточность вследствие повреждения путем увеличения кровотока к пещеристым телам для содействия эрекции пениса. В настоящее время существуют вмешательства с использованием медицинских устройств, которые лечат итоговую функциональную недостаточность вследствие повреждения путем увеличения объема пениса, ведущего к состоянию, аналогичному нормальной эрекции полового члена. Все существующие вмешательства, используемые для лечения ED, имеют недостатки.
Настоящее изобретение обеспечивает высокую защиту нервов в период во время повреждения и/или способствует выздоровлению пациента путем уменьшения тяжести любой функциональной недостаточности.
Пептид нейрегулин 1 (GGF2) тестировали на модели двухстороннего раздавливания у крыс, которая представляет собой принятую модель повреждения кавернозного нерва; данная модель использовалась для тестирования силденифила и других лекарственных средств для лечения ED. Как указано в настоящем описании, GGF2 улучшал функциональные исходы, когда нервы подвергали электростимуляции через 5 недель после повреждения и измеряли интракавернозное давление (ICP).
Определенные варианты осуществления направлены на лечение нейрегулином повреждения нервов после мастэктомии. Повреждение длинного грудного, межреберно-плечевого и грудоспинного нервов обычно происходит во время мастэктомии, хотя другие нервы могут также повреждаться, и нейрегулин может применяться для предотвращения или лечения такого повреждения. Нейрегулин может доставляться перед и/или после мастэктомии для защиты и восстановления функции нервов. Существует много обычно используемых показателей функции верхних конечностей, включая силу, чувствительность, диапазон движения и рефлексы - все или любые из которых целесообразны для определения защиты или восстановления функции нервов. Настоящее изобретение в равной степени относится к любому поврежденному нерву при любой медицинской или хирургической процедуре.
Другие варианты осуществления включают лечение нейрегулином повреждения нервов после травмы плечевого сплетения. Повреждение плечевого сплетения является обычным результатом тупой травмы, родовой травмы, дорожно-транспортного происшествия и спортивных травм, приводящих к двигательным и сенсорным дефицитам пораженной конечности. Нейрегулин может вводиться индивиду с повреждением плечевого сплетения для уменьшения повреждения и восстановления функции конечности. В ситуациях, которые предвидятся, таких как роды, композиция по изобретению может вводиться профилактически. Функция конечности может измеряться любым числом принятых неврологических показателей двигательной функции, силы, чувствительности, диапазона движений и/или рефлексов.
Определенные аспекты включают введение примерно 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1-10, 1-20, 10-20, 1-30, 1-40, 1-50, 10-20, 10-30, 10, 15, 20, 25, 30, 35, 40, 50, 15-25, 15-40, 15-35, 15-50, 20-50, 20-40, 20-40, 25-35, 30-50, 30-60, 50-75, 50-100, 100, 1-100, 100-150, 150-200, 200, 1-200 мкг или мг полипептида или пептида нейрегулина на основании активности конкретного применяемого нейрегулина и медицинского контекста, как понятно специалисту в данной области. Определенные аспекты включают введение нейрегулина до и/или после хирургического вмешательства.
В определенных аспектах нейрегулин может представлять собой любой полноразмерный нейрегулин, кодируемый генами NRGl, 2, 3 или 4. В еще одном аспекте нейрегулин может представлять собой любой функциональный сегмент полипептида нейрегулина. В определенных вариантах осуществления функциональный сегмент нейрегулина содержит EGF-подобный домен. В определенных вариантах осуществления, нейрегулин может представлять собой любой пептид из NRGl, 2, 3 или 4 генов, который связывается и активирует рецепторы erbB. В определенных вариантах осуществления нейрегулин может представлять собой любой пептид, полученный модифицированием из пептида дикого типа, кодируемого генами NRGl, 2, 3 или 4, с тем, чтобы модифицированный пептид связывался с рецепторами erbB и активировал их.
