Полиморфные формы соединения st-246 и способы получения

Иллюстрации

Показать все

Изобретение относится к полиморфной форме 4-трифторметил-N-(3,3a,4,4a,5,5a,6,6a-октагидро-1,3-диоксо-4,6-этеноциклопроп[f]изоиндол-2(1H)-ил)бензамида (соединение ST-246), к способу получения полиморфной формы и фармацевтической композиции, содержащей указанную полиморфную форму. 7 н. и 6 з.п. ф-лы, 24 ил., 18 табл., 11 пр.

Реферат

Перекрестная ссылка на родственные заявки

[00001] По настоящей заявке испрашивается приоритет и преимущество предварительной заявки США № 61/316747, поданной 23 марта 2010 года, и предварительной заявки США № 61/373031, поданной 12 августа 2010 года, содержание которых включено в данное описание посредством ссылки в полном объеме.

Область техники, к которой относится изобретение

[00002] Настоящее изобретение относится к отдельным кристаллическим формам фармацевтического соединения, 4-трифторметил-N-(3,3a,4,4a,5,5a,6,6a-октагидро-1,3-диоксо-4,6-этеноциклопроп[f]изоиндол-2(1H)-ил)бензамида, названного ST-246, к способам их получения, фармацевтической композиции, содержащей различные кристаллические формы, и их применению в терапии.

Заявление относительно федерально спонсируемого исследования или разработки

[00003] Это изобретение было создано при поддержке правительства США в рамках контракта № HHSN266200600014C, заключенного с Национальным институтом здоровья (NIH). Правительство США имеет определенные права на это изобретение.

Уровень техники

[00004] На всем протяжении данного описания в тексте приводятся различные публикации. Раскрытие этих публикаций во всей их полноте включено в данное описание посредством ссылки для того, чтобы более полно описать состояние данной области техники, как известно специалистам в данной области, по состоянию на дату описанного и заявленного в данном описании изобретения.

[00005] После ликвидации оспы (Fenner et al., The epidemiology of smallpox. In: Smallpox and its eradication. Switzerland: World Health Organization; 1988) и последующего прекращения обычной вакцинации от оспы в детстве, число людей, восприимчивых к инфекции вирусом натуральной оспы (VARV), этиологическим агентом, который вызывает оспу, во всем мире резко возросло. Кроме того, вторжение в места обитания диких животных, торговля экзотическими животными и торговля мясом диких животных повышают риск зоонозных инфекций другими ортопоксвирусами, такими как вирус оспы обезьян (MPXV), при которых вакцинация против натуральной оспы обеспечивает некоторую перекрестную защиту (Jezek et al., Human monkey pox. In: Melnick JL ed. Monographs in virology. Vol. 17. Basel, Switzerland: S Karger AG. 1988:81-102).

[00006] Учитывая, что большая часть населения во всем мире восприимчива к натуральной оспе, появление MPXV в Соединенных Штатах в 2003 году, и учитывая сохраняющуюся обеспокоенность преднамеренным распространением VARV, существует возобновление интереса к разработке более безопасных вакцин против натуральной оспы и других ортопоксвирусов и противовирусных лекарственных средств.

[00007] Одним недавно обнаруженным противовирусным соединением является ST-246, специфический и мощный ингибитор ортопоксвирусного белка, крайне важного для созревания вируса. Несколько исследований, оценивающих активность ST-246 в отношении ортопоксвирусов, продемонстрировали отличную эффективность in vitro и in vivo (Quenelle et al. 2007. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrobial Agents and Chemotherapy Feb; 51(2):689-95, Smee et al, 2008. Progress in the discovery of compounds inhibiting orthopoxviruses in animal models. Antiviral Chemistry and Chemotherapy 19(3):115-24). При оценивании in vitro против вируса осповакцины (VV), вируса коровьей оспы (CV), вируса эктромелии (ECTV), вирусов оспы обезьян, оспы верблюдов и натуральной оспы, соединение ST-246 ингибирует репликацию вируса на 50% (50% эффективная концентрация [EC50]) в концентрации ≤0,07 мкМ. На животных моделях при использовании летальной инфекции ECTV, VV или CV зарегистрировано, что соединение ST-246 является нетоксичным и в высшей степени эффективным в предотвращении или снижении смертности, даже когда лечение было задержано на 72 ч после вирусной инокуляции. (Quenelle et al., 2007. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrobial Agents and Chemotherapy Feb; 51(2):689-95, Smee et al. 2008. Progress in the discovery of compounds inhibiting orthopoxviruses in animal models. Antiviral Chemistry and Chemotherapy 19(3):115-24). Соединение ST-246 также было оценено с помощью нелетальной модели поражения хвоста мыши с использованием внутривенного VV. Когда ST-246 вводили перорально два раза в день в дозе 15 или 50 мг/кг массы тела в течение 5 дней, поражения хвоста были значительно уменьшены (Smee et al., 2008. Progress in the discovery of compounds inhibiting orthopoxviruses in animal models. Antiviral Chemistry and Chemotherapy 19(3):115-24). Совсем недавно ребенку было дано соединение ST-246 в качестве разрешенного Управлением по контролю качества пищевых продуктов и лекарственных препаратов (FDA) экстренного лечения вакцинальной экземы, которая развилась после контакта с развернутой для проведения родителям военной иммунизации против натуральной оспы (Vora et al., 2008, Severe eczema vaccinatum in a household contact of a smallpox vaccine. Clinical Infectious Disease 15; 46(10):1555-61).

