Устройство связи и способ связи, система связи и базовая станция

Иллюстрации

Показать все

Изобретение относится к области связи. Техническим результатом является передача данных с помощью передачи преамбулы. Предложено устройство связи, содержащее блок выбора сигнатуры для выбора одной сигнатуры из множества сигнатур и блок генерирования преамбулы для генерирования преамбулы при произвольном доступе с использованием сигнатуры, выбранной блоком выбора сигнатуры. При этом блок выбора сигнатуры выполнен с возможностью выбора сигнатуры, соответствующей значению данных передачи. 5 н. и 14 з.п. ф-лы, 23 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к устройству связи, способу связи, системе связи и базовой станции.

Уровень техники

В настоящее время работы по стандартизации способа LTE (долгосрочное развитие) в качестве способа связи следующего поколения и способа LTE-Advanced (LTE-А), который является усовершенствованной версией способа LTE, проводятся в рамках Проекта Партнерства Третьего Поколения (3GPP). В LTE и LTE-A проводится обсуждение различных усовершенствований для повышения максимальной скорости передачи данных и качества на границах сот по сравнению со способом 3G, таким как способ WCDMA. Соответственно, предполагается выполнить новую среду мобильной связи для высокоскоростной связи. Например, пользователь может удобным образом загружать содержание с большим количеством информации, такой как глобальный информационный сервис Интернета (Web) и анимация с использованием смартфона или тому подобного.

С другой стороны, обсуждения относительно связи между машинами (МТС) ведутся также в рамках технологии 3GPP. Средство МТС является, в общем, синонимом термина "технология для обмена информации между машинами" (М2М) и означает связь между машинами, которые непосредственно не используются людьми. МТС, главным образом, выполняется между сервером и МТС-терминалом, который непосредственно не используется людьми.

Пользовательское оборудование (UE), включающее в себя МТС-терминал, обычно подсоединяется к базовой станции 10 в ходе выполнения процедуры, называемой произвольным доступом с помощью базовой станции, такой как усовершенствованный узел В (eNodeB), и может после соединения с базовой станцией 10 выполнять обмен данными с базовой станцией. Процедура произвольного доступа описана, например, в патентной литературе 1.

Перечень цитируемой литературы

Патентная литература

Патентная литература 1: JP 2011-071706А

Раскрытие изобретения

Техническая задача

Однако если выполняются произвольный доступ и передача данных после произвольного доступа, то потребляется соответствующая мощность. В частности, для МТС-терминала необходим низкий уровень потребляемой мощности, и, таким образом, существует сильная потребность в снижении потребляемой мощности для передачи данных.

Настоящее изобретение предлагает новое и усовершенствованное устройство связи, способ связи, систему связи и базовую станцию для реализации передачи данных с помощью передачи преамбулы.

Решение технической задачи

Согласно настоящему изобретению выполнено устройство связи, включающее в себя блок выбора сигнатуры, для выбора одной сигнатуры из множества сигнатур, и блок генерирования преамбулы для генерирования сигнатуры при произвольном доступе с использованием преамбулы, выбранной с помощью блока выбора сигнатуры. Блок выбора сигнатуры выбирает сигнатуру, соответствующую значению данных передачи.

Согласно настоящему изобретению выполнен способ связи, включающий в себя этапы, на которых выбирают одну сигнатуру из множества сигнатур и генерируют преамбулу при произвольном доступе с использованием выбранной сигнатуры. Выбор сигнатуры включает в себя выбор сигнатуры, соответствующей значению данных передачи.

Согласно настоящему изобретению выполнена система связи, включающая в себя устройство связи, содержащее блок выбора сигнатуры для выбора одной сигнатуры из множества сигнатур, и блок генерирования преамбулы для генерирования сигнатуры при произвольном доступе с использованием преамбулы, выбранной с помощью блока выбора сигнатуры, причем блок выбора сигнатуры выполнен с возможностью выбора сигнатуры, соответствующей значению данных передачи. Базовая станция определяет данные передачи, основанные на сигнатуре преамбулы, принятой от устройства связи.

Согласно настоящему изобретению выполнена базовая станция, содержащая блок приема для приема преамбулы от устройства связи, генерирующего преамбулу при произвольном доступе с использованием сигнатуры, соответствующей значению данных передачи, и блок определения данных, определяющий данные передачи на основании сигнатуры преамбулы.

