Популяция панкреатических эндокринных клеток-предшественников для снижения концентрации глюкозы в крови и способ дифференцировки панкреатических эндодермальных клеток
Иллюстрации
Показать всеГруппа изобретений относится к медицине, в частности к эндокринологии, и касается популяции панкреатических эндокринных клеток-предшественников для снижения концентрации глюкозы в крови у животного путем их трансплантации. Экспрессирующие PDX1 и NKX6.1 клетки-предшественники получают путем культивирования панкреатических эндодермальных клеток, полученных из клеток линии H1, Н7, Н9 или SA002. Культивирование проводят в среде, содержащей DMEM с высоким содержанием глюкозы, FGF7 и KAAD-циклопамин. Среда дополнена фактором, способным ингибировать BMP, и ингибитором киназы TGF-β рецептора I. Предложен также способ дифференцировки панкреатических эндодермальных клеток в клетки-предшественники, экспрессирующие PDX1 и NKX6. Для этого культивируют клетки в указанной выше среде. Группа изобретений обеспечивает эффективное снижение уровней глюкозы в крови у животного при повышении успешности трансплантации клеток. 2 н. и 16 з.п. ф-лы, 12 ил., 2 табл., 5 пр.
Реферат
ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА СМЕЖНЫЕ ЗАЯВКИ
В рамках настоящего изобретения испрашивается приоритет заявки с серийным номером 61/226923, поданной 20 июля 2009 года.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
В настоящем изобретении предлагается способ снижения концентрации глюкозы в крови животного путем трансплантации популяции клеток-предшественников панкреатических эндокринных клеток.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Достижения в области клеточной заместительной терапии сахарного диабета 1 типа и нехватка трансплантируемых островков Лангерганса заставили обратить внимание на разработку источников инсулинпродуцирующих клеток, или β-клеток, подходящих для трансплантации. Одним из подходов является формирование функциональных β-клеток из плюрипотентных стволовых клеток, таких как, например, эмбриональные стволовые клетки.
При эмбриональном развитии позвоночных плюрипотентные стволовые клетки дают начало группе клеток, формирующих три зародышевых листка (эктодерму, мезодерму и эндодерму) в ходе процесса, именуемого гаструляцией. Ткани, из которых состоят, например, щитовидная железа, тимус, поджелудочная железа, кишечник и печень, будут развиваться из эндодермы, через промежуточную стадию. Промежуточной стадией данного процесса является образование сформированной эндодермы. Клетки сформированной эндодермы экспрессируют ряд маркеров, таких как HNF3 бета, GATA4, MIXL1, CXCR4 и SOX17.
Формирование поджелудочной железы происходит при дифференцировке сформированной эндодермы в панкреатическую эндодерму. Клетки панкреатической эндодермы экспрессируют ген панкреатическо-дуоденального гомеобокса, PDX1. При отсутствии PDX1 развитие поджелудочной железы не идет дальше формирования вентрального и дорзального зачатков. Следовательно, экспрессия PDX1 является важным этапом органогенеза поджелудочной железы. Зрелая поджелудочная железа содержит, среди других типов клеток, экзокринную ткань и эндокринную ткань. Экзокринная и эндокринная ткани образуются при дифференцировке панкреатической эндодермы.
Клетки, обладающие свойствами островковых клеток, как сообщалось, были получены из эмбриональных клеток мыши. Например, в публикации Lumelsky et al. (Science 292:1389, 2001) сообщается о дифференцировке мышиных эмбриональных стволовых клеток в инсулин-секретирующие структуры, аналогичные островкам поджелудочной железы. Soria et al. (Diabetes 49:157, 2000) сообщают, что инсулин-секретирующие клетки, полученные из мышиных эмбриональных стволовых клеток, нормализовали гликемию у мышей с диабетом, вызванным стрептозотоцином.
В одном примере в публикации Hori et al. (PNAS 99: 16105, 2002) описывается, что обработка мышиных эмбриональных стволовых клеток ингибиторами фосфоинозитид-3-киназы (LY294002) приводила к получению клеток, подобных β-клеткам.
В другом примере в публикации Blyszczuk et al. (PNAS 100:998, 2003) сообщается о получении инсулинпродуцирующих клеток из мышиных эмбриональных стволовых клеток с конститутивной экспрессией Pax4.
