Гуманизированные m-csf мыши

Иллюстрации

Показать все

Изобретение относится к области биотехнологии и генной инженерии. Описаны генетически модифицированные мыши, содержащие нуклеиновокислотную последовательность, кодирующую человеческий M-CSF белок. Также предоставляются генетически модифицированные мыши, содержащие нуклеиновокислотную последовательность, кодирующую человеческий M-CSF белок, которым были трансплантированы клетки человека, такие как гемопоэтические клетки человека. Также описаны способы создания таких мышей с приживленными клетками. Эти мыши находят ряд применений, такие как моделирование иммунных заболеваний человека и инфекции патогеном; при скрининге in vivo веществ, которые модулируют развитие и/или активность гемопоэтических клеток, например, в норме или в болезненном состоянии; при скрининге in vivo веществ, которые являются токсичными для гемопоэтических клеток; при скрининге in vivo веществ, которые предотвращают, уменьшают или отменяют токсические эффекты токсических веществ на гемопоэтические клетки; при скрининге in vivo гемопоэтических клеток человека, полученных от индивидуума, с целью определения чувствительности индивидуума к лечению. 3 н. и 13 з.п. ф-лы, 27 ил., 3 пр.

Реферат

Область техники

Изобретение относится к генетически модифицированным мышам, содержащим ген, кодирующий белок M-CSF человека, и мышам, которые содержат дополнительные модификации, способствующие приживлению гемопоэтических клеток человека.

Уровень техники

Развитие животных моделей для изучения заболеваний человека в значительной степени способствовало пониманию механизмов, лежащих в основе некоторых заболеваний, включая рак. В настоящее время признано, что животные модели, в частности, мыши, являются превосходными кандидатами для оценки качества и эффективности лекарственных препаратов и возможностей терапии. В то время как использование этих суррогатных моделей для изучения биологии и болезней человека в значительной степени оправдано (вследствие этических и технических ограничений на проведение экспериментального лечения на людях), в результате исследований стала актуальной проблема, связанная с возможными ограничениями экстраполирования данных от мышей к людям (Mestas J, Hughes СС. (2004) Of mice и not men: differences between mouse и human immunology. J Immunol. 172:2731-2738).

В течение многих лет существует необходимость в создании гуманизированных мышиных моделей с целью преодоления этих ограничений. Напряженная работа нескольких групп исследователей успешно продемонстрировала возможность изучения биологии и заболеваний человека на мышах. Поскольку наличие функциональной и эффективной иммунной системы у реципиентов приводит к уничтожению трансплантированных тканей/клеток человеческого происхождения, использование генетических мутантов, лишенных клеток адаптивной иммунной системы, таких как Т, В и NK-клетки, значительно способствует успеху гуманизированной мышиной модели. Исходя из этого, наиболее эффективные варианты гуманизированных мышиных моделей включают NOD-SCID и Balb/c штаммы, у которых отсутствуют гены активации рекомбинации (RAG), общей гамма-цепи (γС, также известный как ″рецептор интерлейкина 2, гамма″, или IL2rg), бета2 микроглобин (В2М) и перфорин 1(Prfl) (Shultz LD, et al. (2007) Humanized mice in translational biomedical research, Nat. Rev. Immunol. 7:118-130). Проведенные в течение нескольких последних десятилетий исследования показали возможность трансплантации нескольких типов тканей человека, включая лейкоциты периферической крови, клетки эмбриональной печени, эмбриональной кости, эмбрионального тимуса, эмбриональных лимфатических узлов, васкуяризированной кожи, сегментов артерий, а также мобилизованных гемопоэтических стволовых клеток или гемопоэтических стволовых клеток пуповинной крови (ГСК) некоторым гуманизированным мышам (Macchiarini F., et al. (2005) Humanized mice: are we there yet? J. Exp. Med. 202:1307-1311). Считается, что этот подход обеспечит улучшенные модельные системы, поскольку данные, полученные от человеческих клеток, имеющихся в этих мышах, могут отражать физиологию человеческой системы. Главным направлением исследований в этой области является создание мышей с полной гемопоэтической системой и функциональной иммунной системой человеческого происхождения. Несмотря на то, что в создании мышей с ослабленным иммунитетом и человеческими Т-лимфоцитами, В-лимфоцитами, NK-клетками и дендритными клетками (DCs) достигнут значительный прогресс, в этой области еще остается несколько сложных проблем, одной из которых является недостаточная миелоидная дифференцировка у гуманизированных мышей.