Согласно настоящему изобретению выполнен способ связи, содержащий этапы, на которых принимают преамбулу от устройства связи, генерирующего преамбулу при произвольном доступе с использованием сигнатуры, соответствующей значению данных передачи, и определяют данные передачи на основании сигнатуры преамбулы.

Полезные эффекты изобретения

Согласно настоящему изобретению, как описано выше, передачу данных можно реализовать с помощью передачи преамбулы.

Краткое описание чертежей

Фиг.1 - пояснительный вид, показывающий конфигурацию системы связи согласно варианту осуществления настоящего изобретения.

Фиг.2 - пояснительный вид, показывающий формат кадра.

Фиг.3 - схема, показывающая процедуру произвольного доступа с помощью LTE.

Фиг.4 - пояснительный вид, показывающий концепцию преамбулы, которая генерируется с помощью UE в частотной области.

Фиг.5 - пояснительный вид, показывающий ресурсы произвольного доступа, определяемые с помощью каждого значения конфигурации PRACH.

Фиг.6 - схема последовательности операций, показывающая процедуру произвольного доступа в способе WCDMA.

Фиг.7 - функциональная блок-схема, показывающая конфигурацию UE согласно первому варианту осуществления настоящего изобретения.

Фиг.8 - пояснительный вид, показывающий конкретный пример данных передачи.

Фиг.9 - пояснительный вид, показывающий конкретный пример отображения информации, показывающей соответствия между данными и сигнатурами.

Фиг.10 - пояснительный вид, показывающий конфигурацию блока генерирования преамбулы.

Фиг.11 - функциональная блок-схема, показывающая конфигурацию базовой станции согласно первому варианту осуществления настоящего изобретения.

Фиг.12 - схема последовательности операций, которая упорядочивает операции согласно первому варианту осуществления настоящего изобретения.

Фиг.13 - пояснительный вид, показывающий операцию изменения отображения информации.

Фиг.14 - функциональная блок-схема, показывающая конфигурацию UE согласно второму варианту осуществления настоящего изобретения.

Фиг.15 - пояснительный вид, показывающий конкретный пример отображения информации, показывающей соответствия между данными и ресурсами произвольного доступа.

Фиг.16 - пояснительный вид, показывающий взаимосвязь между подкадром, радиокадром и суперкадром системы.

Фиг.17- функциональная блок-схема, показывающая конфигурацию базовой станции согласно второму варианту осуществления настоящего изобретения.

Фиг.18 - схема последовательности операций, приводящая в порядок операции согласно второму варианту осуществления настоящего изобретения.

Фиг.19 - функциональная блок-схема, показывающая конфигурацию UE согласно третьему варианту осуществления настоящего изобретения.

Фиг.20 - пояснительный вид, показывающий данные выбора сигнатуры и данные выбора ресурса произвольного доступа, полученные путем деления данных передачи.

Фиг.21 - функциональная блок-схема, показывающая конфигурацию базовой станции согласно третьему варианту осуществления настоящего изобретения.

Фиг.22 - схема последовательности операций, приводящая в порядок операции согласно третьему варианту осуществления настоящего изобретения.

Фиг.23 - пояснительный вид, показывающий разделение шифрованных данных.

Осуществление изобретения

Ниже, со ссылкой на прилагаемые чертежи, приводится подробное описание предпочтительных вариантов осуществления настоящего изобретения. Следует отметить, что в этом описании и на этих чертежах элементы, которые имеют, по существу, одинаковую функцию и структуру, обозначены одинаковыми ссылочными позициями, и их повторное объяснение будет опущено.

В этом описании и на этих чертежах множество элементов, которые имеют, по существу, одинаковую функцию и структуру, можно отличить по прикреплению различных букв алфавита в конце одинаковых ссылочных позиций. Например, множество конфигураций, имеющих, по существу, одинаковую функцию и конфигурацию, отличаются, при необходимости, как UE 20А, UE 20В и UE 20С. Однако если отсутствует необходимость в специфическом различении каждого из множества элементов, имеющих, по существу, одинаковую функцию и конфигурацию, присоединяется только та же самая ссылочная позиция. Например, если отсутствует необходимость в специфическом различении UE 20А, UE 20В и UE 20С, конфигурация просто называется как UE 20.