[00008] Соединение ST-246 раскрыто в патентах WO 2008/130348, WO 2004/112718 и WO 2008/079159 в качестве одного из тетрациклических ацилгидразидных соединений для лечения или профилактики вирусных инфекций и связанных с ними заболеваний, в частности, вирусных инфекций, вызванных ортопоксвирусом, и связанных с ними заболеваний. Эти публикации раскрывают способ получения ST-246, но не раскрывают, какая полиморфная форма изготовлена. Тем не менее, раскрытый способ дает полугидрат ST-246, полиморфную форму V, как описано в данном описании ниже.

[00009] Способ получения моногидрата ST-246 раскрыт в CN 101445478A. Данные, приведенные в этой публикации, соответствуют полиморфной форме III в соответствии с настоящей классификацией полиморфов ST-246.

[000010] В настоящее время было неожиданно обнаружено, что ST-246 может существовать в виде многих различных полиморфных форм. Отдельная кристаллическая форма соединения может обладать физическими свойствами, которые отличаются от физических свойств других полиморфных форм, и такие свойства могут оказывать заметное влияние на физико-химические и фармацевтические процессы переработки соединения, особенно когда соединение получают или используют в коммерческих масштабах. Такие различия могут влиять на механические свойства переработки соединения (такие как реологические свойства твердого материала) и характеристики компрессии соединения. Кроме того, открытие новых полиморфных форм таких фармацевтически важных соединений, как ST-246, обеспечивает новые возможности для улучшения эксплуатационных характеристик фармацевтического конечного продукта и расширяет ассортимент материалов, которые доступны ученому в области формулирования лекарственного средства для разработки, например, фармацевтические лекарственные формы лекарственного средства с целевым профилем высвобождения или другими желаемыми физико-химическими свойствами.

[000011] Кроме того, учитывая, что новые полиморфные формы лекарственного вещества могут демонстрировать различные точки плавления, гигроскопичность, стабильность, растворимость и/или скорость растворения, кристалличность, свойства кристаллов, биодоступность, токсичность и технологические характеристики при формулировании, которые находятся среди многочисленных свойств, которые должны быть учтены при получении лекарственного средства, которое можно эффективно вводить. Кроме того, регулирующие органы требуют точного знания, характеризации и контроля полиморфной формы активного компонента в твердых лекарственных формах. Таким образом, в данной области техники существует необходимость в кристаллизации и характеризации новых полиморфных форм соединения ST-246.

Сущность изобретения

[000012] Настоящее изобретение относится к полиморфной форме I соединения ST-246, которая демонстрирует картину рентгеновской порошковой дифракции, имеющую характеристические пики приблизительно 7,63, 10,04, 11,47, 14,73, 15,21, 15,47, 16,06, 16,67, 16,98, 18,93, 19,96, 20,52, 20,79, 22,80, 25,16, 26,53, 27,20, 27,60, 29,60, 30,23, 30,49, 30,68, 31,14, 33,65, 34,33, 35,29, 35,56, 36,30, 37,36, 38,42, 38,66 градусов.

[000013] Настоящее изобретение также относится к полиморфной форме II соединения ST-246, которая демонстрирует картину рентгеновской порошковой дифракции, имеющую характеристики, соответствующие фиг.2.