Интересно отметить, что в формировании человеческих Т-клеток, В-клеток, NK-клеток и дендритных клеток (DCs) из гемопоэтических стволовых клеток (ГСК) у гуманизированных мышей были достигнуты большие успехи. Введение человеческих ГСК этим мышам, в дополнение к индивидуальному гематопоэтическому компартменту, приводило к восстановлению лимфоидных органов, таких как тимус и селезенка. Тем не менее, количества миелоидных клеток, в частности, гранулоцитов, макрофагов, эритроцитов и мегакариоцитов, являются очень низкими - результат, вероятно, обусловленный неэффективным миелопоэзом из человеческих ГСК у этих мышей (Shultz et al. (2007); Macchiarini et al. (2005)). Принимая во внимание тот факт, что клетки миелоидного происхождения (такие как эритроциты и мегакариоциты) имеют жизненно важное значение для нормального функционирования кровеносной системы, а гранулоциты и макрофаги крайне важны для развития системы адаптивного иммунитета, создание гуманизированных мышей с эффективным человеческим миелопоэзом имеет огромное значение.

Таким образом, в данной области техники существует необходимость в генетически модифицированных мышах, способных к улучшенному человеческому миелопоэзу в результате приживления человеческих ГСК (Manz MG. Human-hemato-lymphoid-system mice: opportunities и challenges. Immunity. 2007 May; 26(5):537-41).

Раскрытие изобретения

Предоставляются генетически модифицированные мыши, содержащие нуклеиновокислотную последовательность, кодирующую белок M-CSF человека. Также предоставляются генетически модифицированные мыши, содержащие нуклеиновокислотную последовательность, кодирующую белок M-CSF человека, которым сделана пересадка человеческих клеток, таких как гемопоэтические клетки человека, и способы создания таких ″привитых″ мышей (т.е. мышей с пересаженными человеческими клетками). Эти мыши находят целый ряд применений, таких как моделирование иммунной болезни человека и инфекции болезнетворными микроорганизмами; при in vivo поиске веществ, которые модулируют развитие и/или активность гемопоэтических клеток, например, в нормальном состоянии или в болезненном состоянии; при in vivo поиске веществ, токсичных для гемопоэтических клеток; при скрининге in vivo веществ, которые предотвращают, уменьшают или аннулируют токсические эффекты токсических веществ на гемопоэтические клетки; при скрининге in vivo человеческих гемопоэтических клеток, полученных от индивидуума, для прогнозирования чувствительности индивидуума к лечению заболевания и т.д.

В некоторых аспектах изобретения предоставляется гуманизированная M-CSF мышь, причем гуманизированный M-CSF содержит нуклеиновокислотную последовательность, которая кодирует белок M-CSF человека и функционально связана с регуляторной последовательностью 5′ мышиного M-CSF локуса структурных генов, например, промотором M-CSF мыши, 5′UTR и т.д. В некоторых вариантах осуществления мышь содержит две копии нуклеиновокислотной последовательности. В некоторых вариантах осуществления нуклеиновокислотная последовательность располагается в геноме мыши внутри локуса M-CSF мыши. В некоторых вариантах осуществления нуклеиновокислотная последовательность функционально связана с эндогенным промотором M-CSF мыши в локусе M-CSF мыши, т.е. мышь представляет собой M-CSFh/m мышь. В некоторых вариантах осуществления мышь содержит два аллеля, в которых нуклеиновокислотная последовательность располагается в геноме мыши внутри локуса M-CSF мыши. В некоторых вариантах осуществления нуклеиновокислотная последовательность обоих аллелей функционально связана с эндогенным промотором М-CSF мыши в локусе M-CSF мыши, т.е. мышь является M-CSFh/h мышью. В некоторых вариантах осуществления гуманизированная M-CSF мышь содержит нулевую мутацию (нуль-мутацию), по меньшей мере, в одном аллеле M-CSF мыши. В некоторых вариантах осуществления гуманизированная M-CSF мышь содержит нуль-мутацию в обеих аллелях M-CSF мыши. В некоторых таких вариантах осуществления нуль-мутация представляет собой делецию экзонов 2-9 M-CSF мыши.

В некоторых вариантах осуществления мышь экспрессирует человеческий M-CSF в костном мозге, селезенке, крови, печени, мозге, легких, семенниках и почках. В некоторых вариантах осуществления количество экспрессированного человеческого М-CSF практически равно количеству мышиного M-CSF, экспрессированного у мыши дикого типа. В некоторых вариантах осуществления мезенхимальные стромальные клетки костного мозга гуманизированной M-CSF мыши экспрессируют количество человеческого M-CSF, которое практически равно количеству мышиного M-CSF, экспрессированного мезенхимальными стромальными клетками костного мозга мыши дикого типа. В некоторых вариантах осуществления гуманизированная M-CSF мышь имеет физиологическую концентрацию M-CSF в крови и/или ткани. В некоторых вариантах осуществления мышь экспрессирует как мышиный M-CSF, так и человеческий M-CSF. В других вариантах осуществления единственный M-CSF, который экспресирует мышь, является человеческим M-CSF.