Настоящее изобретение будет описано согласно порядку пунктов, приведенных ниже:

1. Обзор системы радиосвязи

1.1. Конфигурация системы радиосвязи

1.2. Конфигурация кадра

1.3. Произвольный доступ

1.4. Предшествующий уровень техники

2. Первый вариант осуществления

2.1. Конфигурация UE в первом варианте осуществления

2.2. Конфигурация базовой станции согласно первому варианту осуществления

2.3. Функционирование по первому варианту осуществления

3. Второй вариант осуществления

3.1. Конфигурация UE во втором варианте осуществления

3.2. Конфигурация базовой станции согласно второму варианту осуществления

3.3. Функционирование по второму варианту осуществления

4. Третий вариант осуществления

4.1. Конфигурация UE по третьему варианту осуществления

4.2. Конфигурация базовой станции согласно третьему варианту осуществления

4.3. Функционирование по третьему варианту осуществления

4.4. Модификации

5. Заключение

1. Обзор системы радиосвязи

Технологию согласно настоящему изобретению можно осуществить в различных формах, как будет подробно описано, в качестве примера в разделах "2. Первый вариант осуществления" - "4. Третий вариант осуществления". UE (устройство связи) и базовые станции в каждом варианте осуществления позволяют реализовать передачу данных путем передачи преамбулы. Сначала будет представлен обзор системы радиосвязи, общей для каждого варианта осуществления, приведенный ниже.

1.1. Конфигурация системы радиосвязи

На фиг.1 изображен пояснительный вид, показывающий конфигурацию системы 1 связи согласно варианту осуществления настоящего изобретения. Как показано на фиг.1, система 1 связи согласно варианту осуществления настоящего изобретения включает в себя базовую станцию 10, базовую сеть 12 и UE (пользовательское оборудование) 20А-20С.

UE 20 представляет собой устройство связи, которое выполняет процесс приема в ресурсном блоке для нисходящей линии связи, выделенном базовой станцией 10, и выполняет процесс передачи в ресурсном блоке для восходящей линии связи.

UE 20 может представлять собой устройство обработки информации, например, смартфон, персональный компьютер (ПК), бытовое устройство обработки видео (DVD-проигрыватель, видеокассетный магнитофон или тому подобное), персональные цифровые помощники (PDA), домашнюю игровую машину или бытовой электроприбор. UE 20 может также представлять собой мобильное устройство связи, такое как мобильный телефон, мобильное устройство для воспроизведения музыки, мобильное устройство для воспроизведения видео или мобильную игровую машину.

Кроме того, UE 20 может представлять собой МТС-терминал. МТС-терминал представляет собой радиотерминал, который обсуждается в рамках 3GPP или выполняется по индивидуальному заказу для МТС в качестве связи между машинами без непосредственного использования людьми. Например, можно рассмотреть случай, когда МТС-терминал в качестве медицинского приложения МТС, производит сбор информации, касающейся электрокардиограммы человека, и передает информацию о кардиограмме человека через восходящую линию связи при выполнении определенного состояния триггера. В качестве другого приложения МТС можно рассмотреть случай, когда торговый автомат должен функционировать в качестве МТС-терминала, и МТС-терминал передает информацию об остатке товара и объеме продаж, касающуюся торгового автомата.

Такой МТС-терминал обычно имеет, в качестве примера, следующие особенности, но необязательно, чтобы каждый МТС-терминал имел все особенности, и чтобы его особенности зависели от приложения.

- Почти без перемещения (низкая мобильность)

- Передача данных с маленькой пропускной способностью (передача малого объема данных в режиме он-лайн)

- Сверхнизкая потребляемая мощность (особо низкая потребляемая мощность)

- Каждая МТС, сгруппированная для обработки данных (особенности МТС на основе группы)

Базовая станция 10 представляет собой базовую радиостанцию, которая поддерживает связь с UE, которая находится в зоне охвата. В данном случае, базовая станция 10 может представлять собой eNodeB, ретрансляционный узел, базовую станцию фемтосоты, базовую станцию пиктосоты, удаленную радиоголовку (RRH) и тому подобное. На фиг.1 показан пример, в котором только одна базовая станция 10 соединена с базовой сетью 10, но в действительности большое количество базовых станций 10 соединено с базовой сетью 12.

Базовая сеть 12 представляет собой сеть со стороны оператора, включающую в себя узел управления, такой как объект управления мобильностью (ММЕ), и обслуживающую шлюз (GW). ММЕ представляет собой устройство, которое устанавливает или разъединяет сеанс для обмена данными и управляет передачей управления. ММЕ подсоединяется через интерфейсы, которые называются eNodeB10 и S1. S-GW представляет собой устройство, которое маршрутизирует и передает пользовательские данные.