Нейрегулины и полипептиды, содержащие EGF-подобные домены нейрегулинов, могут вводиться индивидам с фармацевтически приемлемым разбавителем, носителем или эксципиентом, в стандартной лекарственной форме. Обычная фармацевтическая практика может быть использована для получения подходящих препаративных форм или композиций для введения таких композиций пациентам или экспериментальным животным. Хотя предпочтительно внутривенное введение, может использоваться любой целесообразный путь введения, например, парентеральное, подкожное, внутримышечное, внутричерепное, внутриорбитальное, глазное, внутрижелудочковое, внутрикапсулярное, интраспинальное, внутрицистернальное, внутрибрюшинное, интраназальное, аэрозольное, пероральное или трансдермальное или местное введение (например, применением устройства или адгезивной трансдермальной системы, несущей препаративную форму, способную проходить через дерму и поступать в поток крови). Терапевтические препаративные формы могут быть представлены в виде жидких растворов или суспензий; для перорального введения препаративные формы могут быть представлены в виде таблеток или капсул; а для интраназальных препаративных форм - в виде порошков, носовых капель или аэрозолей.
Под терминами «нейрегулин-1», «NRG-1», «герегулин» подразумевается полипептид, который связывается с ErbB рецепторами 1, 3 или 4, а также спариванием (димеризацией) с рецептором ErbB2. В одном варианте осуществления нейрегулин кодируется геном лиганда pl85erbB2, описанным в патентах США №№ 5530109; 5716930 и 7037888, каждый из которых полностью включен в настоящее описание путем ссылки. В одном варианте осуществления, нейрегулин представляет собой GGF2 или любую его субпоследовательность, или любую молекулу, которая включает всю или активную часть последовательности GGF2.
Термин «терапевтически эффективное количество» или «эффективное количество» предназначен для обозначения того количества нейрегулина, которое вызывает искомую исследователем, ветеринаром, врачом или другими клиницистом биологическую или медицинскую реакцию ткани, системы, животного или человека.
Терапевтическое изменение представляет собой изменение измеряемой биохимической мили физиологической характеристики в направлении, которое облегчает течение подвергаемого лечению заболевания или состояния, например, повреждения периферических нервов. Конкретнее, «эффективное количество» представляет собой количество, достаточное для уменьшения симптомов, связанных с медицинским состоянием или недомоганием, для нормализации функций организма при заболеваниях или расстройствах, которые приводят к нарушению определенных функций организма, или для обеспечения улучшения одного или более из клинически измеряемых параметров заболевания или состояния.
Пока нет ясного указания на отношение только к альтернативам, или где альтернативы являются взаимно исключающими, употребление термина «или» в формуле изобретения используется для обозначения «и/или». Предусматривается также, что любое перечисление с использованием термина «или» может также быть определенно исключено из других изложенных вариантов.
Во всей настоящей заявке термин «примерно» используется для указания на то, что величина, которая находится в пределах 85%, 90%, 95%, или стандартного отклонения ошибки для устройства или способа, используемого для определения величины.
В соответствии с длительно действующим патентным законодательством, пока нет определенных указаний, слова с неопределенным артиклем единственного числа «a» и «an» в формуле изобретения и описании обозначают один или более описываемых объектов.
В определенных вариантах осуществления в соответствии с изобретением, нейрегулин применяется профилактически, посредством этого предотвращая или уменьшая возможное повреждение. В определенных вариантах осуществления в соответствии с изобретением нейрегулин применяется прогностически для указания будущего состояния индивида. В определенных вариантах осуществления в соответствии с изобретением, нейрегулин применяется диагностически для указания присутствия или вероятного наличия состояния или патологии. В определенных вариантах осуществления, в соответствии с изобретением, нейрегулин применяется терапевтически для воздействия на состояние некоторым образом, который уменьшает или устраняет симптом или признак состояния или заболевания, подвергаемого лечению.
Другие цели, признаки и преимущества настоящего изобретения станут очевидны из следующего подробного описании. Однако следует понимать, что хотя подробное описание и определенные примеры указывают определенные варианты осуществления изобретения, они приведены только в качестве иллюстрации, поскольку для специалистов в данной области из данного подробного описания станут очевидными различные изменения и модификации в пределах сущности и объема изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Следующие чертежи составляют часть настоящего описания и включены для демонстрации определенных аспектов настоящего изобретения. Изобретение можно лучше понять путем ссылки на один из данных чертежей в комбинации с подробным описанием определенных вариантов осуществления, представленных в нем.