В публикации Micallef et al. сообщается, что ретиноевая кислота может регулировать способность эмбриональных стволовых клеток формировать PDX1-положительную панкреатическую эндодерму. Ретиноевая кислота с наибольшей эффективностью индуцирует экспрессию PDX1 при добавлении в культуру на четвертый день дифференцировки эмбриональных стволовых клеток в течение периода, соответствующего концу гаструляции эмбриона (Diabetes 54:301, 2005).
В публикации Miyazaki et al. сообщается о линии мышиных эмбриональных стволовых клеток со сверхэкспрессией Pdx1. Результаты показывают, что экспрессия экзогенного Pdx1, очевидно, повышает экспрессию генов инсулина, соматостатина, глюкокиназы, нейрогенина3, p48, Pax6 и HNF6 в образующихся дифференцированных клетках (Diabetes 53: 1030, 2004).
В публикации Skoudy et al. сообщается, что активин A (входящий в суперсемейство TGF-β) повышает экспрессию экзокринных панкреатических генов (p48 и амилаза) и эндокринных генов (Pdx1, инсулин и глюкагон) в эмбриональных стволовых клетках мыши. Максимальный эффект наблюдался при использовании активина A в концентрации 1 нМ. Также эти авторы наблюдали, что на уровень экспрессии мРНК инсулина и Pdx1 не влияла ретиноевая кислота; однако обработка раствором FGF7 с концентрацией 3 нМ приводила к повышению уровня транскрипта Pdx1 (Biochem. J. 379: 749, 2004).
В работе Shiraki et al. изучались эффекты факторов роста, специфически ускоряющих дифференцирование эмбриональных стволовых клеток в PDX1-положительные клетки. Эти авторы наблюдали, что TGF-β2 приводил к воспроизводимому увеличению доли PDX1-положительных клеток (Genes Cells. 2005 Jun; 10(6): 503-16.).
В публикации Gordon et al. продемонстрирована индукция образования brachyury-[положительных]/HNF3 бета [положительных] эндодермальных клеток из эмбриональных стволовых клеток мыши в отсутствие сыворотки и в присутствии активина в сочетании с ингибитором сигнального пути Wnt (патент США № 2006/0003446A1).
В публикации Gordon et al. (PNAS, Vol 103, page 16806, 2006) говорится: «Для образования передней первичной полоски требовались одновременно сигнальные пути Wnt и TGF-бета/Nodal/активин».
Однако модель развития эмбриональных стволовых клеток на мышах может не имитировать в точности программу развития у высших млекопитающих, как, например, у человека.
Thomson et al. выделяли эмбриональные стволовые клетки из человеческих бластоцист (Science 282:114, 1998). Параллельно Gearhart и соавторы получили клеточные линии человеческих эмбриональных зародышевых клеток (чЭЗ) из ткани половых желез эмбриона (Shamblott et al., Proc. Natl. Acad. Sci. USA 95: 13726, 1998). В отличие от эмбриональных стволовых клеток мыши, воспрепятствовать дифференцировке которых можно путем простого культивирования с фактором торможения лейкемиии (Leukemia Inhibitory Factor, LIF), человеческие эмбриональные стволовые клетки должны культивироваться в очень специфических условиях (патент США № 6200806, WO 99/20741, WO 01/51616).
D'Amour et al. описывают производство обогащенных культур сформированной эндодермы, производной от человеческих эмбриональных стволовых клеток, в присутствии высокой концентрации активина и низкой концентрации сыворотки (Nature Biotechnology 2005). Трансплантация этих клеток под почечную капсулу мышей приводит к их дифференцировке в более зрелые клетки, обладающие характерными особенностями некоторых эндодермальных органов. Клетки сформированной эндодермы, производные от человеческих эмбриональных стволовых клеток, могут подвергаться дальнейшей дифференцировке в PDX1-положительные клетки после добавления FGF-10 (№ US2005/0266554A1).
В публикации D'Amour et al. (Nature Biotechnology - 24, 1392-1401 (2006)) говорится: «Мы разработали процесс дифференцирования, преобразующий человеческие эмбриональные стволовые клетки (чЭС) в эндокринные клетки, способные синтезировать гормоны поджелудочной железы, инсулин, глюкагон, соматостатин, панкреатический полипептид и грелин. Данный процесс имитирует органогенез поджелудочной железы in vivo, проводя клетки через стадии, напоминающие образование сформированной эндодермы, эндодермы кишечной трубки, панкреатической эндодермы и превращение предшественников эндокринных клеток в клетки, экспрессирующие эндокринные гормоны».
