Новые производные пирана, их получение и применение в парфюмерии

Иллюстрации

Показать все

Изобретение относится к соединениям формулы I и Ia, в которых R выбран из группы, состоящей из 1-пентила, 3-пентила, 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила, и R′ представляет собой карбонильную группу, замещенную атомом водорода или линейной или разветвленной C1-С6-алкильной группой, или линейной или разветвленной C2-С6-алкенильной группой, при условии, что R не является 1-пентилом в формуле I. Эти соединения могут быть использованы в парфюмерии и/или в ароматизирующих композициях в качестве душистых веществ. Изобретение также относится к способу получения этих и промежуточных соединений. 4 н.и 8 з.п. ф-лы, 2 табл., 12 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к области запахов и ароматов. Конкретнее, изобретение относится к новым производным пирана, способу их получения и их применению в областях парфюмерии и ароматизации.

Уровень техники

Тетрагидропираны и дигидропираны принадлежат к важному классу душистых ингредиентов, и уже была проведена большая работа для получения известных соединений, таких как розеноксид и подобных производных, из линейных или разветвленных алкил- и алкенилальдегидов, как описано в патенте США 3681263 и WO 04/009749, или из бензиловых альдегидов, как описано в патенте Швейцарии 655932.

Подобным образом, пиранолы, так же, как их сложноэфирные или простые эфирные производные, оказались интересными для промышленности ароматических веществ, как показано в патенте США 4963285 и патенте США 4962090.

Разработка новых душистых производных пирана представляет собой серьезную задачу, поскольку такие соединения хорошо смешиваются с другими душистыми ингредиентами и обладают хорошей стабильностью в любого сорта парфюмерных основах, используемых в косметических средствах, хозяйственных товарах для дома и так далее.

Решаемая проблема

Заявитель, таким образом, сфокусировался на получении новых производных пирана.

Потребность в новых соединениях имеет большое значение для развития промышленности душистых веществ, которой недавно пришлось столкнуться с более строгими международными регулирующими требованиями относительно применения определенных материалов, а также с озабоченностью состоянием окружающей среды и потребительским спросом на повышенное качество. Разработка новых душистых и/или ароматизирующих соединений также важна для обеспечения альтернативы уже существующими душистым и/или ароматизирующим соединениям, чтобы минимизировать риск аллергических реакций вследствие повторного воздействия одних и тех же соединений. Создание новых душистых и/или ароматизирующих соединений, а также способа производства таких соединений, следовательно, является задачей изобретения.

Другими словами, цель настоящего изобретения заключается в том, чтобы предоставить новый способ производства душистых соединений, а также такие соединения.

Сущность изобретения

Изобретение относится к способу получения соединений формулы (I)

в которой R представляет линейную или разветвленную C5-алкильную группу,

причем способ включает взаимодействие соединения формулы (III)

в которой R является таким, как определено в отношении формулы (I),

с соединением формулы (IV)

в присутствии кислоты. Реакцию проводят в органическом растворителе, выбранном из группы, включающей толуол, ксилол, триметилбензол, циклогексан и метилциклогексан, при температуре от 70°C до температуры кипения с обратным холодильником, предпочтительно при 80°C до 90°C, и еще более предпочтительно при приблизительно 80°C, с получением соединения формулы (I).

Изобретение включает все изомеры соединений формулы (I).

В предпочтительном варианте осуществления соединение формулы (III) выбрано из группы, включающей 2-этилбутиральдегид и гексаналь.

Кислота предпочтительно выбрана из группы, включающей п-толуолсульфоновую кислоту (PTSA), H2SO4 и кислоты на подложке, в частности кислоты на подложке из ионообменных смол или глин. Особенно предпочтительными кислотами на подложке являются H2SO4, сульфоновая кислота и ZnCl2 на подложке из глины, такой как монтмориллонит, или из ионообменной смолы. Примеры подходящих катализаторов на подложке включают H2SO4 на подложке из ионообменной смолы, распространяемую на рынке, например, под торговым наименованием Amberlyst® 15; сульфоновую кислоту на подложке из монтмориллонита, распространяемую на рынке под торговым наименованием Montmorillonite KSF; и ZnCl2 на подложке из монтмориллонита, распространяемый на рынке под торговым наименованием Montmorillonite K10. Главное преимущество кислот на подложке заключается в том, что они просты в использовании, в частности с точки зрения их отделения от продукта реакции. Более того, определенные кислоты, такие как, например, Amberlyst® 15, могут быть использованы в ходе нескольких циклов до проявления потери активности.

Кислоты на подложке предпочтительно используют в количестве от 5 до 50%, предпочтительно от 10 до 30%, и более предпочтительно в количестве приблизительно 10% по массе относительно массы соединения (III).

Кислоты, не нанесенные на подложку, такие как п-толуолсульфоновая кислота (PTSA) и H2SO4 предпочтительно используют в количестве от 1 до 10%, предпочтительно от 2 до 5%, и более предпочтительно в количестве приблизительно 5% по массе относительно массы соединения (III).

Кислота может также представлять собой галогенированную карбоновую кислоту или смесь карбоновой кислоты и галогенированной карбоновой кислоты. Предпочтительной карбоновой кислотой является уксусная кислота, а предпочтительной галогенированной карбоновой кислотой является трифторуксусная кислота. В случае использования в виде смеси молярное отношение карбоновая кислота/галогенированная карбоновая кислота, в частности уксусная кислота/трифторуксусная кислота, заключено между 0:100 и 99:1, предпочтительно между 50:50 и 95:5, и более предпочтительно молярное отношение составляет приблизительно 85:15. Главное преимущество применения смеси карбоновой кислоты и галогенированной карбоновой кислоты вместо единственной галогенированной карбоновой кислоты заключается в уменьшении расходов. Чем больше галогенированной карбоновой кислоты заменено на карбоновую кислоту, тем в большей степени интересным с экономической точки зрения является способ.

