Тестирование прочности на основе акустической эмиссии для pdc, pcbn или других твердых или сверхтвердых материалов

Иллюстрации

Показать все

Группа изобретений относится к измерительной технике, в частности к средствам измерения прочности. Устройство содержит образец горной породы, включающий в себя первую поверхность, акустический датчик, индентор и нагрузку. Торец индентора находится в контакте с образцом горной породы. Торец содержит кобальт с концентрацией в диапазоне от шести процентов до двадцати процентов. Нагрузку прикладывают к индентору, который передает эту нагрузку на первую поверхность. При этом нагрузка увеличивается до пиковой величины, затем выдерживается в течение временного периода и уменьшается со скоростью снижения, которая больше, чем скорость повышения нагрузки. Акустический датчик детектирует акустические сигналы, возникающие в образце. В дальнейшем сигналы акустической эмиссии поступают в блок записи данных. На основе собранных данных определяют фоновые точки, определяют точки возможного акустического события, интерполируют кривую функции фоновых шумов, используя фоновые точки, определяют точки фактических акустических событий, используя точки возможных акустических событий и кривую функции фоновых шумов, рассчитывают площадь фактического акустического события, определяют прочность образца. Технический результат - повышение точности измерений. 4 н. и 27 з.п. ф-лы, 24 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение в общем относится к способу, устройству и программному обеспечению для тестирования действительной прочности или жесткости твердых или сверхтвердых материалов; и более конкретно, к способу, устройству и программному обеспечению для тестирования действительной прочности или жесткости твердых или сверхтвердых материалов, используя акустическую эмиссию.

Уровень техники

На фиг.1 показан сверхтвердый материал 100, который может быть вставлен внутрь скважинного инструмента (не показан), такого как буровое долото или расширитель ствола скважины, в соответствии с примерным вариантом осуществления изобретения. Один пример сверхтвердого материала 100 представляет собой режущий элемент 100 или резак, или вставку, для шарошечных долот, как показано на фиг.1. Однако, сверхтвердый материал 100 может быть сформирован в виде других структур, в соответствии с вариантом применения, в котором он должен использоваться. Режущий элемент 100 обычно включает в себя подложку 110, имеющую контактную поверхность 115, и режущую пластину 120. Режущая пластина 120 изготовлена с использованием ультратвердого слоя, который соединен с контактной поверхностью 115 в процессе обжига, в соответствии с одним примером. В соответствии с некоторыми примерами, подложка 110, в общем, изготовлена из карбида вольфрама и кобальта или карбида вольфрама, в то время как режущая пластина 120 сформирована с использованием слоя поликристаллического ультратвердого материала, такого как поликристаллический алмаз ("PDC") или поликристаллический кубический нитрид бора ("PCBN"). Такие режущие элементы 100 изготавливают в соответствии с процессами и материалами, известными специалистам в данной области техники. Хотя режущая пластина 120 показана, как имеющая, по существу, плоскую внешнюю поверхность, режущая пластина 120 может иметь внешние поверхности альтернативной формы, такой как куполообразная форма, вогнутая форма или другие неплоские формы внешней поверхности, в других вариантах осуществления. Хотя были представлены некоторые примерные составы режущего элемента 100, другие составы и структуры, известные специалистам в данной области техники, могут использоваться, в зависимости от варианта применения. Хотя бурение в твердых породах представляет собой один пример применения, в котором может использоваться сверхтвердый материал 100, который описан ниже, сверхтвердый материал 100 может использоваться в различных других вариантах применения, включая в себя, но без ограничений, механическую обработку, обработку древесины и карьерные разработки.