В некоторых вариантах осуществления мышь секретирует достаточное количество человеческого M-CSF для дифференцировки привитых человеческих гемопоэтических стволовых клеток в человеческие моноциты, человеческие макрофаги и человеческие остеокласты. В некоторых вариантах осуществления мышь секретирует эффективное количество M-CSF, для стимулирования развития человеческих макрофагов из человеческих моноцитов, которое происходит в результате приживления человеческих гемопоэтических стволовых клеток у мыши. В некоторых вариантах осуществления мышь секретирует эффективное количество M-CSF, чтобы стимулировать развитие человеческой гемопоэтической стволовой клетки в монобласт, монобласта в человеческий промоноцит, человеческого промоноцита в человеческий моноцит и человеческого моноцита в человеческий макрофаг у мыши, которой привили человеческие гемопоэтическимиестволовые клетки. В некоторых вариантах осуществления эффективное количество человеческого M-CSF, секретированного у мыши, практически является одинаковым с количеством мышиного M-CSF, секретированного мышью дикого типа, для достижения соответствующего результата (например, эффективное количество мышиного M-CSF для стимуляции развития мышиного макрофага из мышиного моноцита).

В некоторых вариантах осуществления контроль транскрипции и трансляции человеческого M-CSF у генетически модифицированной мыши аналогичен или практически аналогичен контролю транскрипции и трансляции мышиного M-CSF у мыши, у которой отсутствует модификация ее эндогенного мышиного M-CSF гена.

В некоторых вариантах осуществления физиологическая концентрация человеческого M-CSF у гуманизированной мыши M-CSF возникает в результате секреции человеческого M-CSF теми же типами клеток, которые секретируют мышиный M-CSF у мыши дикого типа, которая имеет мышиный M-CSF ген и не имеет нуклеиновой кислоты, кодирующей человеческий M-CSF белок. Другими словами, одна или более изоформ М-CSF экспрессируются в рамках нормального тканеспецифичного и эволюционного профиля.

В некоторых вариантах осуществления мышь экспрессирует изоформу человеческого M-CSF, выбранную из протеогликана M-CSF, гликопротеина M-CSF и М-CSF клеточной поверхности и их комбинации. В одном варианте осуществления мышь экспрессирует, по меньшей мере, две из изоформ в рамках нормального тканеспецифичного и эволюционного профиля. В отдельном варианте осуществления мышь экспрессирует человеческий протеогликан CSF-1 и человеческий гликопротеин М-CSF и человеческий M-CSF клеточной поверхности.

В некоторых вариантах осуществления мышь содержит человеческие макрофаги, которые не являются макрофагами, полученными из Т-клеток тимуса. В некоторых вариантах осуществления мышь содержит человеческие макрофаги, которые обнаруживают M-CSF-зависимое образование подосом, вызванное человеческим M-CSF, экспрессированным у мыши.

В некоторых вариантах осуществления мышь является гомозиготной по нуль-мутации Rag2. В некоторых вариантах осуществления мышь является гомозиготной по нуль-мутации IL2rg. В некоторых вариантах осуществления мышь является гомозиготной по нуль-мутации Rag2 и IL2rg. В некоторых вариантах осуществления мышь содержит человеческие клетки. В некоторых вариантах осуществления человеческие клетки представляют собой гемопоэтические клетки.

В некоторых аспектах изобретения предоставляется мышиная модель иммунной системы человека, мышиная модель, содержащая 2 нулевых аллеля Rag2, 2 нулевых аллеля IL2rg, нуклеиновокислотную последовательность, которая кодирует человеческий M-CSF белок, функционально связанная с промотором гена M-CSF мыши, и человеческие гемопоэтические клетки. Другими словами, мышь представляет собой ″привитую″ Rag2-/-IL2rg-/- hM-CSF мышь, где hM-CSF обозначает, что мышь содержит, по меньшей мере, одну нуклеиновую кислоту, кодирующую ген M-CSF человека. В некоторых вариантах осуществления ″привитая″ Rag2-/-IL2rg-/- hM-CSF мышь представляет собой мышь штамма BALB/c, содержащую эти генетические модификации. В некоторых вариантах осуществления мышь также содержит другие генетические модификации.