1.2. Конфигурация кадра

Ниже приводится описание кадра, совместно используемого между базовой станцией 10 и UE 20, которые описаны выше.

На фиг.2 изображен пояснительный вид, показывающий формат кадра. Как показано на фиг.2, радиокадр длительностью 10 мс образован из 10 подкадров #0-#9 длительностью 1 мс. Каждый подкадр состоит из 14 символов OFDM (мультиплексирования с ортогональным частотным разделением каналов). Один ресурсный блок состоит из 12 OFDM-поднесущих с длительностью подкадра, и планирование выделяется в единицах ресурсных блоков. Один OFDM-символ представляет собой блок, который используется способом связи способа модуляции OFDM, и блок вывода данных, обработанных с помощью быстрого преобразования Фурье (БПФ)

Каждый подкадр состоит из области управления и области данных. Область управления состоит из первых одного - трех OFDM-символов и используется для передачи управляющего сигнала, который называется физическим управляющим каналом нисходящей линии связи (PDCCH). Область данных, следующая за областью управления, используется для передачи пользовательских данных, которые называются совместно используемым физическим каналом нисходящей линии связи (PDSCH).

1.3. Произвольный доступ

Пользовательское оборудование 20 выполняет ряд операций, которые называются произвольным доступом, с помощью базовой станции 10. Произвольный доступ выполняется в случае когда, например, UE 20 осуществляет доступ к базовой станции 10 первоначально из режима ожидания, запускается передача управления, запрос принимается от базовой станции 10, данные нисходящей линии связи принимаются тогда, когда система передачи выходит из синхронизма или т.п. Технология согласно настоящему изобретению тесно связана с произвольным доступом, и, таким образом, произвольный доступ будет подробно описан ниже.

Общая теория произвольного доступа

Произвольный доступ можно приблизительно разделить на тип с конкуренцией и на тип без конкуренции. Тип с конкуренцией представляет собой способ, в котором преамбулу, передаваемую в начале произвольного доступа, разрешается завершать с помощью других терминалов. Тип без конкуренции представляет собой способ, в котором передачи заданной сигнатуры заранее для предотвращения конкуренции преамбулы. Сигнатура относится к специфической информации, которая переносится преамбулой.

В настоящем изобретении, хотя произвольный доступ будет описан, главным образом, предполагая, что произвольный доступ относится к типу с конкуренцией, а не к типу без конкуренции, технологию согласно настоящему изобретению можно также применить к типу без конкуренции.

Для того чтобы иметь дело с различными размерами сот, для частотного мультиплексирования (FDD), определено четыре формата 0-3 преамбулы, которые имеют различные длительности преамбулы. Длительность преамбулы формата 0 равна 1 мс, длительность преамбулы формата 1 и формата 2 равна 2 мс, и длительность преамбулы формата 3 равна 3 мс. В настоящем изобретении, главным образом, будет описан пример, в котором преамбула имеет формат 0 в FDD-системе, но преамбула может иметь и другие форматы, и технологию, согласно настоящему изобретению можно также применить к другим системам, таким как система с временным мультиплексированием (TDD).

Конкретная процедура для такого произвольного доступа будет описана ниже со ссылкой на фиг.3, на котором показана процедура для произвольного доступа, основанного на LTE. Процедура, описанная ниже, представляет собой процедуру для произвольного доступа с определенной точки зрения и будет подробно описана в разделе "2. Первый вариант осуществления" и после этого в качестве вариантов осуществления согласно настоящему изобретению, произвольный доступ можно также выполнить с помощью других способов или для других приложений.

Получение системной информации

Как показано на фиг.3, UE 20 сначала принимает системную информацию от базовой станции 10 (S81). Системная информация включает в себя значение индекса конфигурации PRACH, показывающее местоположение временного размещения канала с произвольным доступом на физическом уровне (PRACH), местоположение частоты в полосе частот системы PRACH, ширину полосы частот PRACH, значение логической последовательности маршрута и значение установки циклического сдвига. Значение логической последовательности маршрута используется для генерирования сигнатуры преамбулы, и значение установки циклического сдвига точно определяет расстояние между сигнатурами.