Разные сорта PDC, PCBN, твердого и сверхтвердого материала доступны для использования резцов 100 в различных вариантах применения, таких как бурение различных горных пород, используя разные конструкции бурового долота, или для механической обработки разных металлов или материалов. Типичные проблемы, связанные с такими резцами 100, включают в себя скалывание, частичное растрескивание, дробление и/или отслаивание режущей пластины 120 во время использования. Эти проблемы приводят к раннему отказу режущей пластины 120 и/или подложки 110. Как правило, напряжения большой магнитуды, генерируемые в режущей пластине 120, в области, где режущая пластина 120 входит в контакт с подземными формациями во время бурения, может вызывать эти проблемы. Эти проблемы повышают стоимость бурения, из-за затрат, связанных с ремонтом, временем простоя во время производства и трудозатратами. Таким образом, конечный пользователь, такой как разработчик долота или инженер по эксплуатации, выбирает лучше всего работающую марку резца 100 для любой заданной задачи бурения или механической обработки для снижения вероятности возникновения этих типичных проблем. Например, конечный пользователь выбирает соответствующий резец 100 на основе баланса между устойчивостью к износу и устойчивостью к ударному воздействию резца 100, определяемых с использованием обычных способов. Как правило, информацию, доступную для конечного пользователя для выбора резца 100 соответствующей марки для конкретного варианта применения, выводят из регистрационных данных, которые представляют рабочие характеристики разных марок PDC, PCBN, твердых или сверхтвердых материалов в определенных областях и/или из функциональных лабораторных тестов, в которых пытаются копировать различные условия бурения или механической обработки при тестировании различных резцов 100. В настоящее время существуют две основные категории лабораторного функционального тестирования, которые используют в буровой отрасли. Эти тесты представляют собой тест на абразивный износ и тест на ударное воздействие.

Сверхтвердые материалы 100, которые включают в себя резцы 100 из поликристаллических алмазных вставок (“PDC”), были испытаны на устойчивость к абразивному износу путем использования двух обычных способов тестирования. Резец 100 PDC включает в себя режущую пластину 120, изготовленную из PDC. На фиг.2 показан токарный станок 200, применяемый для тестирования устойчивости на абразивный износ, используя тест с обычным гранитным кругляком. Хотя здесь представлена одна примерная конфигурация устройства токарного станка 200, другие конфигурации устройства, известные специалистам в данной области техники, можно использовать, без выхода за пределы объема и сущности примерного варианта осуществления.

На фиг.2 токарный станок 200 включает в себя зажимной патрон 210, заднюю бабку 220 и резцедержатель 230, установленный между зажимным патроном 210 и задней бабкой 220. Целевой цилиндр 250 имеет первый торец 252, второй торец 254 и боковую стенку 258, продолжающуюся от первого торца 252 до второго торца 254. В соответствии с обычным тестом с гранитным кругляком, боковая стенка 258 представляет собой открытую поверхность 259, которая входит в контакт со сверхтвердым материалом 100 во время тестирования. Первый торец 252 соединен с зажимным патроном 210, в то время как второй торец 254 соединен с задней бабкой 220. Зажимной патрон 210 выполнен с возможностью вращения, обеспечивая, таким образом, одновременное с ним вращение целевого цилиндра 250 вдоль центральной оси 256 целевого цилиндра 250. Задняя бабка 220 выполнена с возможностью удержания второго торца 254 на месте, во время вращения целевого цилиндра 250. Целевой цилиндр 250 изготовлен из одного однородного материала, который обычно представляет собой гранит. Однако, другие типы скальных пород использовались в качестве целевого цилиндра 250, которые включают в себя, но без ограничений, Джекфоркский песчаник, известняк из Индианы, песчаник из Береа, Карфагенский мрамор, черный мрамор из Шамплейн, гранит из Беркли, белый гранит из Сьерры, Техасский розовый гранит, и серый гранит из Джорджии.

Резец 100 PDC установлен на резцедержателе 230 токарного станка таким образом, что резец 100 PDC входит в контакт с открытыми поверхностями 259 целевого цилиндра 250, и его перемещают вперед и назад вдоль открытой поверхности 259. Резцедержатель 230 имеет скорость подачи внутрь на целевом цилиндре 250. Устойчивость к абразивному износу резца 100 PDC определяют как степень износа, которую определяют, как отношение удаленного объема целевого цилиндра 250, к удаленному объему резца 100 PDC. В качестве альтернативы, вместо измерения объема, расстояние, на которое резец 100 PDC переместился внутрь целевого цилиндра 250, может быть измерено и может использоваться для количественного выражения устойчивости к абразивному износу резца 100 PDC. В качестве альтернативы, другие способы, известные специалистам в данной области техники, можно использовать для определения устойчивости к износу, используя тест с гранитным кругляком. Работа и конструкция токарного станка 200 известны специалистам в данной области техники. Описания теста такого типа можно найти в публикации Baton, В.A., Bower, Jr., A.B., and Martis, J.A. “Manufactured Diamond Cutters Used In Drilling Bits.” Journal of Petroleum Technology, May 1975, 543-551. Society of Petroleum Engineers paper 5074-PA, которая была опубликована в the Journal of Petroleum Technology in May 1975, а также можно найти в публикации Maurer, William С., Advanced Drilling Techniques, Chapter 22, The Petroleum Publishing Company, 1980, pp.541-591, которые представлены здесь по ссылке.