В некоторых вариантах осуществления у ″привитой″ Rag2-/-IL2rg-/- hM-CSF мыши в возрасте около 12 недель наблюдается повышенное количество человеческих CD14+CD33+(hCD14+CD33+) клеток в костном мозге, селезенке и периферической крови по сравнению с мышью, содержащей человеческие гемопоэтические клетки, которые экспрессируют мышиный M-CSF, а не человеческий M-CSF. В определенном варианте осуществления увеличение hCD14+CD33+ клеток костного мозга по сравнению с мышью, экспрессирующей только мышиный M-CSF, составляет примерно от 5 до 15 раз, в одном варианте осуществления примерно от 12 до 14 раз. В определенном варианте осуществления увеличение hCD14+CD33+ клеток селезенки по сравнению с мышью, содержащей человеческие гемопоэтические клетки, которые экспрессируют только мышиный M-CSF, составляет примерно от 2 до 6 раз, в одном варианте осуществления примерно от 5 до 6 раз. В определенном варианте осуществления увеличение hCD14+CD33+ клеток периферической крови по сравнению с мышью, содержащей человеческие гемопоэтические клетки, которые экспрессируют только мышиный M-CSF, составляет примерно от 2 до 8 раз, в одном варианте осуществления примерно от 5 до 7 раз.

В некоторых вариантах осуществления у «привитой» Rag2-/-IL2rg-/- hM-CSF мыши в возрасте около 12 недель наблюдается уровень hCD14+CD33+ клеток моноцитарно/макрофагальной линии дифференцировки в крови, составляющий примерно от 15 до 40%, в одном варианте осуществления примерно 30%. В одном варианте осуществления генетически модифицированная ″привитая″ мышь в возрасте около 16 недель демонстрирует уровень hCD14+CD33+ клеток моноцитарно/макрофагальной линии дифференцировки в крови, составляющий примерно от 15 до 30%, в одном варианте осуществления примерно 22%. В одном варианте осуществления генетически модифицированная «привитая» мышь в возрасте около 20 недель демонстрирует уровень hCD14+CD33+ клеток моноцитарно/макрофагальной линии дифференцировки в крови, составляющий примерно от 5 до 15%, в одном варианте осуществления примерно 10%. В одном варианте осуществления генетически модифицированная «привитая» мышь в возрасте около 20 недель демонстрирует уровень hCD14+CD33+ клеток моноцитарно/макрофагальной линии дифференцировки в крови, который примерно от 4 до 8 раз выше, чем уровень у «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF, в одном варианте осуществления примерно в 6 раз выше.

В некоторых вариантах осуществления «привитая» Rag2-/-IL2rg-/- hM-CSF мышь в возрасте около 12 недель демонстрирует уровень hCD14+CD33+CD45+ клеток в печени, который примерно в 1,5- 6 раз выше, чем у ″привитой″ мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF. В одном варианте осуществления генетически модифицированная «привитая» мышь в возрасте около 12 недель демонстрирует уровень hCD14+CD33+CD45+ клеток в легких, который примерно в 1,5-10 раз выше, чем у «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF. В одном варианте осуществления генетически модифицированная «привитая» мышь в возрасте около 12 недель демонстрирует уровень человеческих hCD14+CD33+CD45+ клеток в брюшной полости или коже, который примерно в 2-3 раза выше, чем у «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления «привитая» Rag2-/-IL2rg-/- hM-CSF мышь демонстрирует ответ на введение LPS, который примерно в 1,5-6 раз выше относительно процентного содержания hCD14+CD33+ клеток в печени, чем мышь, у которой отсутствует человеческий M-CSF, в одном варианте осуществления примерно в 2-4 раза; в легких LPS-ответ относительно клеток hCD14+CD33+ является примерно 1,5-10-кратным, в одном варианте осуществления примерно 2-3-кратным; в коже LPS-ответ относительно hCD14+CD33+ является 2-5-кратным, в одном варианте осуществления примерно 3-4-кратным; в брюшной полости LPS-ответ относительно hCD14+CD33+ является 2-5-кратным, в одном варианте осуществления примерно 3-4-кратным.

В некоторых вариантах осуществления «привитая» Rag2-/-IL2rg-/- hM-CSF мышь демонстрирует в ответ на стимуляцию LPS усиленный ответ провоспалительных цитокинов, причем усиление по сравнению с генетически модифицированной и «привитой» мышью, у которой отсутствует ген hM-CSF, составляет примерно от 2, по меньшей мере, до 5 раз относительно уровня активации и/или дифферецировки типа клеток, который чувствителен к провоспалительному цитокину.

