Перекрестное планирование для ответа о произвольном доступе

Иллюстрации

Показать все

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в возможности перекрестного планирования во время процедуры RACH. В процедуре произвольного доступа ответ о произвольном доступе нисходящей линии указывает временное опережение для компонентной несущей или соты (СС/соты) из множества компонентных несущих или сот, или группы несущих СС/сот, к которым применяется временное опережение. Узел eNB или оборудование UE осуществляет радиосвязь с использованием указанной компонентной несущей СС/соты синхронно с временным опережением. Ответ о произвольном доступе указывает также ресурс восходящей линии, предоставленный оборудованию пользователя, который находится на той же самой одной или группе несущих СС/сот. Может быть использована явная индикация одного бита, указывающего группу временного опережения; индекс компонентной несущей СС/соты/группы, присутствие которого в ответе указывается битом флага; индекс компонентной несущей СС/соты/группы в ответе, известный из формата ответа, где индикация формата осуществлена посредством бита в самом ответе, или сигнализации RRC, или неявно из канала RACH и конфигурируемого перекрестного планирования несущей. 6 н. и 13 з.п. ф-лы, 12 ил.

Реферат

Область техники

[0001] Приводимые в качестве примера и неограничивающие формы осуществления данного изобретения относятся, в целом, к системам, способам, устройствам и компьютерным программам для радиосвязи и, более конкретно, касаются перекрестного планирования из одной компонентной несущей или соты для другой компонентной несущей или соты во время процедуры произвольного доступа.

Предпосылки создания изобретения

[0002] Следующие сокращения, которые могут встретиться в описании и/или на фигурах чертежей, определяются следующим образом:

3GPP, third generation partnership project - Проект сотрудничества по разработке сетей подвижной связи третьего поколения

СА, carrier aggregation - Агрегирование несущих

СС, component carrier - Компонентная несущая

GIF, carrier indication field - Поле индикатора несущей

C-RNTI, cell radio network temporary identifier - Временный идентификатор сотовой радиосети

DL, downlink - Нисходящая линия связи

eNB, node В - Узел В/базовая станция в системе E-UTRAN

E-UTRAN, evolved UTRAN (LTE) - Усовершенствованная универсальная сеть наземного радиодоступа (LTE)

LTE, long term evolution - Долгосрочная эволюция UTRAN

LTE-A, long term evolution-advanced - Усовершенствованная LTE

MAC, medium access control - Управление доступом к среде передачи

PCC/PCell, primary component carrier/primary cell - Основная компонентная несущая/основная сота

PDCCH, physical downlink control channel - Физический канал управления нисходящей линии

PDU, protocol data unit - Протокольный блок данных

P-RNTI, paging RNTI - RNTI поисковой связи

PUCCH, physical uplink control channel - Физический канал управления восходящей линии

PUSCH, physical uplink shared channel - Физический совместно используемый канал восходящей линии

RACH, random access channel - Канал произвольного доступа

RA-RNTI, random access RNTI - RNTI произвольного доступа

RAR, random access response - Ответ (на запрос) о произвольном доступе

RNTI, radio network temporary identifier - Временный идентификатор радиосети

SCC/SCell, secondary component carrier/secondary cell -Дополнительная компонентная несущая / дополнительная сота

SI-RNTI, system information RNTI - RNTI системной информации

ТА, timing advance - Временное опережение

UE, user equipment - Оборудование пользователя

UL, uplink - Восходящая линия связи

UTRAN, universal terrestrial radio access network-Универсальная наземная сеть радиодоступа

[0003] Расширение полосы свыше 20 МГц в системе LTE-A (ожидается, что оно будет реализовано в версии 11 стандарта 3GPP) выполняется путем агрегирования несущих СА, при котором многочисленные компонентные несущие СС агрегируются вместе, чтобы формировать большую ширину полосы. Это показано в примере на фиг.1А, на которой имеется пять несущих СС, совместимых с системой LTE версии 8, агрегированных для формирования одной большей ширины полосы системы LTE-A. Имеется по меньшей мере одна СС, которая является обратно совместимой с существующими терминалами пользователей (версии 8/9 стандарта 3GPP) с шириной полосы 20 МГц и имеющими всю структуру каналов управления и трафика версии 8. Фиг.1А приведена в качестве примера; практически может быть больше или меньше пяти несущих СС, они могут не иметь полосы одинаковой ширины, они могут не быть смежными по частоте, и система LTE-А рассматривает случай, когда одна или несколько дополнительных несущих CCs находятся в нелицензируемом спектре. Несущие СС могут агрегироваться в системах как с дуплексной связью с временным разделением TDD, так и с дуплексный связью с частотным разделением FDD.