В другом примере Fisk et al. сообщают о системе для производства островковых клеток поджелудочной железы из человеческих эмбриональных стволовых клеток (заявка на патент № US2006/0040387A1). В данном случае процесс дифференцировки был разделен на три стадии. Сначала человеческие эмбриональные стволовые клетки были дифференцированы до эндодермы с помощью сочетания бутирата натрия и активина А. Далее клетки культивировались с антагонистами TGF-β, такими как Noggin, в сочетании с EGF или бетацеллюлином с получением PDX1-положительных клеток. Окончательная дифференцировка запускалась никотинамидом.
В одном примере Benvenistry et al. сообщают: «Мы делаем вывод, что сверхэкспрессия PDX1 увеличивала экспрессию панкреатических обогащенных генов, а для индукции экспрессии инсулина могут требоваться дополнительные сигналы, присутствующие только in vivo» (Benvenistry et al., Stem Cells 2006; 24:1923-1930).
В другом примере в заявке на патент № US2008/0241107A1 объявляется о способе получения клеток, секретирующих инсулин, включающем: a) получение клеток, не продуцирующих инсулин, и b) инкубацию клеток в среде, содержащей высокую концентрацию глюкозы, в которой клетки секретируют инсулин.
Следовательно, насущной потребностью по-прежнему остается разработка условий для создания стабильных линий плюрипотентных стволовых клеток, способных расти для решения текущих клинических задач и сохраняющих потенциал дифференцировки в панкреатические эндокринные клетки, в клетки, экспрессирующие гормоны поджелудочной железы, или в клетки, секретирующие гормоны поджелудочной железы. Мы использовали альтернативный подход к повышению эффективности дифференцирования человеческих эмбриональных стволовых клеток в панкреатические эндокринные клетки.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В одном варианте осуществления настоящего изобретения предлагается способ снижения концентрации глюкозы в крови животных путем трансплантации животному популяции клеток-предшественников панкреатических эндокринных клеток.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 показано влияние разных базальных сред на экспрессию NKX6.1 (панель a), PDX1 (панель b), PTF1 альфа (панель c) и NGN3 (панель d). Повторные образцы отбирались на стадии 4, день 3, для анализа методом ПЦР реального времени. На графиках представлена кратность индукции экспрессии каждого гена в сравнении с использованием среды DMEM/F12.
На фиг. 2 показаны иммунофлуоресцентные фотографии с окрашиванием панкреатического маркера PDX1 (панели a и b), NKX6.1 (панели c и d), CDX2 (панели e и f) и NGN3 (панели g и h) при обработке клеток средой DMEM/F12 (панели a, c, e и g) и при обработке клеток средой DMEM с высоким содержанием глюкозы (панели b, d, f и h) на стадии 4, день 3, обработка проводилась в соответствии с примером 1.
На фиг. 3 показана экспрессия PDX1 (панель a), NKX6.1 (панель b), PTF1 альфа (панель c), NGN3 (панель d), PAX4 (панель e) и NKX2.2 (панель f) в образцах клеток, обработанных способами, описанными в примере 2. Повторные образцы отбирались для анализа методом ПЦР реального времени в указанные сроки. На графиках показана кратность увеличения экспрессии каждого гена относительно экспрессии этих генов на стадии 3, день 1.
На фиг. 4 показана экспрессия инсулина (INS), глюкагона (GCG), PDX1, NKX6.1, NGN3, MAFB и NEUROD в клетках, обработанных способами, описанными в примере 2. Повторные образцы отбирались для анализа методом ПЦР реального времени. На графиках показана кратность увеличения экспрессии каждого гена относительно экспрессии этих генов на стадии 3, день 4. Светло-серыми столбцами представлены данные для образцов, полученных из клеток, собранных на стадии 3, день 4. Темно-серыми столбцами представлены данные для образцов, полученных из клеток, собранных на стадии 4, день 3. Черными столбцами представлены данные для образцов, полученных из клеток, собранных на стадии 5, день 5.