Генерирование преамбулы

Затем, когда возникает запрос на произвольный доступ, UE 20 выбирает одну сигнатуру из 64 кандидатов сигнатур, генерированных из значения логической последовательности маршрута и значения установки циклического сдвига, и генерирует преамбулу, имеющую выбранную сигнатуру (S82).

Более конкретно, значение логической последовательности маршрута имеет значение между 0 и 837, и UE 20 принимает решение относительно номера последовательности физического маршрута из значения логической последовательности маршрута с использованием заданной таблицы отображения. Таблица отображения представляет собой таблицу, показывающую взаимно однозначное соответствие между значением логической последовательности маршрута и номером последовательности физического маршрута.

Далее, UE 20 генерирует последовательность Задова-Чу (Zadoff Chu) в качестве последовательности из 839 комплексных чисел из номера последовательности физического маршрута и значения установки циклического сдвига согласно, например, генерированию последовательности Задова-Чу. Последовательность Задова-Чу является лучшей по характеристикам автокорреляции и взаимной корреляции. В дополнение к этому, огибающая сигнала передачи, основанная на последовательности Задова-Чу, имеет фиксированную амплитуду, и, таким образом, позволяет уменьшить искажение, вносимое усилителем мощности передатчика. Затем UE 20 выбирает последовательность Задова-Чу из 64 различных последовательностей Задова-Чу, определенных от различных номеров последовательности физического маршрута и значений установки циклического сдвига. Затем UE 20 генерирует преамбулу, используя последовательность Задова-Чу в качестве сигнатуры.

На фиг.4 изображен пояснительный вид, показывающий концепцию преамбулы, сгенерированную UE 20 в частотной области. На фиг.4 показана преамбула с форматом 0. Как показано на фиг.4, преамбула имеет циклический префикс, добавленный к символу, сгенерированному из последовательности Задова-Чу.

Длительность символа преамбулы составляет 0,8 мс, и длительность циклического префикса составляет приблизительно 0,1 мс. Таким образом, как показано на фиг.4, за защитный интервал времени, равный приблизительно 0,1 мс, обеспечен между концом символа преамбулы и концом начала следующего ресурсного блока. Защитный интервал времени представляет собой время, которое обеспечивается с учетом разницы по времени, необходимой между передачей преамбулы с помощью UE 20 и получением преамбулы на базовой станции 10 из UE 20, для UE 20 20. Защитный интервал времени необходим для передачи преамбулы, которая не использует значение опережения таймирования (ТА), и для передачи других сигналов UE 20 использует значение ТА, полученное из отклика произвольного доступа для передачи сигналов с тем, чтобы реализовать выравнивание принимаемых сигналов с помощью базовой станции.

Интервал поднесущей сигнала преамбулы в формате 0 FDD составляет 1,25 кГц, и, таким образом, как показано на фиг.4, передача преамбулы занимает ширину полосы частот 1,08 мГц, соответствующую шести ресурсным блокам.

Передача преамбулы

Затем UE 20 передает преамбулу с использованием, среди ресурсов связи (временных слотов), определенных значением индекса конфигурации PRACH, ресурса, который поступает следующим (S83).

Более конкретно, значение индекса конфигурации PRACH принимает значения между 0 и 63. Из этих значений значения индексов конфигурации PRACH, соответствующие формату 0, равны 0-15. Ресурсы произвольного доступа, определенные с помощью каждого значения индекса конфигурации PRACH, будут описаны более конкретно ниже со ссылкой на фиг.5.

На фиг.5 изображен пояснительный вид, показывающий ресурсы произвольного доступа, определенные с помощью каждого значения индекса конфигурации PRACH. На фиг.5 номер кадра системы (SFN) представляет собой порядковый номер радиокадра, и для SFN определены номера от 0 до 1023.

Как показано на фиг.5, ресурсы произвольного доступа, определенные с помощью значений индексов конфигураций PRACH, имеют различные периоды и периодические картины смещения и тому подобное. Например, значения "0", "1", "2" и "15" индексов определяют ресурс одного подкадра, который содержится в каждом радиокадре, чей SFN является четным. С другой стороны, значения "3"-"5" индексов определяют ресурс одного подкадра, который содержится в каждом из всех радиокадров. Аналогичным образом, большее количество ресурсов определяют с помощью увеличивающегося значения индекса, представленного ниже. Базовая станция 10 принимает решение относительно значения индекса на основании условий, таких как полоса частот системы и количество предоставленных пользователей, таким образом, чтобы ресурсы произвольного доступа были правильно обеспечены, и каждое UE 20 получало уведомление о них в ячейке системной информации, включающей в себя значение индекса.