В некоторых вариантах осуществления «привитая» Rag2-/-IL2rg-/- hM-CSF мышь демонстрирует увеличенную выработку hCD14+CD33+hCD45+ клеток в селезенке примерно через 48 часов после введения LPS, причем увеличение составляет примерно от 2 до 5 раз, в одном варианте осуществления примерно от 4 до 5 раз, по сравнению с «привитой» мышью, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления ″привитая″ Rag2-/-IL2rg-/- hM-CSF мышь демонстрирует повышенную выработку человеческого сывороточного IL-6 в ответ на LPS, причем уровень hIL-6 примерно через 6 часов после введения LPS увеличивается примерно в 2-5 раз по сравнению с «привитой» мышью, экспрессирующей мышиный М-CSF, а не человеческий M-CSF, в одном варианте осуществления примерно в 3-4 раза.

В некоторых вариантах осуществления «привитая» Rag2-/-IL2rg-/- hM-CSF мышь демонстрирует повышенную выработку человеческого сывороточного TNFα в ответ на LPS, причем уровень hTNFα примерно через 6 часов после введения LPS увеличивается примерно в 2-4 раза по сравнению с «привитой» мышью, которая экспрессирует мышиный M-CSF, а не человеческий M-CSF, в одном варианте осуществления примерно в 2-3 раза.

В некоторых вариантах осуществления моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/- hM-CSF мыши, после LPS-стимуляции демонстрирует in vitro секрецию hTNFα, которая примерно в 2-3 раза выше, чем у «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/- hM-CSF мыши, после LPS-стимуляции демонстрирует in vitro секрецию hIL-6, которая примерно в 2-4 раза выше, чем у «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/- hM-CSF мыши, после стимуляции poly I:C in vitro демонстрирует секрецию hIFNα, которая примерно в 3-6 раз выше, чем у «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/- hM-CSF мыши, после стимуляции poly I:C in vitro демонстрирует секрецию hIFNβ которая примерно в 2-3 раза выше, чем у «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления человеческий моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/- hM-CSF мыши, демонстрирует повышенный фагоцитоз по сравнению с «привитой» мышью, экспрессирующей мышиный M-CSF, а не человеческий M-CSF. В одном варианте осуществления скорость фагоцитоза увеличивается примерно в два раза, как определено по включению меченых бактерий при 37°С в течение 60-минутного периода времени, по сравнению с человеческими клетками от «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF. В одном варианте осуществления, скорость фагоцитоза, как определено выше, в два раза или более превышает скорость человеческих клеток от «привитой» мыши, которая экспрессирует мышиный M-CSF, а не человеческий M-CSF, например, в 2 раза, в 3 раза или в 4 раза или более.

В некоторых вариантах осуществления человеческий моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/- hM-CSF мыши, демонстрирует повышенный хемотаксис in vitro в ответ на Mip3β по сравнению с «привитой» мышью, которая экспрессирует мышиный M-CSF, а не человеческий M-CSF. В одном варианте осуществления увеличение составляет примерно от 1,5 до 3 раз или более, например, около 1,5 раз, 2 раз, 3 раз, 4 раз или более, как измерено по числу мигрировавших клеток через 30 или 60 минут после воздействия Mip3β, по сравнению с человеческим моноцитом и/или макрофагом от «привитой» мыши, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления человеческий моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/-M-CSFh мыши, демонстрирует in vitro секрецию hIFNα в ответ на стимуляцию poly 1:С, которая примерно в 3-6 раз выше, чем у «привитой» мыши, экспрессирующей мышиный M-CSF, но не человеческий M-CSF F.

В некоторых вариантах осуществления человеческий моноцит и/или макрофаг, полученный от «привитой» Rag2-/-IL2rg-/- hM-CSF мыши, демонстрирует in vitro повышенную регуляцию костимулирующей молекулы в ответ на стимуляцию LPS. В одном варианте осуществления костимулирующую молекулу выбирают из человеческого CD40, человеческого CD80, человеческого CD86, человеческого HLA-DR и их комбинации.

В некоторых аспектах изобретения предоставляется генетически модифицированная «привитая» мышь, при этом мышь содержит трансплантат человеческих гемопоэтических клеток, является Rag2-/-Il2rg-/-, содержит нулевой аллель мышиного M-CSF и содержит нуклеиновокислотную последовательность, кодирующую человеческий M-CSF в эндогенном локусе M-CSF, причем мышь демонстрирует увеличение или увеличенное количество человеческих миелоидных клеток по сравнению с мышью, экспрессирующей мышиный M-CSF, а не человеческий M-CSF.