Фиг. 1: Данные изменения среднего ICP.
Фиг. 2: Данные, нормализованные к величинам аортального давления.
Фиг. 3: Репрезентативное мечение фтор-золотом основного тазового ганглия (MPG) от 3 животных на группу лечения ((панель A) нормальные, (панель B) раздавливание, (панель C) раздавливание + GGF2). Фтор-золото, инъецированное в ткань пениса, переносится ретроградно назад через интактные нервы в клеточные тела в MPG. Панель A: Нормальные животные демонстрируют количество ретроградного мечения, наблюдаемое в отсутствие повреждения нервов. Панель B: Животные с раздавливанием тканей демонстрируют резкое снижение количества нервных волокон в результате повреждения, поскольку метка фтор-золота не способна переноситься на все расстояние назад в MPG. Панель C: У животных из группы раздавливания + GGF2 проявляется увеличенное число клеток MPG, меченных фтор-золотом, указывая на то, что в результате лечения GGF2 имеется больше сохраненных нервных волокон, присутствующих после повреждения.
Фиг. 4: Количественное определение мечения фтор-золотом в MPG. Результаты показали, что у нормальных животных в MPG имеется большое число меченых клеточных тел. После повреждения раздавливанием, число меченых клеток резко снижается вследствие повреждения нервных волокон и возникшей в результате неспособности ретроградной транспортировки метки назад в MPG. Однако лечение GGF2 увеличивало число интактных нервных волокон, доступных для транспортировки фтор-золота из ткани пениса в MPG ретроградным образом, приводя к большому числу меченых клеток.
Фиг. 5: Репрезентативное окрашивание уровней nNOS (нейронной синтазы оксида азота). Кавернозный nNOS представляет собой общепринятый маркер сохранения кавернозных нервов. Результаты настоящей работы включали нормальное окрашивание ткани (панель A). Для сравнения имелась значительная потеря окрашивания nNOS после повреждения кавернозного нерва раздавливанием (панель B). Сохраненное окрашивание nNOS окончаний кавернозных нервов в пещеристых телах пениса продемонстрировало увеличение выживаемости кавернозных нервов после повреждения раздавливанием при лечении GGF2 (панель C). Плотность окрашивания указывает на сохранение окрашивания nNOS при лечении GGF2.
Фиг. 6: Репрезентативное окрашивание уровней тирозинкиназы (TH). Результаты, представленные на данном чертеже, показывают на панели A нормальное окрашивание ткани, а на панели B - значительную потерю окрашивания TH окончаний кавернозного нерва в пещеристых телах пениса; эти данные соответствуют общему сохранению или восстановлению иннервации пениса лечением GGF2 после повреждения раздавливанием. Таким образом, плотность окрашивания указывала на сохранение окрашивания TH при лечении GGF2.
Фиг. 7: Репрезентативное окрашивание транспортера везикулярного ацетилхолина (VaChT). Результаты показывают нормальное окрашивание ткани (панель A), и значительную потерю окрашивания VaChT после повреждения раздавливанием кавернозного нерва (панель B). Напротив, сохраненное окрашивание VaChT окончаний кавернозного нерва в пещеристых телах пениса, показанное на (панели C), демонстрирует увеличение выживания кавернозных нервов лечением GGF2 после повреждения раздавливанием (C). Плотность окрашивания показывает тенденции к сохранению окрашивания VaChT при лечении GGF2.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Повреждение периферических нервов представляет собой обычный результат различных явлений, сжатия, контузии, пересечения, раздавливания или растяжения, например, травмой, несчастным случаем или хирургическим вмешательством. Хотя внешние факторы, ведущие к повреждению нервов, варьируются, проявления на уровне нервов имеют общие признаки (их обзор можно найти, например, в публикации Lee and Wolfe, J Am Acad Orthop Surg, 8(4), p. 243, 2008). Травматическое повреждение любой этиологии часто вызывает повреждение миелинирования, эпиневрия, периневрия, эндоневрия и аксонов. В самом легком из случаев происходит повреждение в первую очередь миелина и эпиневрия, после которого спонтанно происходит полное восстановление в пределах нескольких дней или недель.