Отклик произвольного доступа

При получении преамбулы из UE 20, базовая станция 10 получает значение корреляции сигнатуры (последовательности Задова-Чу) принятой преамбулы с 64 сигнатурами и может идентифицировать сигнатуру принятой преамбулы из значения корреляции. Затем базовая станция 10 передает сообщение, которое называется откликом произвольного доступа, в UE 20 через PDCCH (S84).

Более конкретно, отклик произвольного доступа включает в себя ID идентифицированной сигнатуры преамбулы, значение опережения таймирования (ТА) для коррекции задержки передачи, пропорциональной расстоянию между UE 20 и базовой станцией 10. Временный ID сотовой радиосети (C-RNTI) в качестве идентификатора UE 20, и 20-битовые данные, разрешенные для передачи. Если ID сигнатуры, которая содержится в отклике произвольного доступа, является правильным, то UE 20 распознает, что передача преамбулы является успешной. С другой стороны, если ID сигнатуры является неправильным, то UE 20 выполняет заданную процедуру для повторной передачи.

Сообщение L2/L3

После получения отклика произвольного доступа, содержащего правильный ID сигнатуры, UE 20 передает сообщение L2/L3 на базовую станцию 10 (S85). Сообщение L2/L3 включает в себя управляющие сообщения, которые называются как информация уровня 2/информация уровня 3, такая как запрос на соединение RRC, запрос на обновление зоны отслеживания и запрос на планирование, но не включает пользовательские данные.

Сообщение о разрешении конкуренции

Когда базовая станция 10 принимает сообщение L2/L3 из UE 20 и передает сообщение о разрешении конкуренции в UE 20 (S86), устанавливается соединение между базовой станцией 10 и UE 20. Затем UE 20 может выполнить обмен любыми пользовательскими данными с базовой станцией 10.

1.4. Предшествующий уровень техники

Выше приведен обзор системы 1 радиосвязи. Далее перед подробным описанием каждого варианта осуществления настоящего изобретения будет описан предшествующий уровень техники, приводящий к каждому варианту осуществления настоящего изобретения.

Предполагается, что в будущем будут широко использоваться терминалы, подобные МТС-терминалам, которые осуществляют обмен данными с маленькой пропускной способностью на крайне низкой частоте. Желательно, чтобы такие терминалы потребляли маленькую мощность для того, чтобы минимизировать замену аккумуляторов. Поэтому востребованы технические характеристики, которые значительно отличаются от более широких полос частот и более высоких частот, которые пытаются реализовать с помощью традиционного способа LTE.

Технологии связи для реализации обмена данных с маленькой пропускной способностью включают в себя беспроводную локальную вычислительную сеть (WLAN), специфицированную с помощью IEEE802.11 и способа сотовой связи.

Согласно WLAN связь можно выполнить с минимальным количеством пакетов в случае, когда необходима передача данных. Соответственно, можно реализовать связь с низкой потребляемой мощностью при низкой скорости передачи битов. Однако WLAN представляет собой способ связи, предназначенный для относительно маленькой зоны, которая обычно составляет приблизительно 100 м, и поэтому остается высоким уровень сложности применения WLAN в приложениях, в которых необходима связь в широкой зоне.

С другой стороны, способ сотовой связи превосходит WLAN в том, что широкая зона порядка нескольких километров может быть покрыта с помощью одной соты. Например, в системе, в которой МТС-терминалы, имеющие функцию датчика, размещаются по всей ширине зоны, и МТС-терминалы беспроводным способом передают данные датчика на базовую станцию, при этом передача данных с маленькой пропускной способностью с использованием способа сотовой связи рассматривается в качестве подходящего средства.

Более конкретно, согласно способу WCDMA (сотовым системам третьего поколения) в качестве примера сотовой связи передачу данных с маленькой пропускной способностью можно выполнять с использованием канала произвольного доступа. Процедура произвольного доступа в способе WCDMA является приблизительно такой же, как и в вышеупомянутой процедуре произвольного доступа в LTE, но существует небольшое отличие в передаче пользовательских сообщений, и, таким образом, процедура произвольного доступа в способе WCDMA будет описана со ссылкой на фиг.6.