Когда кислота представляет собой галогенированную карбоновую кислоту или смесь карбоновой кислоты и галогенированной карбоновой кислоты, способ изобретения дополнительно включает стадию омыления, чтобы получить пиранол формулы (I).

В предпочтительном аспекте изобретения реакцию соединений (III) и (IV) проводят в течение от 1 до 48 часов, предпочтительно от 1 до 8 часов, и более предпочтительно в течение приблизительно 2 часов.

Способ изобретения позволяет получить соединения формулы (I) с хорошими выходами. Предпочтительными соединениями формулы (I) являются такие, в которых R выбран из группы, состоящей из 1-пентила, 2-пентила, 3-пентила (1-этилпропила), 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила. Новые соединения формулы (Ia). Особенно предпочтительными соединениями формулы (I) являются 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ол и 2-(1-пентил)-4-метил-тетрагидро-2H-пиран-4-ол.

В варианте способа изобретения способ дополнительно включает стадию взаимодействия соединения формулы (I) с ангидриром кислоты формулы (V)

R'-O-R' (V), или

ацилгалогенидом формулы (VI)

R'-X (VI),

в которых R' представляет собой карбонильную группу, замещенную водородом или линейной или разветвленной C1-C6-алкильной группой, или линейной или разветвленной C2-C6-алкенильной группой, с получением соединения формулы (Ia)

в которой R является таким, как определено в отношении формулы (I), а R' является таким, как определено в отношении формул (V) и (VI).

Предпочтительно, R' выбран из группы, состоящей из ацетила, пропионила, кротонила (бут-2-еноила), 2-метилбут-2-еноила, бутирила, изо-бутирила, 2-метилбутирила, валерила, изо-валерила, 2-метилвалерила, 3-метилвалерила, гексеноила, гекс-3-еноила.

Предпочтительными соединениями формулы (Ia) являются 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ил-ацетат, 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир пропионовой кислоты, 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир бут-2-еновой кислоты, 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир бут-3-еновой кислоты и 4-метил-2-(1-пентил)-тетрагидро-2H-пиран-4-ил-ацетат.

Этерификацию проводят согласно способам, известным в области техники.

Способ по изобретению может включать между циклизацией и этерификацией стадию очистки соединения формулы (I). Однако этерификация может быть также проведена с использованием неочищенного пиранола формулы (I). Промежуточная очистка является особенно предпочтительной, если реакционная смесь содержит побочные продукты, которые сложно отделить от конечного сложного эфира, но которые могут быть с большей легкостью отделены от пиранола формулы (I).

В другом аспекте изобретения способ дополнительно включает дегидратацию соединения формулы (I) с тем, чтобы получить соединение формулы (II)

в которой R является таким, как определено в отношении формулы (I), а пунктирные линии представляют двойную связь, включающую атом углерода в 4 положении.

Дегидратацию предпочтительно проводят в растворителе, выбранном из группы, состоящей из толуола, ксилола, триметилбензола, циклогексана и метилциклогексана. Ее предпочтительно проводят в том же растворителе, в котором осуществляют получение соединения (I). Реакцию проводят при температуре от приблизительно 70°C до температуры кипения с обратным холодильником, предпочтительно при температуре кипения с обратным холодильником.

В еще одном аспекте изобретения способ включает после дегидратации соединения формулы (I), проводимой для получения соединения формулы (II), стадию гидрирования соединения (II) с тем, чтобы получить соответствующий 4-метил-тетрагидропиран формулы (II')

Гидрирование проводят согласно любому подходящему способу гидрирования, известному в области техники. Подходящим способом является гидрирование в присутствии Pd (палладия) на древесном угле.

Изобретение также относится к соединениям формулы (II) и

в которой R выбран из группы, состоящей из 3-пентила, 1-(2-метилбутила), 1-(3-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила) и 1-(2,2-диметил)пропила,

а пунктирные линии представляют двойную связь, включающую атом углерода в 4 положении. Соединения формулы (II) представляют собой, следовательно,

в которых R является таким, как определено в отношении общей формулы (II).

Предпочтительные соединения формулы (II) выбраны среди 4-метилен-2-(3-пентил)-тетрагидро-2H-пирана, 4-метил-2-(3-пентил)-5,6-дигидро-2H-пирана, 4-метил-2-(3-пентил)-3,6-дигидро-2H-пирана, 4-метилен-2-(1-пентил)-тетрагидро-2H-пирана, 4-метил-2-(1-пентил)-5,6-дигидро-2H-пирана, 4-метил-2-(1-пентил)-3,6-дигидро-2H-пирана.

Изобретение дополнительно относится к соединениям формулы (II')

в которой R представляет линейную или разветвленную C5-алкильную группу, предпочтительно группу, выбранную из группы, состоящей из 1-пентила, 2-пентила, 3-пентила (1-этилпропила), 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила.

Избранные новые соединения формул (I) и (Ia) представляют собой другую цель изобретения. Новыми соединениями формулы (I)

являются соединения, в которых R выбран из группы, состоящей из 3-пентила (1-этилпропила), 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила. Особенно предпочтительным соединением формулы (I) является 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ол.