[000014] Настоящее изобретение дополнительно относится к полиморфной форме III соединения ST-246, которая демонстрирует картину рентгеновской порошковой дифракции, имеющую характеристические пики приблизительно 6,71, 9,05, 12,49, 13,03, 13,79, 14,87, 15,72, 16,26, 16,74, 18,10, 18,43, 19,94, 21,04, 21,51, 23,15, 23,51, 25,32, 26,24, 26,87, 27,32, 27,72, 28,55, 29,08, 29,50, 29,84, 31,27, 33,48, 35,36, 39,56 градусов.

[000015] Настоящее изобретение также относится к полиморфной форме IV ST-246, которая демонстрирует картину рентгеновской порошковой дифракции, имеющую характеристики, показанные на фиг.4.

[000016] Настоящее изобретение дополнительно относится к полиморфной форме VI соединения ST-246, которая демонстрирует картину рентгеновской порошковой дифракции, имеющую характеристические пики, как показано на фиг.6.

[000017] Настоящее изобретение также относится к фармацевтическим композициям, содержащим каждую из полиморфных форм I-VI соединения ST-246 и дополнительно содержащие один или более фармацевтически приемлемых носителей, эксципиентов, разбавителей, добавок, наполнителей, смазывающих веществ или связующих веществ.

[000018] Настоящее изобретение дополнительно относится к способам лечения ортопоксвирусных инфекций или вакцинальной экземы, включающим введение субъекту, животному или человеку, нуждающемуся в этом, терапевтически эффективного количества каждой из полиморфных форм I-VI соединения ST-246.

[000019] Настоящее изобретение также предоставляет способы синтеза каждой из полиморфных форм I-VI соединения ST-246.

[000020] Настоящее изобретение также относится к стандартной лекарственной форме для перорального введения, где ST-246 имеет D90% диаметр размера частиц, составляющий приблизительно до 300 микрон. В некоторых вариантах осуществления ST-246, полиморфная модификация I, II, III, IV и VI, имеет D90% диаметр размера частиц, равный приблизительно 5 микрон; в другом варианте осуществления D90% диаметр размера частиц составляет приблизительно 16,6 микрон; в еще одном варианте осуществления D90% диаметр частиц составляет приблизительно 26,6 микрон; и еще в одном варианте осуществления D90% диаметр частиц составляет приблизительно 75 микрон.

[000021] В другом аспекте изобретения стандартная лекарственная форма для перорального введения содержит 200 мг соединения ST-246, где ST-246 выбрано из группы, состоящей из полиморфной модификации формы II соединения ST-246, полиморфной модификации формы III соединения ST-246, полиморфной модификации формы IV соединения ST-246 и полиморфной модификации формы VI соединения ST-246, и дополнительно содержащей 33,15 мг лактозы моногидрата; 42,90 мг натрийкроскармеллозы; 1,95 мг коллоидного диоксида кремния; 13,65 мг гипромеллозы, 7,8 мг лаурилсульфата натрия; 1,95 мг стеарата магния; и количество микрокристаллической целлюлозы до 88,60 мг, так что общая масса лекарственной формы, включая любые примеси, воду и остаточные растворители, составляет 390 мг.

Краткое описание чертежей

[000022] На фиг.1 показана картина рентгеновской порошковой дифракции (XRPD) формы I.

[000023] На фиг.2 показаны три картины рентгеновской порошковой дифракции (XRPD) формы II (из трех различных образцов).

[000024] На фиг.3 показана картина рентгеновской порошковой дифракции (XRPD) формы III.

[000025] На фиг.4 показаны две картины рентгеновской порошковой дифракции (XRPD) формы IV (из двух различных образцов).

[000026] На фиг.5 показана картина рентгеновской порошковой дифракции (XRPD) формы V.

[000027] На фиг.6 показаны две картины рентгеновской порошковой дифракции (XRPD) формы VI (из двух различных образцов).

[000028] На фиг.7 изображено преобразование Фурье инфракрасной области спектра (FTIR) формы I.

[000029] На фиг.8 изображено преобразование Фурье инфракрасной области спектра (FTIR) формы III.

[000030] На фиг.9 изображено преобразование Фурье инфракрасной области спектра (FTIR) формы V.

[000031] На фиг.10, 11, 12 и 13 изображен увеличенный вид FTIR спектра формы I (верхняя панель), формы V (средняя панель) и формы III (нижняя панель).

[000032] На фиг.14 изображена картина XRPD микронизированной (верхняя картина) и немикронизированной (нижняя картина) формы I.