[0004] Фиг.1А-В иллюстрируют примеры различных сценариев, в которых может использоваться агрегирование несущих СА. На фиг.1 В есть макросота F1 (например, традиционная сотовая базовая станция), которая обеспечивает обслуживание макрообласти, и, кроме того, есть удаленные ретрансляторы (remote radio head, RRH) F2, управляемые макросотой F1, которые используются, чтобы улучшить пропускную способность в местах беспроводного доступа в Интернет (показаны на фиг.1В). Мобильность осуществляется на основе зоны обслуживания F1 (показанной на фиг.1В). Например, F1 и F2 могут работать в различных диапазонах, например, F1={800 МГц, 2 ГГц} и F2={3,5 ГГц} и т.д. Ожидается, что соты ретрансляторов RRH F2 могут агрегироваться с основными макросотами F1. В этом случае оборудование UE будет связываться с сотой F1 на одной несущей СС (обычно РСС), а с сотами F2 на других несущих СС (SCC). Эти другие несущие СС рассматриваются оборудованием UE как другие соты.

[0005] Фиг.1C иллюстрирует другой сценарий агрегирования несущих СА, подобный сценарию фиг.1 В, но в котором частотно-избирательные ретрансляторы развернуты так, чтобы зона обслуживания была расширена для одной из несущих частот. Ожидается, что соты F1 и F2 одного и того же узла eNB могут агрегироваться там, где зоны обслуживания перекрываются. В этом случае оборудование UE также будет рассматривать разные несущие СС как разные соты, где соты F1 и F2 работают на разных частотах/разных несущих СС.

[0006] В системе LTE версии 8 канал PDCCH, который сообщает отдельным единицам UE, какие радиоресурсы распределены для их трафика, мог использоваться только для указания канала PDSCH/PUSCH, передаваемого на его собственной несущей СС линии DL или его спаренной несущей СС линии UL (так как использование спектра LTE версии 8, не предусматривающего агрегирование СА, можно рассматривать только как одну несущую СС). В усовершенствованной LTE может быть доступно "перекрестное планирование" (cross-scheduling), это означает, что канал PDCCH может использоваться для указания ресурсов PDSCH/PUSCH, передаваемых на других несущих СС помимо его собственной несущей СС линии DL и/или его спаренной несущей СС линии UL. С точки зрения передаваемого канала PDCCH это перекрестное планирование полезно для того, чтобы распределять нагрузки трафика среди многочисленных несущих.

[0007] Но в сценариях, показанных на фиг.1 В-С, передатчики находятся на различных расстояниях от оборудования UE, так что там есть задержки распространения сигнала, которые необходимо компенсировать. В системе LTE узел eNB сигнализирует временное опережение ТА оборудованию UE, как подробно описано в разделе 5.2 спецификации 3GPP TS 36.321 v10.1.0 (2011-03). При приеме команды временного опережения (timing advance command, TAC) оборудование UE корректирует свою синхронизацию передачи по восходящей линии, как подробно описано в разделе 6.1.1 спецификации 3GPP TS 36.213 v10.0.1 (2010-12). Команда временного опережения может быть получена в ответе о произвольном доступе или в управляющем элементе MAC. Правильность команды временного опережения контролируется таймером ТА в оборудовании UE. Пока таймер ТА работает, временное опережение остается пригодным, и передачи по восходящей линии могут осуществляться в совместно используемом канале. Каждый раз, когда принимается команда временного опережения, таймер ТА перезапускается. Когда время таймера ТА истекает, требуется синхронизация восходящей линии, и никакая передача восходящей линии не может осуществляться в совместно используемом канале. Для определения узлом eNB подстройки синхронизации, необходимой в оборудовании UE, обычно запускается процедура произвольного доступа.

[0008] В продолжающейся разработке стандарта 3GPP версии 11 был описан новый пункт работы по агрегированию СА - "специфицировать поддержку использования многочисленных временных опережений в случае агрегирования несущих восходящей линии LTE" (см. раздел 4 "Цели" в документе RP-1 10451 в материалах 3GPP TSG RAN Meeting #51; Kansas City, USA; March 15-18, 2011). Многочисленные временные опережения (ТА) необходимы, чтобы справиться с приемниками на стороне сети, которые не находятся в одном месте, такими как ретрансляторы RRH, и сценариями частотно-избирательных ретрансляторов, показанными на фиг.1В-С.

[0009] Стандарт 3GPP версии 10 определяет, что перекрестное планирование несущих может использоваться для планирования распределения ресурсов в соте из другой соты. Поле индикатора несущей (CIF) позволяет каналу PDCCH обслуживающей соты обратиться к идентификатору C-RNTI оборудования UE, чтобы идентифицировать другую соту, в которой расположены планируемые ресурсы, но спецификация 3GPP 36.300 v10.3.0 (2011-03) в разделе 11.1 устанавливает следующие ограничения:

- Перекрестное планирование несущих не применимо к соте PCell, то есть сота PCell всегда планируется посредством ее канала PDCCH.