Произвольный доступ в способе WCDMA

На фиг.6 изображена схема последовательности операций, показывающая процедуру произвольного доступа в способе WCDMA. Сначала, после того, как основная системная информация, которая используется для произвольного доступа, передается от базовой станции (S91), UE передает преамбулу на базовую станцию (S92).

Затем базовая станция передает отклик PRACH (ACK/NACK) на UE с использованием канала AICH (S93). Затем после верификации АСК через AICH, UE передает сообщение UE на базовую станцию через PUSCH (S94). В WCDMA UE может передавать пользовательские данные размером приблизительно несколько сотен битов. После получения NACK, UE повторяет попытку передачи преамбулы.

Недостатки способа WCDMA

В способе WCDMA, как описано выше, обмен данными с маленькой пропускной способностью можно реализовать с помощью процедуры произвольного доступа. Однако способ сотовой связи использует протокол и обработку сигнала, которые являются более сложными, чем в случае WLAN и схем передачи, имеющих большой уровень мощности передачи, и, таким образом, потребляемая мощность для обмена данными в способе WCDMA больше, чем в случае WLAN. Поэтому при обмене данными с использованием процедуры произвольного доступа в способе WCDMA считается затруднительным получение эквивалентного случаю WLAN.

В дополнение к этому, в качестве проблемы способа WCDMA с другой точки зрения можно сослаться на перенос системы в способ LTE. Способ WCDMA представляет собой способ связи более старый, чем способ LTE, и, таким образом, предполагается, что способ LTE, имеющий более высокую скорость и пропускную способность системы, будет принят для сотовых систем, которые будут вновь разрабатываться в будущем. Кроме этого, предполагается, что сотовые системы, использующие способ WCDMA, который эксплуатируется в настоящее время, будет перенесен один к одному в способ LTE.

Поэтому с учетом того факта, что потребляемая мощность способа WCDMA является большой, и также развитие его в виде сети, использующий способ WCDMA, рассматривается как неоптимальное решение для реализации обмена данными с маленькой пропускной способностью и с низкой потребляемой мощностью.

Обсуждение способа LTE

В общем способе произвольного доступа в способе LTE, описанном со ссылкой на фиг.3, передача сообщения L2/L3 после преамбулы разрешена (S85), но передача пользовательских данных не разрешена. Таким образом, для общего способа произвольного доступа в способе LTE трудно реализовать обмен данными с маленькой пропускной способностью, как в способе WCDMA.

С этой точки зрения можно также рассматривать идею разрешения передачи пользовательских данных наряду с передачей сообщения L2/L3 в способе LTE. В таком случае, как и в способе WCDMA, обмен данными с маленькой пропускной способностью можно реализовать также в способе LTE. Однако если передача пользовательских данных разрешена наряду с передачей сообщения L2/L3, можно предположить потребляемую мощность на том же самом уровне, как и в способе WCDMA, и поэтому, как и в способе WCDMA, трудно гарантировать достаточный период времени для приведения в действие аккумулятора.

Помимо вышеупомянутого периода времени приведения в действие аккумулятора, существует проблема, касающаяся перегрузки радиосети (RAN). То есть известно, при большом количестве произвольного доступа для запуска UE в одно и то же время в сотовой системе, в которой существует чрезвычайно большое количество UE, радиоинтервал между базовой станцией и UE является перегруженным, вызывая чрезмерное ухудшение характеристик. Предполагается, что в будущих сотовых системах в соте будет присутствовать чрезвычайно большое количество МТС-терминалов, и, таким образом, возникновение перегрузки RAN является очень важной проблемой. Такая проблема, касающаяся перегрузки RAN, в недостаточной мере устраняется способом добавления пользовательских данных в сообщение L2/L3.

Значение настоящего изобретения

Каждый вариант осуществления настоящего изобретения выполнен с учетом вышеупомянутых обстоятельств, и согласно каждому варианту осуществления настоящего изобретения передачу данных можно реализовать с помощью передачи преамбулы. Соответственно, можно реализовать нузкую потребляемую мощность, и можно также предотвратить возникновение перегрузки RAN. Каждый вариант осуществления настоящего изобретения, как описано выше, будет последовательно и подробно описан ниже.

2. Первый вариант осуществления

UE 20-1 согласно первому варианту осуществления настоящего изобретения выбирает сигнатуру преамбулы в соответствии со значением данных передач. Соответственно, базовая станция 10-1, имеющая принятую преамбулу, может определить данные передачи из сигнатуры преамбулы.