На фиг.3 показан вертикальный сверлильный станок 300, предназначенный для тестирования устойчивости к абразивному износу с использованием теста с вертикальным сверлильным станком (“VBM”) или теста с вертикально-токарным станком с револьверной головкой (“VTL”). Хотя представлена одна примерная конфигурация устройства для VBM 300, другие конфигурации устройства можно использовать без выхода за пределы объема и сущности примерного варианта осуществления. Вертикальный сверлильный станок 300 включает в себя вращающийся стол 310 и резцедержатель 320, расположенный над вращающимся столом 310. Целевой цилиндр 350 имеет первый торец 352, второй торец 354 и боковую стенку 358, продолжающуюся от первого торца 352 до второго торца 354. В соответствии с обычным тестом VBM, второй торец 354 представляет собой открытую поверхность 359, в контакте с которой находится сверхтвердый материал 100 во время испытаний. Целевой цилиндр 350 обычно представляет собой приблизительно тридцать дюймов на приблизительно шестьдесят дюймов в диаметре; однако, его диаметр может быть больше или меньше.

Первый торец 352 установлен на нижнем вращающемся столе 310 VBM 300, в результате чего, его открытая поверхность 359 обращена к резцедержателю 320. Резец 100 PDC установлен в резцедержателе 320 над открытой поверхностью 359 целевого цилиндра и входит в контакт с открытой поверхностью 359. Целевой цилиндр 350 вращается, в то время как резцедержатель 320 выполняет циклические движения резцом 100 PDC от центра открытой поверхности 359 целевого цилиндра до ее кромки и обратно к центру открытой поверхности 359 целевого цилиндра. Резцедержатель 320 имеет заданную скорость подачи вниз. Способ VBM позволяет установить более высокие нагрузки на резце 100 PDC, и более крупный целевой цилиндр 350 обеспечивает больший объем скальной породы, на которую воздействует резец 100 PDC. Целевой цилиндр 350 обычно изготовлен из гранита; однако, целевой цилиндр может быть изготовлен из других материалов, которые включают в себя, но без ограничений, Джекфоркский песчаник, известняк из Индианы, песчаник из Береа, Карфагенский мрамор, черный мрамор из Шамплейн, гранит из Беркли, белый гранит из Сьерры, Техасский розовый гранит, и серый гранит из Джорджии.

Устойчивость к абразивному износу резца 100 PDC определяют, как отношение степени износа, которую определяют, как отношение объема целевого цилиндра 350, который был удален, к объему резца 100 PDC, который был удален. В качестве альтернативы, вместо измерения объема, можно измерять расстояние, на которое переместился резец 100 PDC через целевой цилиндр 350, и использовать для количественной характеристики устойчивости к абразивному износу резца 100 PDC. В качестве альтернативы, другие способы, известные специалистам в данной области техники, могут использоваться для определения устойчивости к износу, используя тест VBM. Операция и конструкция VBM 300 известны специалистам в данной области техники. Описание тестирования этого типа можно найти в публикации BertagnolU, Ken and Vale, Roger, “Understanding and Controlling Residual Stresses in Thick Polycrystalline Diamond Cutters for Enhanced Durability,” US Synthetic Corporation, 2000, которая представлена здесь полностью по ссылке.

В дополнение к тестированию на устойчивость к абразивному износу резцы 100 PDC также могут быть тестированы на устойчивость к ударным нагрузкам. На фиг.4 показано устройство 400 вертикального стенда ударных ускорений для тестирования устойчивости к ударным воздействиям сверхтвердых материалов, используя тест "падающий молоток", где металлический груз 450 подвешивают над и сбрасывают на резец 100. При тесте "падающий молоток" делается попытка эмулировать тип нагрузки, которая может возникать, когда резец 100 PDC переходит из одной формации в другую, или когда на него воздействуют поперечные и осевые вибрации. Результаты тестирования на ударное воздействие позволяют ранжировать разные резцы на основе их прочности к ударному воздействию; однако, это ранжирование не позволяет выполнить прогнозирование в соответствии с тем, как резцы 100 будут работать в условиях буровой скважины.