- Когда конфигурируется канал PDCCH соты SCell, перекрестное планирование несущих не применимо к этой соте SCell, то есть она всегда планируется посредством ее канала PDCCH.

- Когда канал PDCCH соты SCell не конфигурируется, перекрестное планирование несущих применяется, и эта сота SCell всегда планируется посредством канала PDCCH некоторой другой обслуживающей соты.

[0010] В стандарте 3GPP версии 10 никакое перекрестное планирование несущих не определено для всех шагов, относящихся к каналу RACH, так как RACH поддерживается только в соте PCell для версии 10 и сота PCell не может планироваться из соты SCell. Когда конфигурируется агрегирование СА, каждое оборудование UE, способное к агрегированию СА, конфигурируется с одной сотой PCell и, опционально, с одной или несколькими сотами SCell в качестве его обслуживающей соты (сот), но независимо от этого оборудование UE будет иметь только одно соединение RRC с сетью. Сота PCell является той сотой, которая обеспечивает оборудование UE его информацией о мобильности уровня доступа к сети, что выполняется при установлении, восстановлении или хэндовере соединения управления радиоресурсами (radio resources control, RRC). Сота PCell является той сотой, которую оборудование UE использует для передач канала PUCCH, и в отличие от сот SCell однажды установленная сота PCell может быть заменена только процедурой хэндовера и не может быть деактивирована. Так что отказ радиолинии в соте PCell запускает процедуры повторного установления оборудования UE, что не случается, если отказ находится в соте SCell. Дальнейшие подробности относительно сот PCell и SCell см. в разделе 7.5 спецификации 3GPP TS 36.300 v10.3.0 (2011-03).

[0011] Сценарии перекрестного планирования, такие как на фиг.1 В-С, не зависят от того факта, что могут быть необходимы многочисленные опережения ТА. Например, предположим, что оборудование UE имеет его соту PCell с макросотой F1 и также имеет сконфигурированную соту SCell с ретранслятором RRH F2. Если оборудование UE теряет свое опережение ТА с сотой PCell, оно будет выполнять процедуру RACH в соте PCell, чтобы получить синхронизацию линии UL, но нет никакой возможности для ресурсов UL, предоставляемых в этой процедуре RACH в соте PCell, находиться в соте SCell. Возможность перекрестно планировать радиоресурсы во время процедуры RACH придала бы сети дополнительную гибкость. Примеры осуществления изобретения, подробно описываемые ниже, делают возможным перекрестное планирование во время процедуры RACH, которое в настоящее время невозможно в системе LTE или LTE-A.

[0012] Кроме того, в стандарте 3GPP версии 10 оборудование UE не будет выполнять ни слепое декодирование в общем пространстве поиска сот SCell, так как оно не ожидает приема системной информации (планируемой с помощью канала PDCCH, адресованного к идентификатору SI-RNTI), ни поисковую связь (планируемую с помощью канала PDCCH, адресованного к идентификатору P-RNTI), ни ответ о произвольном доступе (планируемый с помощью канала PDCCH, адресованного к идентификатору RA-RNTI) в сотах SCell. Если бы поддержка процедуры RACH в соте SCell и ответ RAR соты SCell планировался бы из сот SCell, то это увеличило бы число слепых декодирований, которое должно поддерживать UE. С этой точки зрения, даже если бы перекрестное планирование соты SCell не конфигурировалось бы, было бы полезно, если бы ответ RAR мог сигнализироваться из соты PCell, чтобы оборудованию UE требовалось бы декодировать только общее пространство поиска соты PCell.

Сущность изобретения

[0013] В первом примере осуществления изобретения предлагается устройство, содержащее по меньшей мере один процессор и по меньшей мере одно запоминающее устройство, содержащее код компьютерной программы. По меньшей мере одно запоминающее устройство и код компьютерной программы конфигурированы так, чтобы, вместе по меньшей мере с одним процессором, заставлять устройство по меньшей мере: выполнять процедуру произвольного доступа, в которой ответ о произвольном доступе нисходящей линии от сетевого узла к оборудованию пользователя указывает временное опережение для компонентной несущей или соты из множества компонентных несущих или сот, или для группы компонентных несущих или сот, к которым применяется временное опережение; и после этого использовать радиосвязь на указанной одной или группе компонентных несущих или сот синхронно с временным опережением.