Однако многие повреждения нервов приводят к разрыву эндоневрия и аксонов и приводят к прерыванию функции, которая полностью не восстанавливается или восстанавливается в течение продолжительного периода времени.
Кроме того, при повреждении периферического нерва, которое вовлекает повреждение аксона, имеется местная дегенерация этого аксона, которая происходит в пределах нескольких часов после повреждения. В течение нескольких следующих дней, клеточное тело проксимальных нейронов и аксон подвергаются процессу, известному как валлериановская дегенерация. После дегенерации аксона продуцирующая миелин шванновская клетка погибает, оставляя клеточные осколки и воспаление. Данная гибель шванновской клетки и связанное с ней воспаление усиливают повреждение нерва.
В отличие от центральной нервной системы, значительная степень восстановления может произойти в периферических нервах. Аксоны растут по каналам периневрия и реиннервируют дистальные мишени, а шванновские клетки ремиелинируют аксоны. Хотя происходит регенерация периферических нервов, к сожалению, этот процесс не является совершенным; многие нейроны, которые подвергаются дегенерации, никогда не регенерируются или никогда не находят своей первоначальной мишени и приводят к постоянной дисфункции. Данная дисфункция может включать потерю двигательной функции, потерю сенсорной функции, парестезии, потерю рефлексов, ригидность, контрактуры или сниженный диапазон движения.
Любое лечение, которое может ограничить степень дисфункции после повреждения нерва, оказало бы значительное воздействие на современные терапевтические стратегии для лечения повреждений периферических нервов.
Большое количество данных литературы демонстрирует, что нейрегулины повышают способность нейронов регенерироваться через искусственные каналы и функционировать в качестве вспомогательной терапии с клеточными способами лечения, такими как трансплантаты шванновских клеток. Перед настоящим изобретением, не было известно, что нейрегулины при отдельном применении могут оказывать лечебное воздействие, например, путем защиты и/или восстановления функции при повреждении периферических нервов.
Модель, использованная в этих исследованиях (модель эректильной дисфункции у крыс), является стандартной, принятой и широко известной моделью повреждения периферических нервов. В данном конкретном подходе, кавернозный нерв повреждается сжатием пинцетом. Такое же повреждение сжатием или раздавливанием может использоваться в качестве модели в любом другом периферическом нерве. На модели повреждения кавернозного нерва, функциональная недостаточность проявляется в эректильной функции. С точки зрения общепринятой и согласованной патофизиологии травматического повреждения нервов, такое повреждение кавернозного нерва представляет собой превосходную модель повреждения, вызванного простатэктомией, а также общей моделью всех травматических повреждений периферических нервов.
Повреждения периферических нервов вызывают изменения в клеточных телах сенсорных нейронов, локализующихся в дорзальном корневом ганглии (DRG); эти изменения содействуют выживанию и регенерации аксонов. В благоприятных условиях, например, после повреждения раздавливанием, большинство нервных волокон успешно регенерируются. Однако во многих клинически релевантных обстоятельствах, травматическое или вызванное заболеванием повреждение нервов имеет неблагоприятный исход лишь с ограниченным возвратом функции и часто со значительной задержкой. В таких случаях, могут развиться состояния нейропатической или хронической боли.
Боль обычно связана с травмой или повреждением сенсорных нервов и приводит к охранению и иммобилизации пораженной области. Поэтому ноцицепция (передача нейронами сигналов, лежащая в основе болевого ощущения) сопутствует механизму содействия быстрому заживлению, даже хотя и запуская неприятные сенсорные и эмоциональные ощущения. Однако во многих патологических ситуациях, ноцицептивные входящие сигналы могут привести к функциональным изменениям, которые являются активно вредными для организма.