На фиг.4 устройство 400 вертикального стенда для ударных ускорений включает в себя сверхтвердый материал 100, такой как резец PDC, крепление 420 цели и ударную пластинку 450, расположенную над сверхтвердым материалом 100. Резец 100 PDC закреплен в креплении 420 цели. Ударная пластина 450 или груз обычно изготовлена из стали и располагается над резцом 100 PDC. Однако, ударная пластина 450 может быть изготовлена из альтернативных материалов, известных специалистам в данной техники. Резец 100 PDC обычно удерживается под углом 415, равным переднему углу в продольной плоскости, так, что алмазная пластина 120 резца 100 PDC установлена под углом внутрь в направлении ударной пластины 450. Диапазон угла 415, равного переднему углу в продольной плоскости резца, известен специалистам в данной области техники.

Ударную пластину 450 многократно сбрасывают на кромку резца 100 PDC, до тех пор, пока кромка резца 100 PDC не отломится или не разрушится в результате растрескивания. Эти тесты также называются “тестами” бокового удара, поскольку ударная пластинка 450 ударяет об открытую кромку алмазной пластины 120. Повреждения обычно возникают либо в алмазной пластине 120, или на контактной поверхности 115 между алмазной пластиной 120 и карбидной подложкой 110. Тест "падающий молоток" является очень чувствительным к структуре кромки алмазной пластины 120. Если пластина 120 будет немного скошенной, результаты испытаний могут существенно измениться. Общую энергию, выраженную в Джоулях, затраченную до получения первых повреждений алмазной пластины 120, записывают. Для более устойчивых к ударным воздействиям резцом 100, ударная пластина 450 может сбрасываться в соответствии с заранее установленным планом с увеличивающейся высоты, для того, чтобы передавать большую энергию удара резцу 100, с тем, чтобы получить повреждения. Однако, такой тест "падающий молоток" имеет недостатки, состоящие в том, что данный способ требует тестирования множества резцов 100 для достижения достоверной статистической выборки, которая позволяет сравнивать относительную устойчивость к ударному воздействию одного типа резца с другим типом резца. Такой тест дает неадекватные результаты для предоставления истинной устойчивости к ударным воздействиям на весь резец 100, когда на него воздействуют ударные нагрузки во внутрискважинной среде. Такой тест проявляет эффект статический удара, тогда как истинный удар является динамическим. Количество ударов в секунду может достигать до 100 герц ("Гц"). Кроме того, степень повреждения резца оценивается субъективно лицом с натренированным глазом, и ее сравнивают с повреждениями, возникшими в других резцах.

В то время как результаты различных испытаний на износ, доступных на рынке, обычно имеют разумную степень согласованности с фактическими характеристиками при работе внутри скважины, это не относится к результатам обычных тестов на ударные воздействия. Хотя существует некоторая степень корреляции между результатами обычных тестов на ударные воздействия и фактическими характеристиками при работе внутри скважины, рассеивание данных обычно очень велико, что приводит к трудностям или неточностям при прогнозировании, как резцы поведут себя в фактической среде внутри скважины.

Кроме того, множество трещин, возникающих в резце, не детектируются при использовании этих обычных тестов и, поэтому, остаются не детектированными при оценке жесткости резца.

Кроме того, поскольку выбор долота представляет собой критический процесс, важно знать механические свойства различных пород, которые должно бурить долото. Один из наиболее важных параметров, используемых в настоящее время для выбора долота, представляет собой предел прочности при неограниченном сжатии ("UCS") горной породы, который может быть измерен непосредственно на образцах керна или может оценен опосредованно по каротажным данным. Однако, при выборе долота нельзя. исключительно основываться на UCS горной породы, поскольку значение UCS может дезориентировать, в частности, когда UCS горной породы больше, чем 15000 pci и породы является хрупкой, в результате чего имеет низкое сопротивление развитию трещин К. Таким образом, сопротивление развитию трещин горной породы также следует учитывать при выборе соответствующего бурового долота.