[0014] Во втором примере осуществления изобретения предлагается способ, включающий: выполнение процедуры произвольного доступа, в которой ответ о произвольном доступе нисходящей линии от сетевого узла к оборудованию пользователя указывает по меньшей мере временное опережение для компонентной несущей или соты из множества компонентных несущих или сот, или для группы компонентных несущих или сот, к которым применяется временное опережение; и использование после этого радиосвязи на указанной одной или группе компонентных несущих или сот синхронно с временным опережением.

[0015] В третьем примере осуществления изобретения предлагается машиночитаемое запоминающее устройство, хранящее программу из машиночитаемых команд, которые, когда выполняются процессором, приводят к действиям, включающим: выполнение процедуры произвольного доступа, в которой ответ о произвольном доступе нисходящей линии от сетевого узла к оборудованию пользователя указывает по меньшей мере временное опережение для компонентной несущей или соты из множества компонентных несущих или сот, или для группы компонентных несущих или сот, к которым применяется временное опережение; и после этого использование радиосвязи на указанной одной или группе компонентных несущих или сот синхронно с временным опережением.

Краткое описание чертежей

[0016] Фиг.1 - схема спектра радиочастот, в которой может использоваться перекрестное планирование и пять полос компонентных несущих агрегируются в одну полосу частот системы LTE-A.

[0017] Фиг.1В-С иллюстрируют различные сценарии, в которых оборудование UE нуждалось бы в многочисленных независимых опережениях синхронизации для различных сот/компонентных несущих, и две приводимые в качестве примера среды, в которых формы осуществления изобретения могут выгодно применяться на практике.

[0018] Фиг.2А-В иллюстрируют два подзаголовка MAC размером один октет, как подробно описано в спецификации 3GPP TS 36.321 V10.1.0 (2011-03).

[0019] Фиг.2С иллюстрирует ответ о произвольном доступе MAC размером шесть октетов, как подробно описано в спецификации 3GPP TS 36.321 V10.1.0 (2011-03).

[0020] Фиг.2D иллюстрирует два подзаголовка MAC и ответ о произвольном доступе MAC фиг.2А-С, собранный с дополнительными битами заполнения в блоке MAC PDU для произвольного доступа, как подробно описано в спецификации 3GPP TS 36.321 V10.1.0 (2011-03).

[0021] Фиг.3A иллюстрирует сообщение ответа о произвольном доступе согласно первому и второму примерам реализации, которые подробно описаны ниже.

[0022] Фиг.3B-C иллюстрируют сообщение ответа о произвольном доступе согласно соответствующим третьему и четвертому примерам реализации, как подробно описано ниже.

[0023] Фиг.4 - пример блок-схемы программы, иллюстрирующий различные формы осуществления изобретения с позиции оборудования UE и узла eNB/сетевого узла.

[0024] Фиг.5 - упрощенная блок-схема оборудования UE и узла eNB, которые являются примерами электронных устройств, подходящих для применения на практике примеров осуществления изобретения.

Подробное описание

[0025] В стандарте 3GPP версии 10 процедура RACH оборудования UE возможна только в соте PCell, но версия 11, как ожидается, позволит ее в сотах SCell. В дополнение к вышеприведенному разделу о предпосылках создания изобретения, оборудование UE не выполняет слепое декодирование в общем пространстве поиска для любой соты SCell, так что оно не будет способно принять любой канал PDCCH, адресованный к идентификатору RA-RNTI в соте SCell. Кроме того, перекрестное планирование несущих требует поддержки для шагов, связанных с каналом RACH, когда канал RACH вводится в соты SCell для многочисленных опережений ТА, если перекрестное планирование несущих конфигурируется для соты SCell, так как оборудование UE не контролирует канал PDCCH в этой соте SCell. В настоящее время в системах LTE и LTE-A нет никакого поля индикации несущей CIF для канала PDCCH, который адресуется к идентификатору RA-RNTI для ответа о произвольном доступе, так как идентификатор RA-RNTI находится в общем пространстве поиска. В качестве краткого обзора несостязательная процедура RACH в системах LTE и LTE-A заключается в следующем. Во-первых, узел eNB назначает преамбулу RACH для оборудования UE посредством выделенной сигнализации. Во-вторых, оборудование UE затем посылает свою назначенную преамбулу по каналу RACH, за этим следует ответ о произвольном доступе узла eNB по совместно используемому каналу линии DL (который отображается из сообщения оборудования UE, содержащего преамбулу), планируемый каналом PDCCH и адресуемый к идентификатору RA-RNTI. Этот ответ о произвольном доступе назначает ресурсы UL для оборудования UE и дает абсолютное согласование по времени для оборудования UE в отношении синхронизации. Для состязательной процедуры RACH оборудование UE случайно выбирает преамбулу. На фиг.2A-D обычный ответ о произвольном доступе показан более подробно.