Повреждение нерва приводит к изменению многих свойств первичных афферентных нейронов и их центральных связей в спинном мозге, приводя к аллодинии (восприятие боли от обычно безвредного стимула), гиперальгезии (преувеличенной реакции на любой данный болевой раздражитель) и расширению рецептивной области (т.е., зоны, которая является «болезненной» при приложении стимула). Большинство состояний хронической боли возникает как результат повреждения или центральной, или периферической нервной ткани.
Эректильная дисфункция
Импотенция, также именуемая эректильной дисфункции (ED), представляет собой распространенную проблему, поражающую только в США 20 миллионов мужчин. Эрекция полового члена является нервно-сосудистым феноменом, зависимым и от целостности нервов, и от функциональных кровеносных сосудов. После сексуальной стимуляции, нейромедиаторы (в частности, оксид азота) высвобождаются из окончаний кавернозных нервов и эндотелиальных клеток. Итоговое расслабление артериальной и артериолярной гладкой мускулатуры увеличивает артериальный кровоток. Кровь, захваченная внутрь пещеристых тел, приводит половой член в состояние эрекции.
Повреждение кавернозного нерва в результате радикальных хирургических вмешательства на тазовых органах, таких как по поводу рака предстательной железы, мочевого пузыря или прямой кишки, является одной из наиболее распространенных причин ятрогенной ED в США. ED является основным источником заболеваемости после радикальной простатэктомии. Например, несмотря на внедрение сохраняющих нервы хирургических методик, частота послеоперационной сексуальной потенции находится в диапазоне от 30% до 80% для мужчин, которые были подвергнуты двухсторонним процедурам, сохраняющим кавернозные нервы, по поводу ограничивающегося органом рака предстательной железы (Wang, J Sex Med, 4: 1085-97, 2007).
До настоящего времени были исследованы различные нейромодуляторные стратегии; однако нет способов лечения ни для защиты кавернозных нервов перед их повреждением или во время него, ни способов лечения после их повреждения для вызова регенерации нервов (Michl et al., J Urol 176:227-31, 2006; Burnett and Lue, J Urol 176:882-7, 2006). Несмотря на современные сохраняющие нервы модификации хирургического лечения и лучевой терапии по поводу злокачественных заболеваний тазовых органов, существует потребность в новых средствах для сохранения и восстановления эректильной функции после лечения.
Наблюдается достаточно определенный тип клеточных изменений дистальнее участка повреждения, прогрессирующих от дегенерации аксонов и миелинового влагалища, инвазии макрофагов, фагоцитов и дедифференциации шванновских клеток до образования полос Бунгнера. Данные изменения модифицируют среду поврежденного нерва и ее потенциальную способность регенерировать аксоны. Выживанию нейронов содействуют трофические факторы, когда аксоны переключаются с режима «передачи» на режим роста, экспрессируя белки (GAP-43, тубулин, актин), новые нейропептиды и цитокины. Требуются новые стратегии, усиливающие потенциал роста, поскольку поддержка культи дистальных нервов и способность нейронов регенерироваться не являются неограниченными (Fu and Gordon, Mol Neurobiol. 14: 67-116, 1997).
Нейрегулины
Под терминами «нейрегулин», «нейрегулин-1», «NRG-1», «герегулин» подразумевается полипептид, который связывается с рецепторами ErbBl, ErbB 3 или ErbB 4 и путем спаривания (димеризации) с рецептором ErbB2. Например, нейрегулин может кодироваться геном лиганда pl85erbB2, описанным в патентах США №№ 5530109; 5716930 и 7,037,888, каждый из которых полностью включен в настоящее описание путем ссылки; нейрегулин может также кодироваться генами NRG-2, 3 и 4. Нейрегулин может представлять собой GGF2 или любой его активный фрагмент; он может также представлять собой консервативный вариант GGF2 или молекулу, которая включает GGF2. При некоторых видах использования в данной области, термин «нейрегулин» предназначен для указания только подобного EGF домена полной молекулы нейрегулина; он также известен как «подобный нейрегулину» белок, пептид или полипептид.