Краткое описание чертежей

Представленные выше и другие особенности, и аспекты изобретения лучше всего будут поняты со ссылкой на следующее описание определенных примерных вариантов осуществления, которое следует читать совместно с приложенными чертежами, на которых:

на фиг.1 показан сверхтвердый материал, который вставляется в скважинный инструмент, в соответствии с примерным вариантом осуществления изобретения;

на фиг.2 показан токарный станок для тестирования устойчивости абразивному износу, используя обычный тест с гранитным кругляком;

на фиг.3 показан вертикальный расточный станок для тестирования сопротивления абразивного износа, используя тест с вертикальным расточным станком или тест с вертикальным револьверным станком;

на фиг.4 показано устройство башни для сброса груза, предназначенное для тестирования устойчивости к ударному воздействию сверхтвердых материалов, используя тест "падающий молоток";

на фиг.5 показан вид в перспективе системы тестирования на основе акустической эмиссии в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.6 показан вид в поперечном сечении устройства тестирования на основе акустической эмиссии по фиг.5 в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.7 показан вид в перспективе резцедержателя, как показано на фиг.5, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.8 показан вид в перспективе устройства тестирования на основе акустической эмиссии по фиг.5 с индентором, удаленным из резцедержателя, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.9 показан вид в перспективе системы тестирования на основе акустической эмиссии в соответствии с альтернативным примерным вариантом выполнения настоящего изобретения;

на фиг.10 показана блок-схема устройства записи данных по фиг.5 в соответствии с примерным вариантом осуществления;

на фиг.11 показано графическое представление акустической эмиссии и нагрузки резца, на который воздействует нагрузка приблизительно до двух килоньютонов, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.12 показано графическое представление акустической эмиссии и нагрузки резца, на который воздействует нагрузка приблизительно до пяти килоньютонов, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.13 показано графическое представление акустической эмиссии и нагрузки резца, на который воздействует нагрузка приблизительно до тридцати килоньютонов, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.14 показано графическое представление акустической эмиссии и нагрузки резца, на который воздействует нагрузка приблизительно до сорока килоньютонов, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.15А показано графическое представление акустической эмиссии и нагрузки резца для типа резца производителя резца #1 образца резца #1, на который воздействует нагрузка приблизительно до сорока пяти килоньютонов, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.15В показано графическое представление акустической эмиссии и нагрузки резца для типа резца производителя резца #2 образца резца #2, на который воздействует нагрузка приблизительно до тридцати килоньютонов, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.16 показана блок-схема последовательности операций способа для анализа точек данных, принятых от акустического датчика, в котором способ, включает в себя способ цикла один и способ цикла два, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.17 показана детальная блок-схема последовательности операций способа цикла один по фиг.16 в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.18 показана детальная блок-схема последовательности операций способа цикла два по фиг.16 в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.19 показано графическое представление акустической эмиссии резца, на который воздействует нагрузка, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.20 показан увеличенный вид части графического представления акустической эмиссии резца, на который воздействует нагрузка, в соответствии с примерным вариантом осуществления настоящего изобретения;

на фиг.21 показано представление интегрального распределения для каждого фактического акустического события в соответствии с примерным вариантом осуществления настоящего изобретения; и

на фиг.22 показана блок-схема процессора по фиг.10 в соответствии с примерным вариантом осуществления;

на фиг.23 показан образец горной породы, который может быть протестирован в системе тестирования на основе акустической эмиссии по фиг.5 и 9, соответственно, вместо резца по фиг.1 в соответствии с примерным вариантом выполнения.

На чертежах иллюстрируются только примерные варианты осуществления изобретения, и, поэтому, их не следует рассматривать, как ограничения его объема, поскольку в изобретении могут применяться другие, в равной степени эффективные варианты осуществления.

Подробное описание изобретения

Настоящее изобретение направлено на способ, устройство и программное обеспечение, для тестирования свойственной прочности, или жесткости твердых или сверхтвердых материалов, используя акустическое излучение. Хотя описание примерных вариантов осуществления представлено ниже в отношении резца PDC, альтернативные варианты осуществления изобретения могут применяться в других типах твердых или сверхтвердых материалов, включающих в себя, но без ограничений, резцы PCBN или другие твердые или сверхтвердые материалы, известные или еще не известные для специалистов в данной области техники. Например, твердые или сверхтвердые материалы включают в себя цементированный карбид вольфрама, карбид кремния, матричные образцы карбида вольфрама, керамику или вставки, покрытые способом осаждения из химических паров ("CVD"). Твердые или сверхтвердые материалы также включают в себя образцы горных пород, которые включают в себя, но не ограничиваются этим, твердые образцы горных пород и/или сцементированные образцы горных пород, полученные из буровой скважины.