[0026] Фиг.2A-D взяты из раздела 6.1.5 спецификации 3GPP TS 36.321 v10.1.0 (2011-03), описывающего блок MAC PDU для произвольного доступа, который несет сообщение ответа о произвольном доступе (к одной или нескольким единицам оборудования UE). Блок MAC PDU состоит из заголовка MAC и нуля или нескольких ответов о произвольном доступе уровня MAC, опционально с битами заполнения, как будет показано. Заголовок блока MAC PDU состоит из одного или нескольких подзаголовков из одного октета (8-битов) каждый. На фиг.2А показан один подзаголовок, имеющий поле Е в один бит, которое является флагом расширения, указывающим, присутствуют ли дополнительные поля в заголовке MAC; поле Т в один бит, которое является флагом типа, указывающим, содержит ли подзаголовок MAC идентификатор (identifier, ID) (T=1) произвольного доступа или индикатор (Т=0) отсрочки передачи; и поле RAPID в шесть битов, которое идентифицирует (дает индекс) преамбулы RACH, которую оборудование UE передало линии UL непосредственно по каналу RACH. На фиг.2 В показан другой подзаголовок, имеющей флаг расширения Е в один бит; флаг типа Т в один бит; поле В1 в четыре бита, которое дает состояние перегрузки в соте (которое оборудование UE использует для отсрочки его согласования по времени для повторной передачи преамбулы RACH в случае, если его последняя попытка доступа RACH привела к конфликту); и остающиеся два бита R зарезервированы и в настоящее время не используются (всегда R=0).

[0027] На фиг.2С показана структура ответа о произвольном доступе MAC в шесть октетов. Имеется один зарезервированный бит R, не используемый в настоящее время (R=0); одиннадцать битов для команды ТА, обеспечивающей подстройку согласования по времени, которую оборудование UE должно применить, чтобы синхронизироваться с несущей; двадцать битов для указания предоставляемых ресурсов линии UL, которые должно использовать оборудование UE; и шестнадцать битов для временного идентификатора C-RNTI, назначенного теперь для оборудования UE, который оно будет использовать для своей идентификации после этого сообщения ответа о произвольном доступе. Фиг.2А-С размещаются в блоке MAC PDU для произвольного доступа так, как показано на фиг.2D. Различные подзаголовки размещаются один за другим, за ними следуют различные ответы о произвольном доступе уровня MAC (RAR на фиг.2D), с битами заполнения (если они присутствуют) после последнего ответа о произвольном доступе уровня MAC. Каждое отдельное оборудование UE получает один подзаголовок и один ответ о произвольном доступе уровня MAC, идентифицируемый тем же самым индексом [1, 2 … n] на фиг.2D.

[0028] Как можно видеть из фиг.2A-D, нет никаких битов или полей, которые указывают, на какой компонентной несущей СС/соте могут находиться ресурсы линии UL, идентифицированные на фиг.2С; традиционно сеть и оборудование UE понимают, что они будут находиться на той же компонентной несущей СС/соте, где находится канал RACH. Для того чтобы позволить перекрестное планирование несущих для ответа о произвольном доступе, согласно примерам осуществления компонентная несущая СС/обслуживающая сота/группа указывается в ответе о произвольном доступе MAC. Есть различные способы осуществить такую индикацию, из которых четыре приводимые в качестве примеров подробно описываются ниже. Каждый из них можно рассматривать как явно указывающий компонентную несущую СС/обслуживающую соту/группу сот, к которой применяется опережение ТА (а также, где находится распределение ресурсов линии UL, если грант линии UL включен в ответ о произвольном доступе). Каждый из этих примеров реализации приспособлен для беспроблемной интеграции с существующими режимами и форматами сигнализации системы LTE-A, и конечно может изменяться для более легкого внедрения в другие беспроводные системы.

[0029] В системе LTE-A различные конфигурируемые несущие СС/соты могут размещаться в группы ТА; все несущие СС/соты в отдельной группе могут применять одинаковое ТА. Так, например, если имеются конфигурируемые для оборудования UE соты PCell, PCell, SCell#1 и SCell#2, в одном случае соты PCell и SCell#1 могут быть в одной группе ТА, в то время как сота SCell#3 - в другой группе ТА, а в другом случае, каждая из трех конфигурируемых сот имеет свое собственное временное согласование и никакие две из них не группируются при одинаковом ТА.