[000033] На фиг.15 изображена картина XRPD микронизированной (верхняя картина) и немикронизированной (средняя и нижняя картины из 2 различных образцов) формы III.

[000034] На фиг.16 изображено влияние размера частиц на растворение 200 мг капсул ST-246 формы I с 3% HDTMA (гексадецилтриметиламмоний), где условия растворения являются следующими: 900 мл, 0,05М фосфатный буфер, рН 7,5, аппарат USP 2 при скорости 75 об/мин, при температуре 37°C, и капсула сделана из активных фармацевтических ингредиентов (API) формы I, с размером частиц D90, равным приблизительно 5,5 микрон.

[000035] На фиг.17 изображено влияние размера частиц на растворение 200 мг капсул ST-246 формы I с 3% HDTMA, где условия растворения являются следующими: 900 мл, 0,05М фосфатный буфер, рН 7,5, аппарат USP 2 при скорости 75 об/мин, при температуре 37°C, и капсула сделана из активных фармацевтических ингредиентов (API) формы I, с размером частиц D90, равным приблизительно 16,73 микрон.

[000036] На фиг.18 изображено влияние размера частиц на растворение 200 мг капсул ST-246 формы I с 3% HDTMA, где условия растворения являются следующими: 900 мл, 0,05М фосфатный буфер, рН 7,5, аппарат USP 2 при скорости 75 об/мин, при температуре 37°C, и капсула сделана из активных фармацевтических ингредиентов (API) формы I, с размером частиц D90, равным приблизительно 26,55 микрон.

[000037] На фиг.19 изображено влияние размера частиц на растворение 200 мг капсул ST-246 формы I с 3% HDTMA, где условия растворения являются следующими: 900 мл, 0,05М фосфатный буфер, рН 7,5, аппарат USP 2 при скорости 75 об/мин, при температуре 37°C, и капсула сделана из активных фармацевтических ингредиентов (API) формы I, с размером частиц D90, равным приблизительно 75 микрон.

[000038] На фиг.20 изображено влияние размера частиц на растворение 200 мг капсул ST-246 формы I с 3% HDTMA, где условия растворения являются следующими: 900 мл, 0,05М фосфатный буфер, рН 7,5, аппарат USP 2 при скорости 75 об/мин, при температуре 37°C, и капсула сделана из API формы I, с размером частиц D90, равным приблизительно 254 микрон.

[000039] На фиг.21 изображен профиль растворения формы I.

[000040] На фиг.22 изображен профиль растворения формы III.

[000041] На фиг.23 изображен профиль растворения формы V.

[000042] На фиг.24 изображена средняя (СО) концентрация в плазме ST-246 с течением времени (популяционный анализ фармакокинетики ФК) после единственного перорального введения.

Подробное описание изобретения

Определения

[000043] В соответствии с подробным описанием, применяются следующие сокращения и определения. Следует отметить, что как используется в данном описании, формы единственного числа включают множественное число обозначенного объекта, если контекст явно не диктует иное.

[000044] Термин “полиморфная форма, полиморф, полиморф формы, кристаллическая форма, физическая форма или кристаллический полиморф” соединения ST-246 в настоящем изобретении относится к кристаллической модификации ST-246, которая может быть охарактеризована с помощью аналитических способов, таких как рентгеновская порошковая дифракция (XRPD), дифференциальная сканирующая калориметрия (ДСК), при помощи анализа его точки плавления или инфракрасной спектроскопии (FTIR).

[000045] Термин "гидрат", используемый в данном описании, означает соединение по изобретению или его соль, которое дополнительно включает стехиометрическое или нестехиометрическое количество воды, нековалентно связанной межмолекулярными силами. Гидраты образуются путем комбинации одной или нескольких молекул воды с одной молекулой вещества, в которой вода сохраняет свое молекулярное состояние как H2O, и такая комбинация обладает способностью образовывать один или более гидратов. Термин "полугидрат", используемый в данном описании, относится к твердому веществу с 0,5 молекулы H2O на молекулу вещества.

[000046] Термин "фармацевтическая композиция" или "фармацевтический состав" предназначен для охвата лекарственного средства, включая активный ингредиент(ы), фармацевтически приемлемые эксципиенты, которые составляют носитель, а также любой продукт, который образуется, прямо или косвенно, из комбинации, комплексообразования или агрегации любых двух или более ингредиентов. Соответственно, фармацевтические композиции по настоящему изобретению охватывают любые композиции, полученные путем смешивания активного ингредиента, дисперсии или композита активного ингредиента, дополнительного активного ингредиента(ов) и фармацевтически приемлемых эксципиентов.