Новыми соединениями формулы (Ia)

являются соединения, в которых R выбран из группы, состоящей из 1-пентила, 3-пентила, 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила, и R' представляет собой карбонильную группу, замещенную атомом водорода или линейной или разветвленной C1-C6-алкильной группой, или линейной или разветвленной C2-C6-алкенильной группой. Предпочтительно, R' выбран из группы, состоящей из ацетила, пропионила, кротонила (бут-2-еноила), 2-метилбут-2-еноила, бутирила, изо-бутирила, 2-метилбутирила, валерила, изо-валерила, 2-метилвалерила, 3-метилвалерила, гексеноила и гекс-3-еноила. Особенно предпочтительными соединениями формулы (Ia) являются 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ил-ацетат, 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир пропионовой кислоты, 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир бут-2-еновой кислоты, 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир бут-3-еновой кислоты и 4-метил-2-(1-пентил)-тетрагидро-2H-пиран-4-ил-ацетат.

Соединения изобретения демонстрируют интересные обонятельные свойства. В частности, по сравнению с флоролом (2-изобутил-4-метил-тетрагидро-2H-пиран-4-олом), даже несмотря на то, что 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ол показывает менее интенсивный начальный аромат, его нота сохраняется дольше, и он очень хорошо смешивается в цветочной композиции, усиливая (подчеркивая) другие соединения основной ноты. Соединения изобретения, следовательно, представляют особый интерес в области парфюмерии.

Другой целью изобретения является, таким образом, применение соединения формулы (I), в которой R выбран из группы, состоящей из 3-пентила (1-этилпропила), 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила; формулы (Ia), в которой R выбран из группы, состоящей из 1-пентила, 3-пентила, 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила, и R' представляет собой карбонильную группу, замещенную атомом водорода или линейной или разветвленной C1-C6-алкильной группой, или линейной или разветвленной C2-C6-алкенильной группой; формулы (II), в которой R представляет собой линейный или разветвленный C5-алкил, а пунктирные линии представляют двойную связь, включающую атом углерода в 4 положении; или формулы (II'), в которой R представляет собой линейный или разветвленный C5-алкил, в области парфюмерии для получения парфюмерных основ и концентратов, ароматизирующих веществ, душистых веществ; композиций для топического применения; косметических композиций, таких как кремы для лица и тела, очистителей, средств для ухода за лицом, тальковых порошков, масел для волос, шампуней, лосьонов для волос, масел и солей для ванн, гелей для душа и ванны, мыл, антиперспирантов и дезодорантов для тела, кремов и лосьонов перед бритьем, для бритья и после бритья, кремов, зубных паст, средств для промывания полости рта, помад; и продуктов для чистки, таких как умягчители, детергенты, дезодоранты воздуха и хозяйственных чистящих материалов.

Изобретение также относится к применению соединения формулы (I), в которой R выбран из группы, состоящей из 3-пентила (1-этилпропила), 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила; формулы (Ia), в которой R выбран из группы, состоящей из 1-пентила, 3-пентила, 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила, и R' представляет собой карбонильную группу, замещенную атомом водорода или линейной или разветвленной C1-C6-алкильной группой, или линейной или разветвленной C2-C6-алкенильной группой; формулы (II), в которой R представляет собой линейный или разветвленный C5-алкил, а пунктирные линии представляют двойную связь, включающую атом углерода в 4 положении; или формулы (II'), в которой R представляет собой линейный или разветвленный C5-алкил, в качестве ароматизирующего агента для изготовления продуктов питания, напитков и табака. Продукты питания и напитки выбраны предпочтительно из группы, состоящей из молочных продуктов, мороженого, супов, соусов, соусов для обмакивания, блюд, мясных продуктов, кулинарных добавок, соленых бисквитных печений, легких закусок, безалкогольных напитков, пива, вина и алкогольных напитков.

Изобретение также относится к применению соединения формулы (I), в которой R выбран из группы, состоящей из 3-пентила (1-этилпропила), 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила; формулы (Ia), в которой R выбран из группы, состоящей из 1-пентила, 3-пентила, 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила, и R' представляет собой карбонильную группу, замещенную атомом водорода или линейной или разветвленной C1-C6-алкильной группой, или линейной или разветвленной C2-C6-алкенильной группой; формулы (II), в которой R представляет собой линейный или разветвленный C5-алкил, а пунктирные линии представляют двойную связь, включающую атом углерода в 4 положении; или формулы (II'), в которой R представляет собой линейный или разветвленный C5-алкил, в качестве маскирующего запахи и/или ароматы агента, например в фармацевтических, косметических или пищевых композициях.

Изобретение также обеспечивает применение соединения формулы (I), в которой R выбран из группы, состоящей из 3-пентила (1-этилпропила), 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила; формулы (Ia), в которой R выбран из группы, состоящей из 1-пентила, 3-пентила, 1-(2-метилбутила), 2-(2-метилбутила), 2-(3-метилбутила), 1-(3-метилбутила) и 1-(2,2-диметил)пропила, и R' представляет собой карбонильную группу, замещенную атомом водорода или линейной или разветвленной C1-C6-алкильной группой, или линейной или разветвленной C2-C6-алкенильной группой; формулы (II), в которой R представляет собой линейный или разветвленный C5-алкил, а пунктирные линии представляют двойную связь, включающую атом углерода в 4 положении; или формулы (II'), в которой R представляет собой линейный или разветвленный C5-алкил, в сочетании с другими парфюмерными или ароматизирующими ингредиентами, растворителями или добавками, или фиксаторами.

Соединения изобретения могут быть использованы в концентрации, заключенной в диапазоне от 0,001% до 99% по массе, предпочтительно от 0,1% до 50% по массе, более предпочтительно от 0,1% до 30% по массе. Специалисту в данной области известно, что данные значения зависят от природы композиции/изделия, подлежащей(его) модификации душистым веществом и/или ароматизации, желаемой интенсивности запаха и/или аромата и природы других ингредиентов, присутствующих в указанной(ом) композиции или изделии. Согласно предпочтительному варианту осуществления изобретения соединения используют в количестве, достаточном для того, чтобы вызвать обонятельный эффект.