[0030] Первая реализация предполагает, что имеется не более двух групп ТА. Оборудование UE знает, как его сконфигурированные соты сгруппированы по ТА, и таким образом идентификация группы ТА для оборудования UE идентифицирует также группу несущих CCs/сот, которые являются членами этой группы ТА. Эта первая реализация показана на фиг.3A, на которой позиция 302А первого бита первого октета ответа 300А о произвольном доступе используется для указания, какая группа ТА применяется для команды ТА. Например, Х=0 может указывать, что оборудование UE должно использовать компонентную несущую СС/соту, на которой был передан этот ответ 300А о произвольном доступе, и Х=1 может указывать, что оборудование UE должно использовать другую компонентную несущую СС/соту. Биты, обозначающие индекс 308 соты, показанный на фиг.3A, используются для этой цели во второй реализации, но для этой первой реализации для случая, когда нет никакого гранта 306А ресурса UL в ответе 300A о произвольном доступе (или если есть только одна компонентная несущая СС/сота в группе ТА оборудования UE, указанной в бите 302А), эти биты 308А являются зарезервированными битами 310 и не используются для информации сигнализации. В этой первой реализации для случая, когда ответ 300А о произвольном доступе включает грант 306А ресурса UL и/или, если есть больше чем одна компонентная несущая СС/сота в указанной группе ТА, то эти биты 308А указывают индекс определенной компонентной несущей СС/соты в группе ТА, идентифицированной в позиции 302А первого бита, к которой применяется грант 306А ресурса UL. Независимо от того, присутствует ли грант 306А ресурса UL, оборудование UE применит указанное опережение ТА 304А ко всем несущим СС/сотам в группе ТА, идентифицированной этим битом 302А идентификатора группы ТА. Позиция 302А первого бита первого октета на фиг.3А специально определяется для того, чтобы указывать группу ТА, в отличие от ее обычной цели быть зарезервированной/неиспользуемой на фиг.2С.

[0031] Вторая реализация обходится без вышеупомянутого предположения для первой реализации, и поэтому в ней может быть больше двух групп ТА. Эта вторая реализация также показана на фиг.3А и использует позицию 302А первого бита первого октета как флаг, чтобы указать, что имеется информация о компонентной несущей СС/соте/группе, включенная в ответ 300А о произвольном доступе (то есть, опережение ТА и ресурсы UL, идентифицированные в ответе о произвольном доступе, предназначены для компонентной несущей СС/соты, отличной от той, на которой был передан ответ о произвольном доступе). Например, Х=1 означает, что есть информация о компонентной несущей СС/соте/группе в этом ответе 300А о произвольном доступе, и поэтому опережение ТА и предоставляемые ресурсы UL предназначены для этой указанной компонентной несущей СС/соты/группы, а Х=0 указывает, что ее нет, и поэтому опережение ТА и предоставляемые ресурсы UL предназначены для той же самой компонентной несущей СС/соты/группы, на которой был послан сам ответ о произвольном доступе. Альтернативно может быть определено, что Х=1 означает, что ответ 300А о произвольном доступе является новым форматом, который содержит индекс компонентной несущей СС/соты/группы ТА, и фактический индекс в 308А указывает конкретную компонентную несущую СС/соту/группу ТА, к которой применяется опережение ТА в поле 304А. Для случая Х=1 индекс соты указывается некоторыми из позиций битов в последних двух октетах ответа о произвольном доступе; на фиг.3А они показаны в пятом октете как три бита 308А индекса соты. Для случая Х=0 эти биты 308А были бы все зарезервированы и не использовались бы.

[0032] На фиг.2С эти последние два октета (с битами 308А и 310) показаны как используемые для поля временного C-RNTI. Нет никакой потребности сигнализировать временный C-RNTI в ответе о произвольном доступе, являющемся результатом несостязательной процедуры RACH, так как преамбула была назначена сетью для оборудования UE, которое уже имеет идентификатор RNTI, назначенный ему (который сеть использовала, чтобы сообщить оборудованию UE о назначении его преамбулы RACH). Следовательно, подобно первой реализации, вторая реализация также переопределяет значения битов по сравнению с их обычным пониманием. Ответ 300А о произвольном доступе фиг.3А (или любой из различных описанных здесь реализации) также может быть дополнительно приспособлен для поддержания состязательной процедуры RACH с помощью добавления седьмого октета, чтобы предоставить пространство для индекса 308А компонентной несущей СС/соты в случае, если временный C-RNTI в пятых и шестых октетах фиг.2С не может быть опущен.