[000047] Распределение частиц по размерам (PSD) порошка или гранулированного материала, или частиц, диспергированных в жидкости, представляет собой список значений или математическую функцию, которая определяет относительные количества присутствующих частиц, отсортированных по размеру. PSD также известен как гранулометрический состав. Так как размер частиц для сложных сред представляет собой распределение по диаметрам, для того, чтобы передать результаты, могут быть использованы статистические данные. Общепринятый способ заключается в использовании значений d10, d50 и d90 в зависимости от объема распределения. То есть это означает, что 10%, 50% и 90%, соответственно, гранулометрического состава меньше, чем указанный диаметр.

[000048] Термин "единичная доза" относится к одной единице лекарственной формы, которую будут вводить пациенту. Единичная доза обычно будет сформулирована таким образом, чтобы включать количество лекарственного средства, достаточное для достижения терапевтического эффекта при однократном введении единичной дозы, хотя, когда идет речь о размере лекарственной формы, для достижения желаемого терапевтического эффекта могут быть необходимы более одной единичной дозы. Например, одна единичная доза лекарственного средства, как правило, представляет собой одну таблетку, одну капсулу или одну столовую ложку жидкости. Более одной единичной дозы может быть необходимо, чтобы ввести достаточное количество лекарственного средства для достижения терапевтического эффекта, где количество лекарственного средства вызывает физические ограничения на размер формы лекарственного средства.

[000049] Термин «период полувыведения» является фармакокинетическим термином, используемым для обозначения продолжительности времени, необходимого для выведения 50% от оставшегося количества препарата, присутствующего в организме.

[000050] Термин "AUC" (т.е. "площадь под кривой", "площадь под кривой концентрации" или "площадь под кривой концентрация-время") является фармакокинетическим термином, который используется для обозначения способа измерения биодоступности или степени всасывания лекарственного средства на основе графика проб концентрации в плазме крови индивидуума или группы индивидуумов, отобранных через определенные промежутки времени; показатель AUC является прямо пропорциональным общему количеству неизменного лекарственного средства в плазме крови пациента. Например, линейная кривая на графике AUC в сравнении с дозой (например, прямая восходящая линия) показывает, что лекарственное средство высвобождается медленно в кровоток и обеспечивает пациенту стабильное количество лекарственного средства; если AUC в сравнении с дозой представляет собой линейную зависимость, это в целом представляет собой оптимальную доставку лекарственного средства в кровоток пациента. В противоположность, нелинейная кривая AUC в сравнении с кривой дозы указывает на быстрое высвобождение лекарственного средства, так что некоторое количество лекарственного средства не поглощается, или лекарственное средство метаболизируется до поступления в кровоток.

[000051] Термин "Cmax" (т.е. "максимальная концентрация") представляет собой фармакокинетический термин, используемый для обозначения пика концентрации конкретного лекарственного средства в плазме крови пациента.

[000052] Термин "Tmax" (т.е. "время максимальной концентрации" или "время Cmax") представляет собой фармакокинетический термин, используемый для обозначения времени, в которое наблюдается Cmax в период действия после введения лекарственного средства. Как и следовало ожидать, лекарственная форма, которая будет включать компонент немедленного высвобождения, а также способный к сохранению в желудке компонент будет иметь Tmax выше, чем Cmax для формы немедленного высвобождения дозы, но ниже, чем Tmax для исключительно способной к сохранению в желудке лекарственной формы.

[000053] В настоящее время неожиданно обнаружили, что ST-246 существует в различных кристаллических формах, названных форма I, форма II, форма III, форма IV, форма V и форма VI.

[000054] Все формы были полностью охарактеризованы, и были собраны данные сопоставимости. Все формы характеризуются, как описано ниже в числе прочего при помощи следующей методологии:

ФИЗИЧЕСКАЯ ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДОЛОГИЯ

РЕНТГЕНОВСКАЯ ПОРОШКОВАЯ ДИФРАКЦИЯ (XRPD)

[000055] Картины дифракции регистрируют, используя дифрактометр Bruker D8 Discovery, скомпанованный со столиком XYZ, лазерным видеомикроскопом для позиционирования и двухмерным детектором HiStar. Периоды времени регистрации номинально составляли 60 секунд. Для облучения образцов использовали Cu Ka излучающую 1,5406 трубку, работающую при напряжении 40 кВ и силе тока 40 мА. Рентгеновская оптика состоит из зеркала Гебеля в сочетании с отверстием коллиматора 0,5 мм. Применяли тета-тета непрерывное сканирование с расстоянием образец-детектор, равным 15 см, что дает эффективный диапазон 2θ в пределах 4-40°. Образцы устанавливали в низкофоновые кварцевые пластины. Использовали нагревательный столик с изменяемой температурой для манипулирования температурой образца для некоторых экспериментов.