На фиг. 5, панель a, показана экспрессия PDX1, NKX6.1, NGN и PTF1-альфа в клетках, обработанных способами, описанными в примере 3. Повторные образцы отбирались на стадии 4, день 3, для анализа методом ПЦР реального времени. На графиках показана кратность индукции экспрессии каждого гена относительно первой группы обработки на стадии 4, день 3. Светло-серыми столбцами представлены данные для образцов, полученных из клеток, собранных из группы T1 (обработка 1). Белыми столбцами представлены данные для образцов, полученных из клеток, собранных из группы T2 (обработка 2). Темно-серыми столбцами представлены данные для образцов, полученных из клеток, собранных из группы T3 (обработка 3). Черными столбцами представлены данные для образцов, полученных из клеток, собранных из группы T4 (обработка 4). На панели b показана экспрессия инсулина в клетках, обработанных способами, описанными в примере 3. Повторные образцы отбирались для анализа методом ПЦР реального времени на стадии 4, день 3 (S4, D3), и на стадии 4, день 8 (S4, D8). На графиках показана кратность индукции экспрессии каждого гена относительно первой группы обработки (T1) на стадии 4, день 3.
На фиг. 6 показана кинетика секреции человеческого С-пептида при стимуляции глюкозой в трансплантированных клетках-предшественниках эндокринных клеток. В частности, показаны уровни человеческого С-пептида (ось y) через 60 минут после добавления глюкозы. На оси x показан номер животного и количество дней после трансплантации.
На фиг. 7 показана кинетика секреции человеческого С-пептида при стимуляции глюкозой в трансплантированных клетках-предшественниках эндокринных клеток. В частности, показаны уровни человеческого С-пептида (ось y) через 60 минут после добавления глюкозы (панель a) и уровни человеческого С-пептида до и после добавления глюкозы (панель b). На оси x показан номер животного и количество дней после трансплантации.
На фиг. 8 показана кинетика секреции человеческого С-пептида при стимуляции глюкозой в трансплантированных клетках-предшественниках эндокринных клеток. В частности, показаны уровни человеческого С-пептида (ось y) через 60 минут после добавления глюкозы. На оси x показан номер животного и количество дней после трансплантации.
На фиг. 9 показана кинетика секреции человеческого С-пептида при стимуляции глюкозой в трансплантированных клетках-предшественниках эндокринных клеток. В частности, показаны уровни человеческого С-пептида (ось y) через 60 минут после добавления глюкозы (панель a) и уровни человеческого С-пептида до и после добавления глюкозы (панель b). По оси x показан номер животного и количество дней после трансплантации.
На фиг. 10 показана кинетика секреции человеческого С-пептида при стимуляции глюкозой в трансплантированных клетках-предшественниках эндокринных клеток. В частности, показаны уровни человеческого С-пептида (ось y) через 60 минут после добавления глюкозы (панель a) и уровни человеческого С-пептида до и после добавления глюкозы (панель b). На оси x показан номер животного и количество дней после трансплантации.
На фиг. 11 показаны данные морфологического и иммунофлуоресцентного анализа образцов трансплантата через 3 недели после имплантации. На микрофотографиях серии срезов показаны a) окрашивание на человеческий ядерный антиген и DAPI, b) окрашивание на CK19 и PDX1.
На фиг. 12 показаны данные морфологического и иммунофлуоресцентного анализа образцов трансплантата, окрашенных на инсулин и глюкагон, через 3 недели (панель a), 10 недель (панель b) и 13 недель (панель c) после имплантации. На панели d показаны данные морфологического и иммунофлуоресцентного анализа образцов трансплантата, окрашенных на PDX1 и инсулин через 13 недель после имплантации. На панели e показаны данные морфологического и иммунофлуоресцентного анализа образцов трансплантата, окрашенных на NEUROD1 и инсулин через 13 недель после имплантации.
ПОДРОБНОЕ ОПИСАНИЕ
Для ясности описания, а не для ограничения изобретения, подробное описание изобретения разделено на следующие подразделы, описывающие или иллюстрирующие определенные особенности, варианты осуществления или области применения настоящего изобретения.
Определения
Стволовые клетки представляют собой недифференцированные клетки, определяемые по их способности на уровне единичной клетки как самообновляться, так и дифференцироваться с образованием клеток-потомков, таких как самообновляющиеся клетки-предшественники, необновляющиеся клетки-предшественники и окончательно дифференцированные клетки. Стволовые клетки также характеризуются способностью дифференцироваться in vitro в функциональные клетки различных клеточных линий дифференцирования из нескольких зародышевых листков (эндодермы, мезодермы и эктодермы), а также после трансплантации давать начало тканям, происходящим от нескольких зародышевых листков, и вносить существенный вклад в формирование большинства, если не всех, тканей после инъекции в бластоцисты.