[0033] В отличие от первой и второй реализации, которые переопределяют некоторые биты существующих форматов, третья реализация использует для ответа о произвольном доступе новый формат, показанный посредством примера на фиг.3В. Начальный бит 302 В является флагом типа, указывающим, что этот ответ 300 В о произвольном доступе имеет новый формат, за ним следует индекс 308С компонентной несущей СС/соты/группы из трех битов и 11-битовая команда ТА 304А. Когда длина ответа 300В о произвольном доступе этого нового формата составляет два октета, нет никакого доступного пространства для сигнализирования о каких-либо предоставляемых ресурсах UL; оборудование UE может использовать этот ответ 300В о произвольном доступе в формате с двумя октетами в несостязательной процедуре RACH, чтобы получить обновленное значение ТА (например, если истекло время его таймера ТА). Но другие три октета могут быть добавлены в конец к показанному ответу 300В о произвольном доступе, если есть ресурс UL, который необходимо указать и который при современном понимании в системе LTE-A занял бы 20 битов, таким образом оставляя конечные 4 бита пятого/конечного октета неиспользованными.

[0034] Подобно третьей реализации, четвертая реализация для ответа 300С о произвольном доступе также имеет новый формат, показанный на фиг.3С, и может использоваться, чтобы сигнализировать команду ТА 304С и индекс 308С компонентной несущей СС/соты с предоставляемым ресурсом UL или без него. Но для фиг.3С нет никакого флага 302В типа и вместо него бит зарезервирован и не используется для информации сигнализации. В этом случае сеть может использовать сигнализацию соединения RRC, чтобы явно конфигурировать оборудование UE, которое должно использовать ответ 300С о произвольном доступе в этом новом формате. Или, альтернативно, его использование может быть неявным всякий раз, когда конфигурируется перекрестное планирование, и канал RACH конфигурируется в соте. В любом случае, когда оборудование UE находит свой совпадающий идентификатор ID преамбулы (RAPID в подзаголовке как на фиг.2А), оно знает, как интерпретировать ответ о произвольном доступе.

[0035] Это конфигурирование формата ответа о произвольном доступе (явное в сигнализации RRC или неявное) может использоваться для любой из вышеописанных форм осуществления изобретения. Для случая, в котором оно используется со второй и третьей реализацией, первый бит 302А, 302В может быть просто зарезервирован и не переносить какую-либо информацию для оборудования UE. Для случая, в котором оно используется с первой реализацией, этот первый бит 302А может продолжать идентифицировать группу ТА, или вместо этого он может быть зарезервирован, когда оборудование UE знает неявно, что необходимо применить ТА 304А в этом ответе 300А о произвольном доступе для всех несущих СС/сот, которые являются членами той же самой группы ТА, что и компонентная несущая СС/сота, идентифицированная индексом 308А.

[0036] И в третьей, и в четвертой реализации для случая, в котором ответ 300В, 300С о произвольном доступе не идентифицирует никакого предоставленного ресурса UL, сеть может сообщать оборудованию UE о предоставленном ресурсе UL, используя стандартный канал PDCCH (адресованный к идентификатору C-RNTI оборудования UE), который имеет поле индикации несущей, когда оборудование UE получает синхронизацию UL на новой компонентной несущей СС/соте после процедуры RACH, частью которой является ответ 300В, 300С о произвольном доступе. Состязательный или несостязательный, каждый из ответов о произвольном доступе, подробно описанных выше для процедуры RACH, адресуется к идентификатору RA-RNTI.

[0037] Также для третьих и четвертых реализаций удобно поместить ответы 300В, 300С о произвольном доступе нового формата как последнюю запись/записи в блок MAC PDU (см. фиг.2D), чтобы облегчить обратную совместимость с существующим оборудованием пользователя, считывающим его обычные ответы о произвольном доступе в том же самом блоке PDU. Первые и вторые реализации имеют тот же самый размер, что и обычные ответы о произвольном доступе, и не должны быть выделенными, чтобы обеспечить обратную совместимость в том же самом блоке PDU.

[0038] Для любой из вышеописанных реализаций также удобно, что сеть передает ответ о произвольном доступе всегда в соте PCell, идентифицируя компонентную несущую СС/соту/группу ТА, к которой применяется опережение ТА (и ресурс UL, если он включен) в этом ответе о произвольном доступе.

[0039] Используя любую вышеописанную реализацию или модификацию любой из них, оборудование UE затем выполняет процедуру RACH для указанной компонентной несущей СС/соты/группы, включая применение опережения ТА к указанной компонентной несущей СС/соте/группе, запускает свой таймер ТА для указанной компонентной несущей СС/соты/группы, передает канал PUSCH на предоставленных ресурсах UL на указанной компонентной несущей СС/соте и выполняет передачу в то время, которое зависит от ТА.