В некоторых вариантах осуществления увеличение составляет, по меньшей мере, удвоение числа hCD14+CD33+ клеток в какой-либо части тела мыши, выбранной из костного мозга, селезенки и периферической крови. В отдельном варианте осуществления увеличение представляет собой троекратное увеличение hCD14+CD33+ клеток. В другом варианте осуществления увеличение является увеличением числа hCD14+CD33+ клеток в 4-5 раз или более.

В некоторых вариантах осуществления увеличение является 2-3-кратным увеличением количества hCD14+CD33+hCD45+ клеток в части тела мыши, выбранной из кожи и брюшной полости.

В некоторых вариантах осуществления увеличение является 1,5-10-кратным увеличением количества hCD14+CD33+hCD45+ клеток в части тела мыши, выбранной из печени и легких.

В некоторых вариантах осуществления увеличение является 4-5-кратным увеличением количества hCD14+CD33+hCD45+ клеток селезенки примерно через 48 часов после LPS-стимуляции.

В некоторых вариантах осуществления увеличение является 2-4-кратным увеличением сывороточного hIL-6, стимулированного LPS, или сывороточного hTNFα, стимулированного LPS.

В некоторых вариантах осуществления увеличение является 2-3-кратным увеличением миграции hCD14+CD33+ клеток, стимулированных человеческим Mip3β, in vitro.

В некоторых аспектах изобретения предоставляется мышиная модель патогена человека, мышиная модель, содержащая 2 нулевых аллеля Rag2, 2 нулевых аллеля IL2rg, нуклеиновокислотную последовательность, кодирующую человеческий M-CSF белок, функционально связанный с промотором M-CSF гена мыши, человеческие гемопоэтические клетки и заражение патогеном человека. Другими словами, мышь представляет собой привитую Rag2-/-IL2rg-/- hM-CSF мышь, которая была инфицирована патогеном человека. В некоторых вариантах осуществления патоген является вирусом, грибком или бактерией. В некоторых вариантах осуществления вирус представляет собой вирус человеческого или свиного или птичьего гриппа. В некоторых вариантах осуществления бактерия представляет собой микобактерию, например, Mycobacterium tuberculosis (М. tuberculosis). В некоторых вариантах осуществления бактерия представляет собой энтеробактерию, например, Salmonella typhi (S. typhi).

В некоторых аспектах изобретения предоставляется плюрипотентная, индуцированная плюрипотентная или тотипотентная мышиная клетка, содержащая нуклеиновокислотную последовательность, кодирующую человеческий M-CSF белок, функционально связанный с промотором M-CSF гена мыши. В одном варианте осуществления мышиная клетка представляет собой мышиную ES клетку.

В некоторых аспектах изобретения предоставляется мышиный эмбрион, содержащий нуклеиновокислотную последовательность, кодирующую человеческий М-CSF белок, функционально связанный с промотором M-CSF гена мыши.

В некоторых аспектах изобретения предоставляется нацеливающая конструкция для нацеливания на ген M-CSF мыши, содержащая (а) лежащие выше и ниже (по ходу транскрипции) нацеливающие «плечи», комплементарные или в основном комплементарные лежащим выше и ниже (по ходу транскрипции) нуклеотидным последовательностям или (i) нуклеиновокислотной последовательности, кодирующей мышиный белок M-CSF, или (и) нуклеотидной последовательности, комплементарной нуклеотидной последовательности, кодирующей мышиный белок M-CSF; (b) человеческую нуклеиновокислотную последовательность, кодирующую человеческий белок M-CSF или его фрагмент, или нуклеотидную последовательность, кодирующую комплемент белка M-CSF человека или его фрагмент; и, (с) маркер и/или селекционную кассету.

В некоторых аспектах изобретения предоставляется человеческая иммунная клетка от описанной здесь мыши. В одном варианте осуществления человеческую иммунную клетку выбирают из человеческого моноцита и человеческого макрофага. В одном варианте осуществления человеческую иммунную клетку выбирают из человеческой NK-клетки, человеческой В-клетки и человеческой Т-клетки.

В некоторых аспектах изобретения предоставляется антитело, кодированное человеческой нуклеотидной последовательностью от описанной здесь мыши. В одном варианте осуществления антитело выбирают из антитела IgA, IgD, IgE, IgM или IgG изотипа.