Изобретение будет более понятно при чтении следующего описания не ограничительных примерных вариантов выполнения, со ссылкой на приложенные чертежи, на которых одинаковые их части каждой из фигур идентифицированы и обозначены одинаковыми номерами ссылочных позиций, которые кратко описаны ниже. На фиг.5 показан вид в перспективе системы 500 тестирования на основе акустической эмиссии в соответствии с примерным вариантом осуществления настоящего изобретения. На фиг.6 показан вид в поперечном сечении устройства 505 тестирования на основе акустической эмиссии по фиг.5 в соответствии с примерным вариантом осуществления настоящего изобретения. Как показано на фиг.5 и 6, система 500 тестирования на основе акустической эмиссии включает в себя устройство 505 тестирования на основе акустической эмиссии, соединенное с возможностью обмена данными с блоком 590 записи данных. Устройство 505 тестирования на основе акустической эмиссии включает в себя резцедержатель 510, резец 100, индентор 550 и акустический датчик 570. В некоторых вариантах осуществления, однако, резцедержатель 510 является необязательным. Хотя резец 100 представлен в примерном варианте осуществления, образец 2300 горной породы (по фиг.23) заменяет резец 100 в альтернативных примерных вариантах осуществления.

На фиг.7 показан вид в перспективе резцедержатель 510 в соответствии с примерным вариантом осуществления настоящего изобретения. Как показано на фиг.5, 6 и 7, резцедержатель 510 включает в себя первую поверхность 712, вторую поверхность 714 и боковую поверхность 716. Первая поверхность 712 расположена в плоскости, которая, по существу, параллельна плоскости, в которой расположена вторая поверхность 714. Боковая поверхность 716 продолжается от первой поверхности 712 до второй поверхности 714. В соответствии с некоторыми примерными вариантами осуществления, боковая поверхность 716 расположена, по существу, перпендикулярно, по меньшей мере, одной из первой поверхности 712 и второй поверхности 714. В соответствии с альтернативными примерными вариантами осуществления, боковая поверхность 716 не является, по существу, перпендикулярной ни первой поверхности 712, ни второй поверхности 714. Резцедержатель 510 изготовлен из стали; однако, в соответствии с другими примерными вариантами осуществления, резцедержатель 510 изготовлен из любого металла, древесины или другого соответствующего материала, известного специалистам в данной области техники, который позволяет выдерживать нагрузку 580, как описано более подробно ниже, которая может быть приложена. Нагрузка 580 может находиться в диапазоне от приблизительно ноль килоньютонов до приблизительно семидесяти килоньютонов. В некоторых примерных вариантах осуществления соответствующий материал может быть механически обработан или сформован и выполнен с возможностью распространения в нем звука. В определенных примерных вариантах осуществления соответствующий материал выполнен с возможностью распространения в нем звука со скоростью приблизительно 1 километр в секунду или выше.

Резцедержатель 510 выполнен так, что он имеет, по существу, цилиндрическую форму, в которой первая поверхность 712 имеет, по существу, круглую форму, вторая поверхность имеет, по существу, круглую форму, и боковая поверхность 716 имеет, по существу, изогнутую форму. Однако, боковая поверхность 716 включает в себя соединительный участок 730, который является, по существу, плоским, или имеет плоскую поверхность и продолжается от первой поверхности 712 до второй поверхности 714. Соединительный участок 730 предоставляет поверхность для соединения акустического датчика 570 для резцедержателя 510. В некоторых примерных вариантах осуществления соединительный участок 730 не продолжается по всей длине от первой поверхности 712 до второй поверхности 714. В некоторых примерных вариантах осуществления акустический датчик 570 имеет такие размеры, что акустический датчик 570 может быть соединен с боковой поверхностью 716, которая имеет изогнутую форму. Таким образом, соединительный участок 730 является необязательным в таких примерных вариантах осуществления. Хотя одна примерная форма предусмотрена для резцедержателя 510, резцедержатель 510 может иметь любую другую или не геометрическую форму, такую как цилиндр в форма квадрата или цилиндр в форме треугольника, без отступа от объема и сущности примерного варианта осуществления.