[0040] Одним техническим эффектом этих форм осуществления изобретения является то, что перекрестное планирование несущих в течение процедуры RACH поддерживается без влияния на усилия слепого декодирования на физическом уровне, которое проводит UE. Дополнительно, ответы о произвольном доступе, подробно описанные выше, состязательные или несостязательные, планируются с помощью канала PDCCH, адресованному к идентификатору RA-RNTI в общих пространствах поиска оборудования UE, и так, что нет никакого изменения для канала PDCCH, адресованного к идентификатору RA-RNTI. Следовательно, эта технология уменьшает число слепых декодирований, которое оборудование UE должно поддерживать, а также служебную информацию канала PDCCH, так как индивидуальные ответы о произвольном доступе для различных единиц оборудования UE для различных сот могут быть помещены в один блок ответа о произвольном доступе, также как существующие ответы о произвольном доступе для различных единиц оборудования UE, у которых перекрестное планирование не разрешено, как это было в обычной практике (и поэтому все ответы о произвольном доступе были для одной и той же компонентной несущей СС/соты).

[0041] Вышеописанные формы осуществления изобретения резюмированы и собраны на фиг.4, которая является логической блок-схемой программы, иллюстрирующей работу способа и результат выполнения команд компьютерной программы в соответствии с примерами осуществления данного изобретения. В соответствии с этими примерами осуществления в блоке 402 выполняется процедура произвольного доступа, в которой ответ о произвольном доступе нисходящей линии от сетевого узла к оборудованию пользователя указывает по меньшей мере временное опережение и явную индикацию, идентифицирующую одну компонентную несущую или соту из множества компонентных несущих или сот или группу компонентных несущих или сот, к которым применяется временное опережение. В блоке 404 радиосвязь осуществляется на указанной одной или группе компонентных несущих или сот синхронно с временным опережением блока 402.

[0042] Операции согласно блокам 402 и 404 выполняют как в узле сети/eNB, так и в оборудовании UE (или соответственно одном или нескольких компонентах). На сетевой стороне имеется узел eNB, который компилирует и передает ответ о произвольном доступе линии DL в блоке 402. В то время как сетевой узел остается синхронизированным на одной или группе несущих СС/сот повсюду, он тем не менее принимает передачу линии UL оборудования UE на ресурсах UL, предоставленных в ответе о произвольном доступе (если такие ресурсы UL были предоставлены, и если сетевой узел все еще не передает и не принимает на этой одной или группе несущих СС/сот) и так как его синхронизация совместима с ТА, она предоставляется оборудованию UE в ответе о произвольном доступе. На стороне оборудования UE оборудование UE принимает ответ о произвольном доступе линии DL блока 402, применяя ТА к одной или группе несущих СС/сот, как указано в ответе о произвольном доступе, и передает канал PUSCH на указанном ресурсе (если он имеется).

[0043] Остающиеся блоки на фиг.4 являются конкретными опциональными формами осуществления, любой из них может комбинироваться с блоками 402 и 404, и любой из них выполняется как на сетевой стороне, так и на стороне оборудования UE, согласно разделению средств радиосвязи.

[0044] Блок 406 описывает различные реализации, в которых ответ о произвольном доступе линии DL предоставляет ресурс UL для оборудования UE, когда оборудование UE передает канал PUSCH на ресурсе восходящей линии на указанной одной или группе компонентных несущих или сот, к которым применяется временное опережение. Сетевой узел принимает тот же самый канал PUSCH.

[0045] Блок 408 описывает приведенную выше первую реализацию:

ответ (300А) о произвольном доступе идентифицирует группу компонентных несущих или сот одним битом (302А), указывающим группу временного опережения. Для случая, в котором имеется более одной компонентной несущей СС/соты в указанной группе и есть также грант ресурса UL в ответе о произвольном доступе, ответ о произвольном доступе содержит также индекс (308А), идентифицирующий одну компонентную несущую или соту в этой группе временного опережения. В этом случае опережение ТА применяется ко всем несущим СС/сотам в группе (независимо от того, включен ли в состав какой-либо грант ресурса UL), и грант ресурса UL применяется только к идентифицированной одной компонентной несущей СС/соте в группе ТА.

[0046] Блок 410 описывает вышеприведенную вторую реализацию: ответ (300А) о произвольном доступе идентифицирует одну компонентную несущую или соту или группу индексом (308А), и ответ о произвольном доступе дополнительно содержит бит (302А) флага, который указывает, что индекс включен в ответ о произвольном доступе.

[0047] Блок 412 описывает вышеприведенную третью реализацию: ответ (300В) о произвольном доступе идентифицирует одну компонентную несущую или соту или группу индексом (308В), и ответ о произвольном доступе дополнительно содержит бит (302В) флага, который указывает формат ответа о произвольном доступе, другие форматы, имеющие или не имеющие индекс компонентной несущей СС/соты/группы, включаются в ответ о произвольном доступе. Две опции, независимо от того, содержит эта третья реализация грант ресурса UL или нет, также кратко формулируются так: если ответ (300В) о произвольном доступе не имеет какой-либо идентификации ресурса восходящей линии, предостав