Определения

Термины "душистый" и "душистое вещество", использованные в данной заявке, используются взаимозаменяемо всякий раз, когда указывается на соединение или смесь соединений, которое(ая) предназначено(а) для того, чтобы вызвать ощущение приятного запаха.

Термины "аромат" и "ароматизирующее вещество", использованные в данной заявке, используются взаимозаменяемо всякий раз, когда указывается на соединение или смесь соединений, которое(ая) предназначено(а) для того, чтобы вызвать ощущение вкуса и запаха. Также в значении, относящемся к изобретению, термин "ароматизация" относится к приданию аромата любой жидкости или твердому веществу, человеку или животному, в частности напиткам, молочным продуктам, мороженому, супам, соусам, соусам для обмакивания, блюдам, мясным продуктам, кулинарным добавкам, соленым бисквитным печеньям или легким закускам. Он также означает ароматизацию пива, вина и табака.

Термин "количество, достаточное для того, чтобы вызвать обонятельный эффект", использованный в данной заявке, означает содержание или количество душистого/ароматизирующего соединения, присутствующего в материале, при котором включенное в состав соединение показывает сенсорный эффект.

Под термином "маскирование" подразумевается уменьшение или устранение зловония или ощущения неприятного аромата, вызванного одной или более молекулами, входящими в состав продукта.

Термин "изомер" в настоящем изобретении обозначает молекулы, имеющие одну и ту же химическую формулу, что означает одно и то же число атомов одного и того же типа, но в которых атомы имеют различное расположение. Термин "изомер" включает структурные изомеры, геометрические изомеры, оптические изомеры и стереоизомеры. Он, в частности, включает цис-/транс-изомеры соединений формул (I) и (Ia), причем цис-изомер представляет собой изомер, в котором R и гидроксильная группа оба расположены по одну сторону цикла, а транс-конфигурация представляет собой конфигурацию, в которой R и гидроксильная группа расположены по разные стороны цикла.

Термин "линейная или разветвленная C5-алкильная группа" включает все алкильные группы, содержащие пять атомов углерода. Линейным C5-алкилом является 1-пентил. Разветвленными C5-алкильными группами являются 2-пентил, 3-пентил, 1-(2-метилбутил), 2-(2-метилбутил), 2-(3-метилбутил), 1-(3-метилбутил) и 1-(2,2-диметил)пропил.

Настоящее изобретение будет лучше понято со ссылкой на следующие примеры. Данные примеры предназначены иллюстрировать конкретные варианты осуществления изобретения и не подразумеваются в качестве ограничения объема изобретения.

Пример 1: Получение 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ола

2 М раствор 2-этилбутиральдегида (1 эквивалент) и 3-метил-3-бутен-1-ола (1 эквивалент) в толуоле с 10% по массе Montmorillonite K10 кипятят с обратным холодильником или нагревают при 80°C в течение 2 часов. После охлаждения смесь фильтруют на фильтре из спеченного стекла, и растворители испаряют. Затем неочищенную смесь перегоняют, используя колонку Вигре, при пониженном давлении. Для получения более чистого соединения может быть также проведена тонкая перегонка с насадочной колонной.

Результаты суммированы в нижеследующей Таблице.

Условия Температура реакции: кипячение с обратным холодильником 2-этилбутиральдегид:200 г (2 моль) Температура реакции: 80°C 2-этилбутиральдегид:21 г (0,21 моль) Температура реакции: 80°C 2-этилбутиральдегид:100 г (1 моль)
385 г сырого продукта (пираны 33%, пиранолы 51%, простые эфиры 9%)Выход неочищенного (пиранолы) = 53% 37,6 г сырого продукта (пираны 11%, пиранолы 67%, простые эфиры 15%)Выход неочищенного (пиранолы) = 64% 205 г сырого продукта (пираны 15%, пиранолы 58%, простые эфиры 18%)Выход неочищенного (пиранолы) = 64%
Фракции Точка кипения Масса/ Продукт(ы) Точка кипения Масса/ Продукт(ы) Точка кипения Масса/ Продукт(ы)
I 77-80°C/1 кПа 80 гПираны (90% чистота) → 68°C/800 Па 5 гПираны (54%)Пиранолы (35,7%) → 60°C/667 Па 8,6 гПираны (54%)Пиранолы (35,7%)
II 85-100°C/1 кПа 79 гПираны (26%)Пиранолы (67%) 75-90°C/667 Па 18,2 гПиранолы (93% чистота) 96-98°C/667 Па 87 гПиранолы (95% чистота)
III 105°C/800 Па 104 гПиранолы (90% чистота) 105°C/667 Па 5,2 гПиранолы (41%)Простые эфиры пиранила (54%) 109-115°C/667 Па 7,5 гПиранолы (73%)Простые эфиры пиранила (22%)

Получаемый таким образом 2-(1-этилпропил)-4-метил-тетрагидро-пиран-4-ол представляет собой обычно смесь 50:50 цис/транс-изомеров.

Аромат: Главные ноты: зелени, цветочные, ландыша, розовые, розеноксид.

Ноты после высыхания: ландыша, лимонные, мускусные.

Стойкость на промокательной бумаге: 48 часов; больше, чем у розеноксида.

ИК (пленка, см-1): 592сл., 633сл., 882сл., 936сл., 1005сл., 1059сл., 1083ср., 1107ср., 1127ср., 1166ср., 1257сл., 1346сл., 1379ср., 1464ср., 2876с., 2963с., 3407(шир.)ср.