[000056] Полиморфные модификации соединения ST-246 характеризуются картинами рентгеновской порошковой дифракции (XRPD) и/или их пиками Раман-спектроскопии. Что касается рентгеновской порошковой дифракции, относительная интенсивность пиков рентгеновской порошковой дифракции данной полиморфной модификации может варьироваться в зависимости от размера кристалла полиморфной модификации, используемой для определения образца. Это представляет собой феномен предпочтительной ориентации. Предпочтительная ориентация обусловлена морфологией кристаллов. В этом случае, анализ XRPD может быть осуществлен с образцом, вращающимся в держателе образца во время XRPD анализа, чтобы уменьшить эффекты предпочтительной ориентации. Для XRPD анализа, образец дается в условиях измерения углов пиков в "градусах 2θ (два тета)".

[000057] В отношении процентного значения относительной интенсивности (I/Io), значение Io представляет значение максимального пика, определенного при помощи XRPD для образца для всех углов "2θ градусов", и значение I представляет значение интенсивности пика, измеренного при данном "угле 2θ градусов"

[000058] Угол "2θ градусов" представляет собой дифракционный угол, который является углом между падающими рентгеновскими лучами и дифрагированными рентгеновскими лучами. Значения относительной интенсивности для данного пика, выраженные в процентах, и углы "2θ градусов" рассчитываются. Тем не менее, в картинах рентгеновской порошковой дифракции есть ключевые основные пики при заданных углах, которые являются уникальными для каждой данной полиморфной модификации формы. Эти пики присутствуют в картинах XRPD каждой из форм полиморфа, имеющего размер кристалла приблизительно 10-40 микрон. Любые из этих основных пиков, либо самостоятельно, либо в любой характерной комбинации, являются достаточными, чтобы отличить одну из форм полиморфа от других существующих полиморфных форм.

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (FTIR)

[000059] Инфракрасные спектры получали на инфракрасном спектрометре с преобразованием Фурье Nicolet 510 M-O, оснащенном устройством нарушенного полного внутреннего отражения Harrick Splitpea™. Спектры были получены от 4000-400 см-1 с разрешением 4 см-1, и для каждого анализа было собрано 128 сканов.

ПОЛУЧЕНИЕ КРИСТАЛЛИЧЕСКИХ ФОРМ

[000060] Настоящее изобретение предоставляет способ получения полиморфной формы I соединения ST-246, включающий следующие стадии:

a) растворение ST-246 по меньшей мере в одном органическом растворителе и некотором количестве воды для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы I соединения ST-246; и

c) необязательно сушку образованных кристаллов ST-246,

где указанный органический растворитель выбран из группы, состоящей из изопропилового спирта (ИПС), этилацетата, этанола, метанола, ацетона, изопропилацетата и тетрагидрофурана (ТГФ).

[000061] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы I соединения ST-246 во время стадии (b). Также предпочтительно, стадия охлаждения происходит в течение по меньшей мере 15 минут, более предпочтительно в течение по меньшей мере 2 часов и наиболее предпочтительно в течение по меньшей мере 5 часов.

[000062] Также предпочтительно, органический растворитель представляет собой этилацетат, и содержание воды составляет приблизительно 40% по объему от общего объема растворителя, более предпочтительно приблизительно 5% по объему от общего объема растворителя, более предпочтительно приблизительно 3% по объему от общего объема растворителя и наиболее предпочтительно приблизительно 2% по объему от общего объема растворителя. Также предпочтительно, органический растворитель представляет собой изопропиловый спирт, и содержание воды составляет приблизительно 5% по объему от общего объема растворителя.

[000063] Настоящее изобретение также предоставляет способ получения кристаллов полиморфной формы II соединения ST-246, включающий следующие стадии:

a) растворение ST-246 по меньшей мере в одном растворителе для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы II соединения ST-246; и

c) необязательно сушку образованных кристаллов ST-246,

где указанный растворитель выбран из группы, состоящей из этилацетата, хлороформа, 1-пропанола, изопропилового спирта (ИПС), этанола, ацетона, ацетонитрила, толуола, изопропилацетата и диметилформамида (ДМФ).