Под «подобным нейрегулину» белком, пептидом или полипептидом подразумевается полипептид, который обладает EGF-подобным доменом, кодируемым геном нейрегулина. В одном варианте осуществления «подобный нейрегулину» белок, пептид или полипептид вызывает терапевтический эффект у индивида, имеющего повреждение периферических нервов, или у индивида, имеющего риск повреждения периферических нервов (например, у пациентов, которые подлежат плановому хирургическому лечению, или рожениц, у которых имеется риск связанного с ними повреждения периферических нервов).
Аминокислотная последовательность GGF2 (с подчеркнутой областью, включающей EGF-подобный домен) представляет собой:
MRWRRAPRSGRPGPRAQRPGSAARSSPPLPLLPLLLLLGTAALAPGAAAGNEAAPA GASVCYSSPPSVGSVQELAQRAAVVIEGKVHPQRRQQGALDRKAAAAAGEAGAWG GDREPPAAGPRALGPPAEEPLLAANGTVPSWPTAPVPSAGEPGEEAPYLVKVHQVW AVKAGGLKKDSLLTVRLGTWGHPAFPSCGRLKEDSRYIFFMEPDANSTSRAPAAFRA SFPPLETGRNLK EVSRVLCKRCALPPQLKEMKSQESAAGSKLVLRCETSSEYSSLRF
KWFKGNELNRKKPQNIKIQKKPGKSELRINKASLADSGEYMCKVISKLGNDSASA NITIVESNATSTSTTGTSHLVCAEKETFCVNGGECFMVKDLSNPSRYLCCPNEFT GDRCQNYVMASFYSTSTPFLSLPE (SEQ ID NO:l) (номер доступа в Gen Bank AAB59622, которая включена в настоящее описание путем ссылки). В определенных аспектах изобретения полипептид нейрегулина или его сегмент на 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 или 100% идентичен или гомологичен аминокислотной последовательности GGF2. В определенных аспектах изобретения подобный нейрегулину полипептид на 75, 80, 85, 86, 97, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 или 100% идентичен, или гомологичен аминокислотной последовательности подобного EGF домена GGF2.
Используемый в настоящем описании термин «белок» или «полипептид» относится к молекуле, включающей по меньшей мере десять аминокислотных остатков. В определенных вариантах осуществления белок включает весь полипептид GGF2 или его часть. В некоторых вариантах осуществления используется вариант дикого типа белка или полипептида, однако, в некоторых вариантах осуществления изобретения, модифицированный белок или полипептид используется для лечения повреждения периферического нерва. В настоящем описании термины «пептид», «белок» или «полипептид» используются взаимозаменяемо. Для удобства, термин «пептид» используется в настоящем описании для обозначения аминокислотных последовательностей любой длины.
«Модифицированный пептид» относится к пептиду, химическая структура которого, в частности, его аминокислотная последовательность, изменена в отношении соответствующего пептида дикого типа. В некоторых вариантах осуществления модифицированный пептид имеет по меньшей мере одну модифицированную аминокислоту. В некоторых вариантах осуществления, модифицированный пептид имеет по меньшей мере одну d-аминокислоту. В некоторых вариантах осуществления, модифицированный пептид имеет по меньшей мере одну естественно не встречающуюся аминокислоту.
Без ограничения, в определенных вариантах осуществления размер пептида (дикого типа или модифицированного) может включать любую из (или любой диапазон, который может быть дериватизирован из): 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 325, 350, 375, 400, 422 молекул аминокислот или больше, и любой диапазон, дериватизируемый из них, соответствующей аминокислотной последовательности, описанной или указанной в качестве ссылки в настоящем описании; в одном варианте осуществления, такой белок, полипептид или диапазон размера относится к GGF2. Предусматривается, что полипептиды могут мутироваться амино-концевым или карбокси-концевым усечением, делающими их короче, чем их соответствующая форма дикого типа, но они также могут изменяться слиянием или конъюгацией последовательности гетерологического белка с конкретной функцией (например, для нацеливания или определения локализации в целях очистки и т.д.).