По потенциалу развития стволовые клетки классифицируются следующим образом: (1) тотипотентные, т.е. способные давать начало всем эмбриональным и внеэмбриональным типам клеток; (2) плюрипотентные, т.е. способные давать начало всем эмбриональным типам клеток; (3) мультипотентные, т.е. способные давать начало группе клеточных линий дифференцирования в пределах конкретной ткани, органа или физиологической системы (например, гематопоэтические стволовые клетки (HSC) могут давать таких потомков, как HSC (самообновление), олигопотентные предшественники, ограниченные клетками крови, и все типы клеток и клеточных элементов (таких как тромбоциты), являющиеся нормальными компонентами крови); (4) олигопотентные, т.е. способные давать начало более ограниченному набору клеточных линий дифференцирования, чем мультипотентные стволовые клетки; и (5) унипотентные, т.е. способные давать начало единственной клеточной линии дифференцирования (например, сперматогенные стволовые клетки).
Дифференцировка представляет собой процесс, при помощи которого неспециализированная («некоммитированная») или малоспециализированная клетка приобретает свойства специализированной клетки, например нервной или мышечной. Дифференцированная клетка или клетка с индуцированной дифференцировкой представляет собой клетку, занявшую более специализированную («коммитированную») позицию в пределах клеточной линии дифференцировки. Термин «коммитированная» применительно к процессу дифференцирования обозначает клетку, дошедшую в ходе процесса дифференцирования до стадии, от которой в нормальных условиях она продолжит дифференцироваться до определенного типа клеток или набора типов клеток и не сможет в нормальных условиях дифференцироваться в иной тип клеток или вернуться обратно к менее дифференцированному типу. Дедифференцированием называется процесс, в ходе которого клетка возвращается к менее специализированному (или коммитированному) положению в линии дифференцирования. В настоящем документе линией дифференцировки клеток называется наследственность клетки, т.е. от каких клеток она происходит и каким клеткам может дать начало. В линии дифференцировки клетка помещается в наследственную схему развития и дифференцировки. Маркером, специфичным для линии дифференцировки, называется характерная особенность, специфически ассоциированная с фенотипом клеток конкретной линии дифференцировки, которая может использоваться для оценки дифференцировки некоммитированных клеток в данную линию дифференцировки.
Используемые в настоящей заявке термины «клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы», «клетки стадии 1» или «стадия 1», относятся к клеткам, экспрессирующим по меньшей мере один из следующих маркеров: SOX-17, GATA4, HNF3 бета, GSC, CER1, Nodal, FGF8, Brachyury, Mix-подобный гомеобоксовый белок, FGF4 CD48, эомезодермин (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99 или OTX2. К клеткам, экспрессирующим маркеры, характерные для линии сформированной эндодермы, относятся клетки-предшественники первичной полоски, клетки первичной полоски, клетки мезэндодермы и клетки сформированной эндодермы.
Используемый в настоящей заявке термин «клетки с экспрессией маркеров, характерных для линии панкреатической эндодермы» относится к клеткам с экспрессией по меньшей мере одного из следующих маркеров: PDX1, HNF-1 бета, PTF1 альфа, HNF6 или HB9. К клеткам, экспрессирующим маркеры, характерные для линии панкреатической эндодермы, относятся клетки панкреатической эндодермы, клетки первичной кишечной трубки и клетки поздней передней кишки.
Используемый в настоящей заявке термин «клетки с экспрессией маркеров, характерных для линии панкреатических эндокринных клеток» относится к клеткам с экспрессией по меньшей мере одного из следующих маркеров: NEUROD, ISL1, PDX1, NKX6.1, MAFB, инсулин, глюкагон или соматостатин. Клетки с экспрессией маркеров, характерных для линии панкреатических эндокринных клеткок, включают в себя панкреатические эндокринные клетки, клетки, экспрессирующие панкреатические гормоны, клетки, секретирующие панкреатические гормоны, а также клетки β-клеточной линии.