В некоторых аспектах изобретения предоставляется нуклеотидная последовательность, кодирующая последовательность иммуноглобулина человека, при этом нуклеотидную последовательность получают от «привитой» гуманизированной М-CSF мыши в соответствии с изобретением. В одном варианте осуществления нуклеотидная последовательность кодирует человеческий вариабельный участок гена иммуноглобулина человека или его фрагмент. В одном варианте осуществления нуклеотидная последовательность кодирует вариабельный участок TCR человека или его фрагмент.

В некоторых аспектах изобретения предоставляется способ создания гуманизированной M-CSF мыши, экспрессирующей биологически активный человеческий M-CSF. В некоторых вариантах осуществления способ включает контактирование плюрипотентной стволовой клетки мыши, например, ES клетки или iPS клетки, с нуклеиновокислотной последовательностью, содержащей кодирующую последовательность белка M-CSF человека или его фрагмента, и культивирование плюрипотентной стволовой клетки в условиях, которые способствуют интеграции нуклеиновокислотной последовательности в геном мыши; создание мыши из мышиной ES клетки, которая содержит нуклеиновокислотную последовательность, кодирующую белок M-CSF человека; и содержание мыши в условиях, подходящих для того, чтобы у мыши происходила экспрессия человеческого M-CSF за счет M-CSF-гена человека. В некоторых вариантах осуществления нуклеиновокислотная последовательность интегрируется в геном случайным образом. В других вариантах осуществления нуклеиновокислотная последовательность интегрируется в целевой локус. В некоторых таких вариантах осуществления целевой локус представляет собой эндогенный локус M-CSF мыши, например, нуклеиновокислотную последовательность, содержащую кодирующую последовательность белка M-CSF человека, фланкируют последовательностями, которые гомологичны эндогенному локусу M-CSF мыши, и нуклеиновокислотную последовательность интегрируют в эндогенный локус M-CSF мыши путем гомологичной рекомбинации. В некоторых вариантах осуществления мышь является гомозиготной по нулевой мутации Rag2. В некоторых вариантах осуществления мышь является гомозиготной по нулевой мутации IL2rg. В некоторых вариантах осуществления мышь является гомозиготной по нулувой мутации Rag2 и IL2rg, т.е. является Rag2-/-IL2rg-/-.

В некоторых аспектах изобретения предоставляется способ создания гуманизированной M-CSF мыши, содержащей гемопоэтическую систему человека. В некоторых вариантах осуществления данный способ включает трансплантацию гуманизированной M-CSF мыши, например, Rag2-/-IL2rg-/- hM-CSF мыши или сублетально облученной hM-CSF мыши, популяции клеток, содержащей гемопоэтические прогениторные клетки человека. В некоторых вариантах осуществления гемопоэтические прогениторные клетки человека представляют собой CD34+ клетки. В некоторых вариантах осуществления гемопоэтические прогениторные клетки человека представляют собой CD133+ клетки. В некоторых вариантах осуществления гемопоэтические прогениторные клетки человека представляют собой плюрипотентные стволовые клетки, например, ES клетки или iPS клетки. В некоторых вариантах осуществления источником популяции клеток, содержащим гемопоэтические прогениторные клетки человека, является эмбриональная печень. В некоторых вариантах осуществления, источником клеток является костный мозг. В некоторых вариантах осуществления источником клеток является периферическая кровь. В некоторых вариантах осуществления, источником клеток является in vitro популяция клеток.

В некоторых аспектах изобретения предоставляется способ создания мыши, инфицированной патогеном человека. В некоторых вариантах осуществления способ включает воздействие патогена человека на гуманизированную M-CSF мышь, содержащую гемопоэтические клетки человека, например, привитую Rag2-/-IL2rg-/- hM-CSF мышь, или привитую сублетально облученную мышь, и содержание мыши в условиях, достаточных для того, чтобы патоген человека инфицировал мышь. В некоторых вариантах осуществления патоген человека представляет собой патоген человека, который не заражает мышь, у которой отсутствует одна или более описанных в документе генетических модификаций. В некоторых вариантах осуществления патоген человека представляет собой патоген человека, который не является патогенным для мыши, у которой отсутствует одна или более описанных в этом документе генетических модификаций.