1 ый изомер :

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,86 (т, J=7,1 Гц, 6H); 1,18-1,74 (м, 9H); 1,25 (с, 3H); 3,58 (ддд, J=2,4 Гц, J=5,2 Гц, J=11,3 Гц, 1H); 3,71 (дт, J=2,5 Гц, J=11,9 Гц, 1H); 3,75-3,90 (м, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,50 и 11,55; 21,46; 32,01; 38,86; 41,11; 45,65; 63,80; 68,06; 74,40.

MC [e/m (%)]: 186 (M+), 115 (41), 97 (10), 71 (97), 69 (86), 58 (19), 55 (17), 43 (100), 41 (25).

2 ой изомер :

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,86 (т, J=7,1 Гц, 6H); 1,18-1,74 (м, 9H); 1,31 (с, 3H); 3,24 (ддд, J=2,1 Гц, J=5 Гц, J=11,4 Гц, 1H); 3,38 (дт, J=3 Гц, J=12 Гц, 1H); 3,95 (ддд, J=1,9 Гц, J=5 Гц, J=11,9 Гц, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,44 и 44,59; 21,58; 25,39; 40,81; 42,91; 45,71; 65,55; 69,27; 77,02.

MC [e/m (%)]: 186 (M+), 115 (34), 71 (87), 69 (71), 58 (13), 55 (15), 43 (100), 41 (23).

Пример 2: Получение 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ола

Соединение получают обработкой 2-этилбутиральдегида и 3-метил-3-бутен-1-ола 2 мольными эквивалентами смеси 85:15 уксусная кислота/трифторуксусная кислота. Образовавшуюся смесь затем обрабатывают KOH в кипящем с обратным холодильником этаноле, что дает пиранол.

Характеризация: как в примере 1.

Пример 3: 4-Метилен-2-(пентан-3-ил)-тетрагидро-2H-пиран (II-Aa), 4-метил-2-(пентан-3-ил)-5,6-дигидро-2H-пиран (II-Ab) и 4-метил-2-(пентан-3-ил)-3,6-дигидро-2H-пиран (II-Ac):

Способ A: Соединение получают дегидратацией соответствующего пиранола (пример 1) в присутствии каталитического количества PTSA в кипящем с обратным холодильником толуоле, используя аппарат Дина-Старка.

Способ B: Соединение также непосредственно получают кипячением с обратным холодильником толуольного раствора 2-этилбутиральдегида (1 моль) и 3-метил-3-бутен-1-ола с каталитическим количеством кислоты. По завершении реакции реакционную смесь охлаждают, промывают насыщенным водным раствором бикарбоната натрия и рассолом. Органическую фазу сушат над сульфатом магния и фильтруют. Растворители упаривают, и неочищенный продукт очищают перегонкой. Различные результаты для способа B суммированы в нижеследующей Таблице 2.

Позиция [альдегид] (моль·л-1) Спирт Кислота Время Точка кипения Полученная масса Чистота Соотношение изомеров (a:b:c) Выход
1 2 моль PTSA (5% по массе) 3,5 ч 105-108°C/ 4,4 кПа 90,5 г 91% 60:17:23 51%
2 2 моль PTSA (5% по массе) 3,5 ч 73-75°C/ 800 Па 132 г 83% 54:18:28 65%
3 2 моль PTSA (5% по массе) 12 дней 74°C/ 800 Па 89 г 89% 5:21:79 45%
4 1,5 моль H2SO4 (5% по массе) 2 дня 78°C/ 800 Па 82 г 84% 3:13:94 41%
5 1 моль H2SO4 (2% по массе) 2 дня 92°C/ 2,0 кПа 67 г 98% 9:18:73 40%
6(*) 1,2 моль PTSA (2% по массе) 1 день 94-96°C/ 2,3 кПа 116 г 88% 3:21:76 61%
(*) 3-метил-3-бутен-1-ол прибавляли по каплям к кипящему с обратным холодильником раствору альдегида с кислотой.

Полученный продукт представляет собой смесь изомеров ( II-Aa ), ( II-Ab ) и ( II-Ac ).

Аромат: Главные ноты: зелени, розовые, металлические, фруктовый петигрен (манго, бергамот), розеноксид, одеколонные.

Ноты после высыхания: нет.

Тонкая перегонка с насадочной колонной дает весьма обогащенные фракции различных пиранов a, b или c. В особенности, a и c получены как чистые соединения.

ИК (пленка, см-1): 887ср., 1061ср., 1095с, 1112ср., 1379ср., 1462ср., 1654ср., 2846ср., 2875с, 2936с, 2962с.

4-Метилен-2-(пентан-3-ил)-тетрагидро-2H-пиран (II-Aa) :

1H-ЯМР (500 МГц, CDCl3): δ (м.д.): 0,85 (т, J=7,5 Гц, 3H); 0,86 (т, J=7,4 Гц, 3H); 1,18-1,52 (м, 5H); 2,01 (т, J=12,2 Гц, 1H); 2,09 (уширенный дд, J=0,8 Гц, J=13,3 Гц, 1H); 2,15 (уширенный д, J=13,1 Гц, 1H); 2,25 (дт, J=5,6 Гц, J=12,8 Гц, 1H); 3,16 (ддд, J=2,2 Гц, J=5,5 Гц, J=11,2 Гц, 1H); 3,30 (ддд, J=2,5 Гц, J=10,5 Гц, J=11,5 Гц, 1H); 4,04 (дд, J=5,6 Гц, J=10,8 Гц, 1H); 4,68 (с, 2H).

13C-ЯМР (125 МГц, CDCl3): δ (м.д.) 11,4; 21,4 и 21,5; 35,4; 37,8; 45,8; 68,9; 80,5; 108,1; 145,4.