Используемый в настоящей заявке термин «сформированная эндодерма» относится к клеткам, обладающим характерными особенностями клеток, происходящих в ходе гаструляции от эпибласта, и формирующим желудочно-кишечный тракт и его производные. Клетки дефинитивной эндодермы экспрессируют следующие маркеры: HNF3 бета, GATA4, SOX17, Cerberus, OTX2, goosecoid, C-Kit, CD99 и MIXL1.
«Маркерами» в настоящем документе называются молекулы нуклеиновых кислот или полипептидов, дифференциально экспрессируемые в конкретной клетке. В данном контексте под дифференциальной экспрессией подразумевается повышение уровня экспрессии для положительного маркера и понижение уровня экспрессии для отрицательного маркера. Поддающийся обнаружению уровень маркерной нуклеиновой кислоты или полипептида в интересующих клетках оказывается значительно выше или ниже по сравнению с другими клетками, что позволяет идентифицировать интересующую клетку и отличить ее от других клеток с помощью любого из множества известных в данной области способов.
«Панкреатической эндокринной клеткой» или «клеткой, экспрессирующей гормон поджелудочной железы» в настоящем документе называется клетка, экспрессирующая по меньшей мере один из следующих гормонов: инсулин, глюкагон, соматостатин и панкреатический полипептид.
«Клеткой-предшественником панкреатической эндокринной клетки» в настоящем документе называется мультипотентная клетка линии сформированной эндодермы, которая экспрессирует NGN3 и которая может подвергаться дальнейшей дифференцировке в клетки эндокринной системы, включая, помимо прочего, панкреатические островковые клетки, экспрессирующие гормоны. Клетки-предшественники эндокринных клеток не могут дифференцироваться в разные типы клеток, тканей и (или) органов, как и менее специфически дифференцированные клетки линии сформированной эндодермы, такие как PDX1-положительные клетки панкреатической эндодермы.
«Клеткой, продуцирующей гормон поджелудочной железы» в настоящем документе называется клетка, способная производить по меньшей мере один из следующих гормонов: инсулин, глюкагон, соматостатин и панкреатический полипептид.
«Клеткой, секретирующей гормон поджелудочной железы» в настоящем документе называется клетка, способная секретировать по меньшей мере один из следующих гормонов: инсулин, глюкагон, соматостатин и панкреатический полипептид.
Выделение, размножение и культивирование плюрипотентных стволовых клеток
Характеристика плюрипотентных стволовых клеток
Плюрипотентные стволовые клетки могут экспрессировать один или несколько стадийно-специфичных эмбриональных антигенов (SSEA) 3 и 4, а также маркеры, определяемые антителами, обозначенными Tra-1-60 и Tra-1-81 (Thomson et al., Science 282:1145, 1998). Дифференцировка плюрипотентных стволовых клеток in vitro приводит к утрате экспрессирования SSEA-4, Tra-1-60 и Tra-1-81 (если имеются) и к увеличению экспрессии SSEA-1. В недифференцированных плюрипотентных стволовых клетках, как правило, активна щелочная фосфатаза, которая может быть обнаружена путем фиксации клеток с помощью 4% параформальдегида, с последующим обнаружением с помощью Vector Red, применяемого в качестве субстрата, в соответствии с инструкциями производителя (Vector Laboratories, Burlingame Calif.). Недифференцированные плюрипотентные стволовые клетки так же, как правило, экспрессируют Oct-4 и TERT, обнаруживаемые методом ОТ-ПЦР.
Другим желательным фенотипическим свойством выращенных плюрипотентных клеток является потенциал дифференцировки в клетки всех трех зародышевых листков: в эндодермальные, мезодермальные и эктодермальные ткани. Плюрипотентность плюрипотентных стволовых клеток может быть подтверждена, например, путем инъекции клеток мышам с тяжелым комбинированным иммунодефицитом (SCID), фиксирования образующихся тератом с помощью 4% параформальдегида, и их гистологического исследования для получения доказательств наличия клеточных типов, происходящих от трех зародышевых листков. Как вариант, плюрипотентность можно определить путем создания эмбриоидных телец и анализа их на предмет присутствия маркеров, ассоциирующихся с тремя зародышевыми листками.