[000064] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы II соединения ST-246 во время стадии (b). Также предпочтительно, растворитель не содержит воду и выбран из группы, состоящей из этилацетата и хлороформа.

[000065] Настоящее изобретение дополнительно предоставляет способ получения кристаллов полиморфной формы II соединения ST-246, включающий следующие стадии:

a) растворение ST-246 в этаноле и воде для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы II соединения ST-246; и

c) необязательно сушку образованных кристаллов ST-246.

[000066] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы II соединения ST-246 во время стадии (b). Также предпочтительно, объемное соотношение этанол:вода составляет приблизительно 1:1.

[000067] Настоящее изобретение также предоставляет способ получения кристаллов полиморфной формы III соединения ST-246, включающий следующие стадии:

a) растворение ST-246 по меньшей мере в одном органическом растворителе и воде для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы III соединения ST-246; и

c) необязательно сушку образованных кристаллов ST-246,

где органический растворитель выбран из группы, состоящей из изопропилового спирта (ИПС), этилацетата и этанола.

[000068] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы III соединения ST-246 во время стадии (b). Также предпочтительно, стадия охлаждения происходит в течение менее чем 15 минут.

[000069] Настоящее изобретение дополнительно предоставляет способ получения кристаллов полиморфной формы III соединения ST-246, включающий следующие стадии:

a) растворение ST-246 по меньшей мере в одном органическом растворителе для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы III соединения ST-246; и

c) необязательно сушку образованных кристаллов ST-246,

где органический растворитель выбран из группы, состоящей из ацетона, изопропилового спирта (ИПС), диметиламина (ДМА), пиридина, трифторэтанола (ТФЭ), метанола, этанола, хлороформа, ацетонитрила (АЦН) и тетрагидрофурана (ТГФ).

[000070] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы III соединения ST-246 во время стадии (b).

[000071] Настоящее изобретение также предоставляет способ получения кристаллов полиморфной формы IV соединения ST-246, включающий следующие стадии:

a) растворение ST-246 по меньшей мере в одном органическом растворителе, необязательно содержащем воду, для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы IV соединения ST-246, осажденную в кристаллической форме ST-246; и

c) необязательно сушку образованных кристаллов ST-246,

где указанный растворитель выбран из группы, состоящей из: смеси ацетонитрила и этилацетата, смеси этанола и толуола, смеси воды и этилацетата, и смеси трифторэтанола и ТГФ.

[000072] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы IV соединения ST-246 во время стадии (b). Также предпочтительно, растворитель представляет собой смесь АЦН и этилацетата в объемном соотношении, равном приблизительно 1:4, смесь этанола и толуола в объемном соотношении, равном приблизительно 1:4, смесь воды и этилацетата в объемном соотношении, равном приблизительно 1:4, и смесь ТФЭ и ТГФ в объемном соотношении, равном приблизительно 1:1.

[000073] Настоящее изобретение дополнительно предоставляет способ получения кристаллов полиморфной формы IV соединения ST-246, включающий следующие стадии:

a) растворение ST-246 по меньшей мере в одном растворителе для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы IV соединения ST-246; и

c) необязательно сушку образованных кристаллов ST-246,

где указанный растворитель выбран из группы, состоящей из 1-бутанола, трифторэтанола (ТФЭ), хлороформа, дихлорметана и толуола.

[000074] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы IV соединения ST-246 во время стадии (b). Также предпочтительно растворитель не содержит воду. Также предпочтительно растворитель представляет собой 1-бутанол.

[000075] Настоящее изобретение также предоставляет способ получения кристаллов полиморфной формы VI соединения ST-246, включающий следующие стадии:

a) растворение ST-246 по меньшей мере в одном растворителе для приготовления раствора;

b) охлаждение указанного раствора до температуры, которая вызывает преимущественную кристаллизацию указанной полиморфной формы VI соединения ST-246; и

c) необязательно сушку образованных кристаллов ST-246,

где указанный растворитель выбран из группы, состоящей из нитрометана, метанола и хлороформа.

[000076] Предпочтительно, способ дополнительно включает добавление затравочных кристаллов полиморфной формы VI соединения ST-246 во время стадии (b). Также предпочтительно, растворитель не содержит воду и является нитрометаном.