МС [e/m (%)]: 168 (M+, 4), 97(100), 96(30), 69(19), 68(21), 67(54), 55(16), 53(16), 43(16), 41(28).

Аромат: зелени (петрушка), фруктовый (груша, кожица зеленой груши), розеноксид, петигрен.

4-метил-2-(пентан-3-ил)-5,6-дигидро-2H-пиран (II-Ab)

1H-ЯМР (500 МГц, CDCl3): δ (м.д.): 0,87 (д, J=7,5 Гц, 3H); 0,87 (т, J=6,0 Гц, 3H); 1,18-1,52 (м, 5H); 1,67 (с, 3H); 1,79 (дт, J=5,5 Гц, J=13,1 Гц, 1H); 2,16-2,24 (м, 1H); 3,55 (дт, J=3,6 Гц, J=10,9 Гц, 1H); 3,96 (ддд, J=1,3 Гц, J=5,9 Гц, J=11,1 Гц, 1H); 4,0-41 (м, 1H); 5,28 (с, 1H).

13C-ЯМР (125 МГц, CDCl3): δ (м.д.) 12,0 и 12,1; 21,9 и 22,3; 23,2; 30,2; 46,2; 64,0; 75,5; 122,7; 132,7.

MC [e/m (%)]: 168 (M+, 1), 97(100), 43(12), 41(16).

4-метил-2-(пентан-3-ил)-3,6-дигидро-2H-пиран (II-Ac):

1 H-ЯМР (500 МГц, CDCl3): δ (м.д.): 0,87 (т, J=7,5 Гц, 6H); 1,2-1,28 (м, 1H); 1,27-1,35 (м, 1H); 1,35-1,47 (м, 1H); 1,45-1,55 (м, 2H); 1,68 (с, 3H); 1,71-1,78 (м, 1H); 1,97-1,06 (м, 1H); 3,38 (ддд, J=3,3 Гц, J=6,1 Гц, J=10,0 Гц, 1H); 4,11 (кв., J=15,8 Гц, 2H); 5,39 (м, 1H).

13C-ЯМР (125 МГц, CDCl3): δ (м.д.) 11,2 и 11,3; 21,2 и 21,3; 23,1; 32,9; 45,6; 66,2; 75,4; 119,6; 132,2.

MC [e/m (%)]: 168 (M+, 5), 124(9), 97(62), 71(17), 69(100), 68(48), 67(32), 55(27), 53(17), 43(40), 41(50).

Пример 4: 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ил-ацетат

Соединение получают взаимодействием соответствующего пиранола (пример 1) с уксусным ангидридом при 60°C в течение 2-3 часов. Избыток уксусного ангидрирда и уксусную кислоту затем удаляют перегонкой при пониженном давлении. Полученный таким образом продукт разводят в трет-бутилметиловом эфире и раствор промывают водой, насыщенным водным раствором бикарбоната натрия и рассолом. После сушки над сульфатом магния растворитель удаляют упариванием.

Неочищенный продукт очищают перегонкой, которая дает 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-ил-ацетат как смесь изомеров.

Аромат: Главные ноты: зелени, гесперидные жирные пряные

Ноты после высыхания: древесные, пряные (тмин), пудровые/сладкие (метилионон, амбровые, ванильные).

Точка кипения = 72°C/0,51 Торр.

ИК (пленка, см-1): 1020ср., 1083ср., 1109ср., 1144ср., 1236с, 1369ср., 1464ср., 1736с, 2877ср., 2935ср., 2964с.

1 ый изомер:

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,86 (т, J=7,2 Гц, 6H); 1,10-1,65 (м, 7H); 1,61 (с, 3H); 1,86 (дт, J=5,3 Гц, J=12,9 Гц, 2H); 1,7-2,3 (м, 2H); 2,01 (с, 3H); 3,35-3,50 (м, 1H); 3,58 (ддд, J=2,1 Гц, J=11,7 Гц, J=12,5 Гц, 1H); 3,82 (ддд, J=1,2 Гц, J=5,4 Гц, J=11,7 Гц, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,41 и 11,59; 21,56 и 21,65; 21,63; 22,30; 36,50; 38,35; 45,48; 63,61; 74,25; 79,51; 170,39.

MC [e/m (%)]: 228 (M+), 97 (100), 69 (12), 55 (6), 43 (34), 41 (13).

2 ой изомер :

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,86 (т, J=7,2 Гц, 6H); 1,10-1,65 (м, 7H); 1,51 (с, 3H); 1,7-2,3 (м, 2H); 1,97 (с, 3H); 3,29 (ддд, J= 1,6 Гц, J=4,6 Гц, J=11,9 Гц, 1H); 3,35-3,50 (м, 1H); 3,93 (ддд, J=1,7 Гц, J=5,2 Гц, J=12,1 Гц, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,49 и 11,56; 21,51; 22,48; 26,39; 37,82; 39,85; 45,73; 64,74; 76,06; 80,55; 170,27.

MC [e/m (%)]: см. данные для 1го изомера.

Пример 5: Получение 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-илового эфира пропионовой кислоты

2-(1-Этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир пропионовой кислоты получали из соответствующего пиранола (пример 1 или 2) и пропионового ангидрида согласно примеру 4. Он получен в виде смеси изомеров с соотношением 55:45.

Аромат: мирры, печеных бобов, несильный.

ИК (пленка, см-1): 1003сл., 1082ср., 1109ср., 1142ср., 1195с, 1257сл., 1358сл., 1379ср., 1464ср., 1734с, 2877ср., 2938ср., 2964с.