2.1. Конфигурация UE 20-1

На фиг.7 изображена функциональная блок-схема, показывающая конфигурацию UE 20-1 согласно первому варианту осуществления настоящего изобретения. Как показано на фиг.7, UE 20-1 согласно первому варианту осуществления настоящего изобретения включает в себя антенную группу 204, блок 210 радиообработки, блок 230 обнаружения сигнала нисходящей линии связи, блок 240 обнаружения сигнала восходящей линии связи, блок 250 генерирования данных передачи, блок 260 хранения отображения, блок 264 управления отображением, блок 268 выбора сигнатуры и блок 270 генерирования преамбулы.

Антенная группа 204 принимает радиосигналы от базовой станции 10-1 и получает электрический высокочастотный сигнал для подачи высокочастотного сигнала на блок 210 радиообработки. Антенная группа 204 также передает радиосигнал на базовую станцию 10-1 на основании высокочастотного сигнала, поданного от блока 210 радиообработки. UE 20-1 включает в себя антенную группу 204, состоящую из множества антенн, и поэтому она может выполнять связь с MIMO и связь с разнесением каналов.

Блок 210 радиообработки преобразует высокочастотный сигнал, поданный от антенной группы 204 в основополосный сигнал (сигнал нисходящей линии связи) путем выполнения аналоговой обработки, такой как усиление, фильтрация и преобразование с понижением частоты. Блок 210 радиообработки также преобразует основополосный сигнал (сигнал восходящей линии связи), подаваемый из блока 240 генерирования сигнала восходящей линии связи или тому подобного, в высокочастотный сигнал. Таким образом, блок 210 радиообработки функционирует как блок передачи и блок приема вместе с антенной группой. Кроме того, блок 210 радиообработки может иметь функцию для выполнения Ц/А преобразования сигнала восходящей линии связи и функцию выполнения А/Ц преобразования сигнала нисходящей линии связи.

Блок 230 обнаружения сигнала нисходящей линии связи обнаруживает управляющий сигнал, такой как PDCCH, или пользовательские данные, такие как PDSCH, из сигнала линии связи, поданного блоком 210 радиообработки. Когда базовая станция 10-1 принимает решение относительно/управляет информацией отображения, показывающей соответствия между значениями данных передачи и сигнатурами, информация отображения может размещаться на PDCCH или PDSCH.

Блок 240 генерирования сигнала восходящей линии связи генерирует сигнал восходящей линии связи, который будет передаваться на базовую станцию 10-1. Более конкретно, блок 240 генерирования сигнала восходящей линии связи генерирует управляющий сигнал, такой как PUCCH, и сигнал пользовательских данных, такой как PUSCH. Когда UE 20-1 принимает решение относительно/управляет информацией отображения, блок 240 генерирования сигнала восходящей линии связи может разместить информацию отображения на PUCCH или PUSCH.

Блок 250 генерирования данных передачи генерирует данные передачи, которые будут передаваться на базовую станцию 10-1. Данные передачи включают в себя прикладные данные и идентификационные данные UE 20-1. Данные передачи будут описаны более конкретно ниже со ссылкой на фиг.8.

На фиг.8 изображен пояснительный вид, показывающий конкретный пример данных передачи. Как показано на фиг.8, данные передачи включают в себя, например, шесть битов бит b1 - бит b6, прикладные данные выделены битам b1, b2, и идентификационные данные, и идентификационные данные выделены битами b3-b6.

Прикладные данные представляют собой приложения, которыми обладает UE 20-1, или данные в соответствии с предполагаемым назначением UE 20-1. Например, когда, UE 20-1 выполнено в торговом автомате, и его предположительное назначение состоит в том, чтобы предоставлять отчет о режимах работы торгового автомата и продажах, прикладные данные могут представлять собой данные, показывающие объем продаж и остаток товара в торговом автомате. Более конкретно, если количество продаж в день торгового автомата превышает заданное значение, "1" можно установить для бита b1, и если торговый автомат нуждается в пополнении товара, "1" можно установить для бита b2. Кроме того, настоящий вариант осуществления можно применить к различным приложениям, и, таким образом, можно предположить, что различные виды данных будут представлять собой прикладные данные.

Идентификационные данные представляют собой данные, предназначенные для идентификации UE 20-1. Идентификац