Полость 720 сформирована в резцедержателе 510, и ее размеры выбраны так, чтобы в нее можно было устанавливать резец 100 или некоторый другой твердый или сверхтвердый материал, такой как образец 2300 горной породы (фиг.23), что дополнительно описано ниже. Полость 720 имеет размеры, несколько большие в диаметре, чем диаметр резца 100, обеспечивая, таким образом, возможность простой и свободной установки резца 100 внутри полости 720. Полость 720 продолжается от первой поверхности 712 в направлении второй поверхности 714, но не достигает второй поверхности 714. В других примерных вариантах осуществления полость 720 продолжается от первой поверхности 712 до второй поверхности 714 и продолжается через резцедержатель 510, формируя, таким образом, отверстие в резцедержателе 510. Полость 720 выполнена круглой по форме, но имеет любую другую геометрическую или не геометрическую форму в других примерных вариантах осуществления. Полость 720 сформирована путем механической обработки резцедержателя 510 или формования резцедержателя 510, так, чтобы в нем сформировалась полость 720. В качестве альтернативы, полость 720 сформирована с использованием других способов, известных специалистам в данной области техники. В некоторых примерных вариантах осуществления полость 720 сформирована так, чтобы обеспечить правильное выравнивание резца 100 одинаковым образом каждый раз, когда резец 100 вставляют в полость 720.

Резец 100 ранее был описан со ссылкой на фиг.1 и применим для примерных вариантов осуществления. Вкратце, резец 100 включает в себя подложку 110 и пластину 120 резца, которая сформирована или которая соединена с верхней частью подложки 110. В примерном варианте осуществления пластина 120 резца сформована из PDC, но в альтернативных примерных вариантах осуществления пластина 120 резца изготовлена из других твердых или сверхтвердых материалов, таких как PCBN, без выхода за пределы объема и сущности примерного варианта осуществления. Хотя резец 100 имеет плоскую пластину 120 резца, или выполнен цилиндрическим, пластина 120 резца может быть выполнена куполообразной, с вогнутой формой или любой другой формой, известной специалистам в данной области техники.

Резец 100 включает в себя обработанные и/или отшлифованные резцы, а также "необработанные" резцы. "Необработанные" резцы являются необработанными и представляют собой резцы, которые обычно доступны непосредственно из пресс-формы. Варианты осуществления настоящего изобретения обеспечивают возможность тестирования обоих этих типов резцов. Поскольку изготовители резцов имеют возможность тестировать "необработанные" резцы, в соответствии с вариантами осуществления настоящего изобретения, изготовители резцов имеют возможность гарантировать, чтобы они удовлетворяют спецификации уже на ранних этапах производства резца. Если изготовители резцов определяют, что "необработанные" резцы 100 не удовлетворяют соответствующим спецификациям, они имеют возможность выполнить необходимые изменения в своих операционных параметрах, для получения "хороших" резцов перед дальнейшим производством резцов. Кроме того, "необработанные" резцы могут тестироваться при более низком уровне килоньютонов или нагрузки, для гарантирования того, что "необработанные" резцы не будут трескаться после определенной нагрузки. Если возникают трещины во время тестирования "необработанных" резцов, изготовители резцов могут отказаться от дополнительных затрат, связанных с окончательной обработкой и шлифовкой этих "необработанных резцов; избегая, таким образом, ненужных затрат. Следовательно, каждый "необработанный" резец может быть тестирован в системе 500 тестирования на основе акустической эмиссии, с использованием более низких уровней нагрузки, для гарантирования того, чтобы резцы 100 являются "хорошими" резцами.