Основной изомер :

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,85 (т, J=7,3 Гц, 6H); 1,11 (т, J=7,2 Гц, 3H); 1,15-1,48 (м, 5H); 1,48-1,60 (м, 2H); 1,50 (с, 3H); 1,95-2,05 (м, 1H); 2,15-2,37 (м, 4H); 3,35-3,55 (м, 2H); 3,82 (ддд, 1H, J=1,1 Гц, J= 5,5 Гц, J=11,7 Гц).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 9,38; 11,37 и 11,58; 21,51; 26,44; 28,86; 36,54; 38,31; 45,45; 63,64; 74,17; 79,17; 173,66.

MC [e/m (%)]: 242 (M+), 169 (2), 168 (2), 153 (2), 140 (5), 97 (100), 69 (15), 57 (17), 43 (43), 41 (13).

Минорный изомер :

1H-ЯМР (200 МГц, CDCl3, избранные данные): δ (м.д.): 1,07 (т, J=7,0 Гц, 3H); 1,61 (с, 3H); 1,82 (дт, J=5,2 Гц, J=12,7 Гц, 2H); 2,05-2,15 (м, 2H); 2,15-2,3 (м, 1H); 3,22-3,5 (м, 1H); 3,55-3,65 (м, 1H); 3,93 (ддд, 1H, J=1,5 Гц, J=5,1 Гц, J=11,8 Гц).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 9,12; 11,46 и 11,53; 21,47 и 21,61; 21,69; 28,71; 37,86; 39,86; 45,71; 64,75; 76,05; 80,24; 173,66.

MC [e/m (%)]: см. данные для основного изомера.

Пример 6: Получение 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-илового эфира бут-2-еновой кислоты и 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран-4-илового эфира бут-3-еновой кислоты

Эфиры получают из соответствующего пиранола (пример 1 или 2) и кротонового ангидрида согласно примеру 4. Их получают в виде смеси изомеров с соотношением 80:20, и они могут быть разделены тонкой перегонкой.

Аромат: кофейный, зеленых орехов, пряный (пажитник, liveche).

ИК (пленка, см-1): 970ср., 997ср., 1060сл., 1083ср., 1104ср., 1142ср., 1188с, 1255ср., 1295ср., 1315ср., 1379ср., 1446ср., 1462ср., 1657ср., 1717с, 2876ср., 2935ср., 2963с.

2-(1-Этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир бут-2-еновой кислоты

Соединение получено в виде смеси энантиомеров E/Z с соотношением 95:5 (соотношение цис/транс-изомеров 50:50).

Изомер 1 (E-изомер):

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,84 (т, J=7,2 Гц, 6H); 1,10-1,67 (м, 7H); 1,52 (с, 3H); 1,85 (дд, J=1,7 Гц, J=6,9 Гц, 3H); 1,97-2,13 (м, 1H); 2,13-2,32 (м, 1H); 3,35-3,52 (м, 1H); 3,59 (дт, J=2,0 Гц, J=12,5 Гц, 1H); 3,81 (дд, 1H, J=4,7 Гц, J=11,6 Гц); 5,79 (кв.д, J=1,6 Гц, J=15,5 Гц, 1H); 6,88 (кв.д, J=6,9 Гц, J=15,4 Гц, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,38 и 11,59; 17,81; 21,51 (2C); 26,48; 36,57; 38,46; 45,46; 63,62; 74,19; 79,17; 124,11; 143,63; 165,61.

Изомер 2 (E-изомер):

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,85 (т, J=7,2 Гц, 6H); 1,10-1,55 (м, 6H); 1,64 (с, 3H); 1,83 (дд, J=1,7 Гц, J=6,9 Гц, 3H); 1,76-1,96 (м, 1H); 1,98-2,15 (м, 2H); 3,30 (ддд, J=1,5 Гц, J=4,5 Гц, J=11,9 Гц, 1H); 3,44 (дт, J=2,3 Гц, J=12,4 Гц, 1H); 3,93 (ддд, J=1,5 Гц, J=5,2 Гц, J=11,9 Гц, 1H); 5,75 (кв.д, J=1,5 Гц, J=15,4 Гц, 1H); 6,86 (кв.д, J=6,9 Гц, J=15,5 Гц, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,47 и 11,54; 17,74; 21,48 и 21,62; 21,71; 31,90; 39,87; 45,71; 64,74; 76,04; 80,26; 124,20; 143,56; 165,62.

MC [e/m (%)]: (изомер 1 (Z или E)) 254 (M+, <1), 168 (2), 153 (2), 140 (6), 97 (100), 69 (34), 55 (6), 43 (13), 41 (21).

MC [e/m (%)]: (изомер 2 (Z или E)) 254 (M+, <1), 97 (100), 69 (33), 55 (5), 43 (12), 41 (17).

2-(1-Этилпропил)-4-метил-тетрагидро-2H-пиран-4-иловый эфир бут-3-еновой кислоты

Соединение получено в виде смеси энантиомеров соотношением 20:80.

Минорные изомеры:

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,84 (т, 6H, J=7,2 Гц); 1,10-1,25 (м, 3H); 1,25-1,70 (м, 3H); 1,50 (с, 3H); 1,94 (д, 1H, J=7,3 Гц); 2,0-2,35 (м, 2H); 3,04 (тд, 2H, J=1,4 Гц, J=7,1 Гц); 5,07-5,12 (м, 1H); 5,15-5,22 (м, 1H); 5,80-6,02 (м, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,35 и 11,53; 21,47; 26,38; 36,44; 38,23; 40,58; 45,40; 63,54; 74,05; 79,89; 118,37; 130,56; 170,58.

MC [e/m (%)]: 254 (M+, <1), 163 (13), 97 (100), 69 (53), 55 (8), 43 (15), 41 (32).