Используемый в настоящем описании термин «молекула аминокислоты» относится к любой аминокислоте, производному аминокислоты или имитации аминокислоты, известным в данной области. В определенных вариантах осуществления, остатки молекулы пептида являются последовательными, без какой-либо не аминокислотной молекулы, прерывающей последовательность аминокислотных остатков молекулы. В других вариантах осуществления, последовательность может включать одну или более не аминокислотных частей молекулы. В конкретных вариантах осуществления последовательность остатков молекулы пептида могут прерываться одной или более не аминокислотными частями молекулы.
Соответственно, термин «пептидная» композиция включает аминокислотные последовательности; эти аминокислотные могут представлять собой любую из 20 обычных аминокислот в естественно синтезированных белках или любую модифицированную или необычную аминокислоту.
Пептидные композиции могут быть получены любой технологией, известной специалистам в данной области, включая (i) экспрессию пептидов посредством стандартных молекулярно-биологических методик, (ii) выделение пептидных соединений из натуральных источников или (iii) химический синтез. Нуклеотидные, а также пептидные последовательности для определенных генов нейрегулина были ранее описаны и могут быть найдены в признанных компьютеризированных базах данных. Одной такой базой данных является National Center for Biotechnology Information's Genbank (Генетический банк Национального центра биотехнологической информации) и базы данных GenPept (в интернете на сайте ncbi.nlm.nih.gov/). Области кодирования для этих генов могут быть амплифицированы и/или экспрессированы с использованием методик, раскрытых в настоящем описании, или таких методик, которые известны среднему специалисту в данной области.
Модифицированные пептиды могут включать заместительные, вставочные или делеционные варианты. В делеционных вариантах обычно отсутствует один или более остатков нативной молекулы или молекулы дикого типа. Могут быть делетированы отдельные остатки или может быть делетирован ряд смежных аминокислот. Стоповый кодон может быть введен (путем замещения или вставки) в кодирующую последовательность нуклеиновой кислоты для генерирования усеченного белка. Вставочные мутанты обычно вовлекают добавление материала в не концевой точке в пептиде. Это может включать вставку одного или более остатков. Могут также создаваться концевые добавления, часто называемые слитыми белками или слитыми пептидами. Заместительные варианты обычно содержат обмен аминокислоты на другую в одном или более сайтов внутри пептида и могут быть предназначены для модуляции одного или более свойств пептида с потерей и без потери других функций или свойств, таких как связывание и активация рецепторов нейрегулина. Замещения могут быть консервативными, то есть, одна аминокислота замещается аминокислотой подобной формы и заряда. Альтернативно, замещения могут быть не консервативными с тем, чтобы могла подвергнуться воздействию функция или активность пептида. Не консервативные изменения обычно вовлекают замещение остатка остатком, который химически отличен, такое как замещение полярной или заряженной аминокислоты неполярной или незаряженной аминокислотой и наоборот.
«Консервативные замещения» хорошо известны в данной области и включают без ограничения, например, замещения: аланина серином; аргинина лизином, аспарагина глутамином или гистидином; аспартата глутаматом; цистеина серином; глутамина аспарагином; глутамата аспартатом; глицина пролином; гистидина аспарагином или глутамином; изолейцина лейцином или валином; лейцина валином или изолейцином; лизина аргинином; метонина лейцином или изолейцином; фенилаланина тирозином или лейцином или метионином; серина треонином; треонина серином; триптофана тирозином; тирозина триптофаном или фенилаланином и валина изолейцином или лейцином.
Следует также понимать, что последовательности аминокислот и нуклеиновых кислот могут включать дополнительные остатки, такие как дополнительные N- или C-концевые аминокислоты или соответственно 5' или 3' последовательности, пока последовательность соответствует функциональным критериям, изложенным в настоящем описании, таким как сохранение биологической активности. Добавление концевых последовательностей, в частности, относится к последовательностям нуклеиновых кислот, например, включает различные не кодирующие последовательности, фланкирующие или