[000077] Соединение ST-246 получают, как указано в приведенных ниже примерах. Процессы кристаллизации полиморфных модификаций ST-246 могут охватывать несколько комбинаций способов и их вариаций. Кристаллизация полиморфов ST-246 может быть выполнена путем растворения, диспергирования или суспендирования ST-246 при подходящей температуре в растворителе таким образом, что часть указанного выше растворителя выпаривается, увеличивая концентрацию ST-246 в указанном растворе, дисперсии или суспензии, охлаждения указанной смеси и необязательно промывания и/или фильтрации и сушки полученных кристаллов ST-246.

[000078] Образование кристаллов может также включать более одного процесса кристаллизации. В некоторых случаях, один, два или несколько дополнительных шагов кристаллизации могут быть выполнены преимущественно по разным причинам, например, для того, чтобы улучшить качество получаемой кристаллической формы. Например, полиморфы настоящего изобретения могут быть также получены путем добавления растворителя к начальному исходному основному материалу ST-246, перемешивания раствора при постоянной температуре до полного растворения веществ, концентрирования раствора путем вакуумной перегонки и охлаждения. Проводят первую кристаллизацию, и образовавшиеся кристаллы должны быть промыты растворителем, с последующей солюбилизацией ST-246 с тем же или другим растворителем, чтобы образовать желаемую полиморфную модификацию. Реакционная смесь может быть нагрета до температуры кипения с обратным холодильником и затем подвергнута перекристаллизации, с последующей стадией охлаждения после кипячения с обратным холодильником. Образованный полиморф может быть необязательно профильтрован и ему дают возможность высохнуть.

[000079] При помощи растворения, диспергирования или суспендирования ST-246 в растворителе можно получить различные степени дисперсии, такие как суспензии, жидкие кашицы или смеси, или предпочтительно получить гомогенные однофазные растворы. Термин "суспензия" относится к двухфазной системе, состоящей из тонко измельченного твердого вещества, т.е. ST-246 в аморфной, кристаллической форме или их смесей, диспергированных (взвешенных) в жидкой или дисперсионной среде, как правило, в растворителе. Термин "жидкая кашица" относится к суспензии, образованной, когда количество порошка смешивается с жидкостью, в которой твердое вещество является только слегка растворимым (или не растворимым). "Суспендирование" относится к изготовлению суспензии (жидкой кашицы).

[000080] Необязательно, среда растворителя может содержать добавки, например, диспергирующие вещества, поверхностно-активные вещества или другие добавки, или их смеси такого типа, который обычно используют в приготовлении кристаллических суспензий. Добавки могут быть с успехом использованы в модификации формы кристалла за счет увеличения мягкости и уменьшения площади поверхности.

[000081] Среду растворителя, содержащую твердое вещество, можно необязательно перемешивать в течение определенного периода времени или энергично взбалтывать, используя, например, смеситель с высоким сдвигом или гомогенизатор, или их комбинацию, для получения желаемого размера частиц органического соединения. Контроль температуры осаждения и затравливания может быть дополнительно использован для улучшения воспроизводимости процесса кристаллизации, гранулометрического состава и лекарственной формы продукта. Таким образом, кристаллизация может быть осуществлена без затравливания кристаллами ST-246 или предпочтительно в присутствии кристаллов ST-246, которые вводят в раствор при помощи затравливания. Затравливание может быть также осуществлено несколько раз при различных температурах. Количество затравочного материала зависит от масштаба эксперимента и может быть легко определено специалистом в данной области техники. Как правило, количество затравочного материала составляет приблизительно от 0,1 до 1% по массе от количества кристаллического материала, ожидаемого от реакции.

[000082] Время кристаллизации на каждой стадии кристаллизации будет зависеть от применяемых условий, используемых способов и/или растворителей. Дробление крупных частиц или агрегатов частиц после кристаллического преобразования может быть дополнительно выполнено для того, чтобы получить желаемый и однородный размер частиц. Соответственно, кристаллы, скопления порошка и крупный порошок полиморфных форм соединения ST-246 могут быть необязательно измельчены и отсортированы по размеру после проведения конверсии. Дробление или перемалывание относится к физическому разрушению крупных частиц или агрегатов частиц с использованием способов и аппаратов, хорошо известных в данной области техники, для уменьшения размера частиц порошков. Полученные в результате размеры частиц могут варьироваться от миллиметров до наномет