Основные изомеры:

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,85 (т, J=7,2 Гц, 6H); 1,10-1,55 (м, 6H); 1,61 (с, 3H); 1,76-1,96 (м, 1H); 1,98-2,31 (м, 2H); 3,0 (тд, J=1,4 Гц, J=7,0 Гц, 2H); 3,22-3,40 (м, 1H); 3,40-3,52 (м, 1H); 3,87-3,99 (м, 1H); 5,05-5,21 (м, 2H); 5,80-6,02 (м, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 11,44 и 11,53; 21,60 и 21,66; 26,48; 37,78; 39,79; 40,32; 45,68; 64,71; 76,03; 80,94; 118,16; 130,62; 170,60.

MC [e/m (%)]: см. данные для минорных изомеров.

Пример 7: 2-(1-этилпропил)-4-метил-тетрагидро-2H-пиран

Соединение получают гидрированием в присутствии Pd на древесном угле соответствующей смеси пиранов (пример 3).

Оно представляет собой смесь двух диастереоизомеров: цис/транс (72:28).

Аромат: Главные ноты: мятные, какао-порошок, мускусные.

Ноты после высыхания: мускусные, пыльные.

Точка кипения = 76-78°C/1,5 кПа.

Цис-изомер :

1H-ЯМР (CDCl3, 200 МГц): δ (м.д.): 0,80-0,95 (м, 9H); 1,10-1,70 (м, 9H); 3,18 (ддд, 1H, J=1,2 Гц, J=3,28 Гц, J=11,1 Гц); 3,35 (тд, 1H, J=2,1 Гц, J=11,8 Гц); 3,97 (ддд, 1H, J=1,2 Гц, J=4,5 Гц, J=11,3 Гц).

13C-ЯМР (CDCl3, 50 МГц): δ (м.д.) 11,64, 21,67 и 21,76, 22,57, 30,67, 35,04, 36,98, 46,14, 68,32, 79,30.

Транс-изомер :

1H-ЯМР (CDCl3, 200 МГц, избранные данные): δ (м.д.): 1,04 (д, 3H, J=7,1 Гц); 1,65-1,90 (м, 2H); 1,92-2,12 (м, 1H); 3,40-3,95 (м, 3H).

13C-ЯМР (CDCl3, 50 МГц): δ (м.д.) 11,24 и 11,27, 18,44, 21,29 и 21,47, 25,02, 32,33, 34,10, 44,47, 62,92, 73,55.

ИК (пленка, см-1): 1082с, 1097с, 1174ср., 1458ср., 2840с, 2874с, 2928с, 2959с.

MC [e/m (%)]: (цис) 170(M+), 169(1), 99(100), 81(15), 55(22), 43(35), 41(16).

MC [e/m (%)]: (транс) см. выше.

Пример 8: Получение 4-метил-2-(1-пентил)-тетрагидро-2H-пиран-4-ола

Соединение получают из гексаналя и 3-метил-3-бутен-1-ола согласно примеру 1. Оно получено в виде смеси изомеров.

Аромат: Главные ноты: зелени (травы, листьев фиалки), фруктовые (яблока, ананаса), розы.

Ноты после высыхания: более цветочные (жасминовые, розы), фруктовые.

ИК (пленка, см-1): 1087ср., 1111с, 1173ср., 1259ср., 1378ср., 1463ср., 2861с, 2933с, 2958с, 3431ср. (широкая).

Основной изомер :

1H-ЯМР (200 МГц, CDCl3): δ (м.д.): 0,85 (т, J=6,4 Гц, 3H); 1,2-1,8 (м, 12H); 1,21 (с, 3H); 3,39 (дт, J=2,9 Гц, J=12,0 Гц, 1H); 3,50-3,65 (м, 1H); 3,75-3,87 (м, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 13,99; 22,56; 25,14; 31,76; 31,89; 36,14; 38,71; 44,63; 63,56; 67,82; 72,92.

MC [e/m (%)]: 186 (M+), 115 (28), 112 (23), 97 (21), 83 (22), 71 (90), 69 (71), 58 (31), 55 (26), 43 (100), 41 (31).

Минорный изомер :

1H-ЯМР (200 МГц, CDCl3, избранные данные): δ (м.д.): 1,29 (с, 3H); 3,17-3,32 (м, 1H); 3,72 (дт, J=2,4 Гц, J=11,5 Гц, 1H); 3,93 (ддд, J=1,8 Гц, J=5,0 Гц, J=11,9 Гц, 1H).

13C-ЯМР (50 МГц, CDCl3): δ (м.д.) 13,99; 22,56; 25,17; 25,38; 31,83; 36,30; 40,63; 46,57; 65,35; 68,82; 75,87.

MC [e/m (%)]: 186 (M+), 115 (38), 71 (92), 69 (68), 58 (25), 55 (20), 43 (100), 41 (27).

Пример 9: Получение 4-метилен-2-(1-пентил)-тетрагидро-2H-пирана (II-Ba), 4-метил-6-(1-пентил)-3,6-дигидро-2H-пирана (II-Bb) и 4-метил-2-(1-пентил)-3,6-дигидро-2H-пирана (II-Bc)

Смесь (4:33:63) 4-метилен-2-пентил-тетрагидро-пирана ( II-Ba ), 4-метил-6-пентил-3,6-дигидро-2H-пирана ( II-Bb ) и 4-метил-2-пентил-3,6-дигидро-2H-пирана ( II-Bc ) получают из 3-метил-3-бутен-1-ола и гексаналя согласно примеру 3 (Способ B, конкретные условия согласно позиции 6). Изомеры могут быть разделены тонкой перегонкой.

Аромат: Главные ноты: гесперидные (петигрен, мандарин), зелени, розовые, мета