На фиг.6 резец 100 вставлен в полость 720 резцедержателя 510. Резец 100 ориентирован внутри полости 720 так, что пластина 120 резца обращена в направлении первой поверхности 712, или от второй поверхности 714. В соответствии с этим примерным вариантом осуществления, весь резец 100 вставлен в полость 720. Однако, в альтернативных примерных вариантах осуществления, участок резца 100, который включает в себя всю подложку 110, полностью вставлен в полость 720. Таким образом, в этих альтернативных примерных вариантах осуществления, по меньшей мере, участок пластины 120 резца не вставлен в полость 720. После того, как резец 100 будет вставлен в полость 720, воздушный зазор 610 формируют между внешней кромкой резца 100 и внешней поверхностью полости 720. В соответствии с некоторыми примерными вариантами осуществления, смазку 620 наносят на внешнюю кромку резца 100 или помещают внутрь полости 720. В этих примерных вариантах осуществления, после того, как резец 100 будет помещен в полость 720, смазка 620 заполняет, по меньшей мере, участок воздушного зазора 610 так, что смазка 620 налипает, как на внешнюю поверхность полости 720, так и на внешнюю кромку резца 100 и занимает участок воздушного зазора 610 между ними. В других примерных вариантах осуществления смазка 620 помещена, по меньшей мере, между нижней поверхностью полости 720 и основанием резца 100. Смазка 620 улучшает акустическую передачу между резцом 100 и акустическим датчиком 570. Смазка 620 представляет собой гель, такой как ультразвуковой гель, в соответствии с некоторыми примерными вариантами осуществления. Однако, в альтернативных примерных вариантах осуществления, другие материалы можно использовать в качестве смазки 620, которые включают в себя, но не ограничиваются этим, масла, густую смазку и лосьоны. Эти материалы могут быть распределены с прилипанием их к поверхностям, и медленно высыхают. Хотя резец 100 описан, как используемый в этом примерном варианте осуществления, другие твердые или сверхтвердых материалы, для которых требуется выполнить тестирование жесткости, могут использоваться вместо резца 100.

Как снова показано на фиг.5 и 6, индентор 550 выполнен с куполообразной формой на первом торце 650 и имеет плоскую поверхность на втором торце 652. Индентор 550 изготовлен так, чтобы он был более жестким, чем резец 100 таким образом, что после приложения нагрузки 580 к индентору 550, повреждение возникает в резце 100, а не в инденторе 550. Например, индентор 550 изготовлен из карбида вольфрама и кобальта; однако, другие материалы, известные специалистам в данной области техники, могут использоваться для изготовления индентора 550. В некоторых примерных вариантах осуществления содержание кобальта индентора 550 находится в диапазоне от приблизительно шесть процентов до приблизительно двадцать процентов. В некоторых примерных вариантах осуществления содержание кобальта в инденторе 550 больше, чем содержание кобальта в пластине 120 резца для резца 100. Кроме того, в некоторых примерных вариантах осуществления, слой PDC сформирован или установлен на первый торец 650 индентора 550. В этих вариантах осуществления содержание кобальта слоя PDC индентора 550 больше, чем содержание кобальта пластины 120 резца для резца 100. Кроме того, в этих примерных вариантах осуществления, содержание кобальта слоя PDC индентора 550 находится в диапазоне приблизительно от шести процентов до приблизительно двадцати процентов. Хотя кобальт используется в этих примерных вариантах осуществления для того, чтобы сделать индентор более жестким, чем резец 100, другие материалы, известные специалистам в данной области техники, можно использовать в альтернативных примерных вариантах осуществления.

Индентор 550 имеет такие размеры, чтобы он мог помещаться в полости 720 так, что он находится в контакте с резцом 100. В некоторых примерных вариантах осуществления периметр индентора 550 имеет размеры, по существу, аналогичные периметру полости 720. Однако, в примерных вариантах осуществления, когда, по меньшей мере, часть пластины 120 резца не находится внутри полости 720, индентор 550 может иметь такие размеры, чтобы периметр индентора 550 был больше, чем периметр полости 720. Индентор 550 ориентирован так, что первый торец 650 находится в контакте с резцом 100. Таким образом, в этом варианте осуществления, слой PDC индентора 550 находится в контакте со слоем PDC, или пластиной 120 резца для резца 100. Нагрузку 580 прикладывают ко второму торцу 652, который передает эту нагрузку 580 на резец 100. Хотя индентор 550 куполообразной формы используется в этих примерных вариантах осуществления, в других примерных вариантах осуществления могут использоваться инденторы, имеющие другие формы. Кроме того, второй торец 652 может быть сформирован с другой неплоской формой, без выхода за пределы объема и сущности примерных вариантов осуществления.

Акустический датчик 570 представляет собой пьезоэлектрический датчик, который расположен вдоль соединительного участка 730 резцедержателя 510. Однако, акустический датчик 570 может представлять собой любой другой тип устройства, известный специалистам в данной области техники, в котором устройство выполнено с возможностью дете