В некоторых аспектах изобретения предоставляется способ создания биологически активного человеческого M-CSF у мыши, способ, включающий создание гуманизированной M-CSF мыши, экспрессирующей биологически активный человеческий M-CSF, как описано выше и где-либо еще в этом документе. В некоторых вариантах осуществления способ включает очистку биологически активного человеческого M-CSF из крови, например, сыворотки, или ткани мыши. В некоторых вариантах осуществления способ включает получение клетки, которая экспрессирует биологически активный человеческий M-CSF, от мыши, культивирование клетки в условиях, достаточных для экспрессии и секреции клеткой биологически активного человеческого M-CSF, и выделение секретированного биологически активного человеческого M-CSF. Следует отметить, что в этом аспекте изобретения не требуется, чтобы мышь имела какие-либо другие генетические модификации, и что мышь используется для создания препаратов определенных иммунных клеток человека. В связи с этим, в некоторых аспектах изобретения предоставляется выделенный, биологически активный человеческий M-CSF, полученный от трансгенной мыши.

В некоторых аспектах изобретения предоставляется способ создания активированного моноцита человека или активированного макрофага человека в мыши, включающий воздействие на гуманизированную M-CSF мышь с привитыми гемопоэтическими клетками человека иммуностимулятора, обеспечивающего активацию моноцитов или макрофагов человека у мыши, и выделение из мыши моноцитов человека или макрофагов человека, при этом фракция активированных моноцитов или активированных макрофагов приблизительно в два-пять раз больше, чем полученная от «привитой» мыши, которая не является гуманизированной M-CSF мышью, т.е. у которой отсутствует ген M-CSF человека. В некоторых вариантах осуществления иммуностимулятор представляет собой эндотоксин. В отдельном варианте осуществления эндотоксин представляет собой LPS.

В некоторых аспектах изобретения предоставляется способ скрининга вещества-кандидата с активностью, модулирующей функцию гемопоэтических клеток человека. В некоторых вариантах осуществления способ включает контактирование гуманизированной M-CSF мыши, «привитой» гемопоэтическими клетками человека, например, «привитой» Rag2-/-IL2rg-/- hM-CSF мыши или «привитой» hM-CSF сублетально облученной мыши, с веществом-кандидатом; и сравнение функции гемопоэтических клеток в мышиной модели, которая контактировала с веществом-кандидатом, с функцией гемопоэтических клеток в мышиной модели, которая не контактировала с веществом-кандидатом; при этом изменение функции гемопоэтических клеток у мыши, которая контактировала с веществом-кандидатом, указывает на то, что вещество-кандидат изменяет гемопоэтическую клеточную функцию.

В некоторых аспектах изобретения предоставляется способ определения эффекта вещества на патоген человека, включающий воздействие на привитую гуманизированную M-CSF мышь, например, привитую Rag2-/-IL2rg-/- hM-CSF мышь или привитую hM-CSF сублетально облученную мышь, эффективного количества патогена человека, причем эффективное количество патогена представляет собой количество патогена, необходимое для заражения мыши; обеспечение возможности заражения мыши патогеном; измерение показателя инфекции в течение некоторого времени в присутствии вещества; и сравнение этих измерений с измерениями, полученными от ″привитой″ гуманизированной M-CSF мыши, которая не подвергалась действию вещества. В некоторых вариантах осуществления вещество используется до воздействия патогена на мышь, например, чтобы определить защитный эффект. В некоторых вариантах осуществления вещество используется одновременно с воздействием патогена на мышь, например, для определения защитного или терапевтического эффекта. В некоторых вариантах осуществления вещество используется после воздействия патогена на мышь, например, для определения терапевтического эффекта. В некоторых вариантах осуществления в результате воздействия патогена у мыши повышается клеточный и/или гуморальный иммунный ответ, который воспроизводит заражение человека, подвергнутого действию патогена. В некоторых вариантах осуществления патоген человека представляет собой патоген, который не инфицирует мышь, у которой отсутствует одна или более описанных генетических модификаций. В некоторых вариантах осуществления патоген человека представляет собой патоген, который инфицирует мышь дикого типа, причем мышь дикого типа после заражения не воспроизводит иммунный ответ, который повышается у человека в ответ на патоген. В некоторых вариантах осуществления вирус является вирусом человеческого, свиного или птичьего гриппа. В некоторых вариантах осуществления бактерия является микобактерией, например, Mycobacterium tuberculosis (М. tuberculosis). В некоторых вариантах осуществления бактерия является энтеробактерией, например, Salmonella typhi (S. typhi). В некоторых вариантах осуществления мышь подвергается воздействию известного количества единиц патогена человека, и показателем заражения является количество инфекционных единиц патогена человека в жидкости тела или ткани мыши. В некоторых вариантах осуществления показателем заражения является титр в биологической жидкости мыши. В некоторых вариантах осуществления показателем заражения является образование гранулемы. В некоторых таких вариантах осуществления гранулема является гранулемой легких. В некоторых таких вариантах осуществления гранулема является хорошо выраженной гранулем