Выращенные линии плюрипотентных стволовых клеток могут быть кариотипированы с применением стандартного способа окрашивания с использованием красителя Гимза (G-banding) и сравнения с опубликованными кариотипами соответствующих видов приматов. Желательно получить клетки, имеющие «нормальный кариотип», т.е. эуплоидные клетки, при этом все человеческие хромосомы должны присутствовать и не иметь видимых изменений.
Источники плюрипотентных стволовых клеток
К типам плюрипотентных стволовых клеток, которые можно использовать, относятся стабильные линии плюрипотентных клеток, получаемых из ткани, формирующейся после наступления беременности, в том числе из преэмбриональной ткани (например, бластоциста), эмбриональной ткани или ткани плода, взятой в любой момент в ходе беременности, как правило, но не обязательно, до срока приблизительно 10-12 недель беременности. Примерами, не ограничивающими настоящее изобретение, являются стабильные линии человеческих эмбриональных стволовых клеток или человеческих эмбриональных зародышевых клеток, например, клеточные линии человеческих эмбриональных стволовых клеток H1, H7 и H9 (WiCell). Также возможно использование описываемых в настоящей заявке составов в ходе первоначального установления или стабилизации таких клеток; в этом случае исходными клетками являются первичные плюрипотентные клетки, взятые непосредственно из тканей-источников. Также подходящими являются клетки, взятые из популяции плюрипотентных стволовых клеток, уже культивируемых в отсутствие питающих клеток. Также соответствуют целям настоящего изобретения клетки мутантных линий эмбриональных стволовых клеток человека, таких как, например, BG01v (BresaGen, Атенс, Джорджия, США).
В одном из вариантов осуществления эмбриональные стволовые клетки человека готовят, как описано в следующих публикациях Thomson et al. (патент № 5843780; Science 282:1145, 1998; Curr. Top. Dev. Biol. 38:133 ff., 1998; Proc. Natl. Acad. Sci. U.S.A. 92:7844, 1995).
Культивирование плюрипотентных стволовых клеток
В одном из вариантов осуществления плюрипотентные стволовые клетки, как правило, культивируются на слое питающих клеток, которые оказывают разнообразную поддержку плюрипотентным клеткам. Как вариант, плюрипотентные стволовые клетки культивируются в культуральной системе, по существу не содержащей питающих клеток, но, тем не менее, поддерживающей пролиферацию плюрипотентных стволовых клеток и не допускающей существенной дифференцировки. Выращивание плюрипотентных стволовых клеток в культуре, не содержащей питающих клеток, без дифференцировки, осуществляется при помощи среды, кондиционированной путем предварительного культивирования в ней клеток другого типа. Как вариант, выращивание плюрипотентных стволовых клеток в культуре, не содержащей питающих клеток, без дифференцировки, осуществляется при помощи среды с определенным химическим составом.
Например, в работе Reubinoff et al. (Nature Biotechnology 18: 399-404 (2000)) и Thompson et al. (Science 6 November 1998: Vol. 282. no. 5391, pp. 1145-1147) описано культивирование линий плюрипотентных стволовых клеток из человеческих бластоцист с применением слоя питающих клеток из мышиных эмбриональных фибробластов.
Richards et al. (Stem Cells 21: 546-556, 2003) анализировали набор из одиннадцати слоев питающих клеток, полученных от взрослых, новорожденных и эмбрионов людей, по их способности осуществлять поддержку культуры человеческих плюрипотентных стволовых клеток. Richards et al. сообщают следующее: «Линии человеческих эмбриональных стволовых клеток, культивируемые на питающих слоях из фибробластов кожи взрослых людей, сохраняют морфологию, характерную для эмбриональных стволовых клеток, и остаются плюрипотентными».
В заявке на патент № US20020072117 описываются линии клеток, продуцирующие среду, осуществляющую поддержку плюрипотентных стволовых клеток приматов в культуре, не содержащей питающих клеток. Использованные клеточные линии представляют собой мезенхимо- и фибробласто-подобные линии, полученные из эмбриональной ткани или дифференцированные из эмбриональных стволовых клеток. В заявке на патент № US20020072117 также описывается использование этих клеточных линий в качестве первичного слоя питающих клеток.
В другом примере Wang et al. (Stem Cells 23: 1221-1227, 2005) описывают способы длительного выращивания человеческих плюрипотентных стволовых клеток на слоях питающих клеток, полученных из человеческих эмбриональных стволовых клеток.
В другом примере Stojkovic et al. (Stem Cells 2005 23: 306-314, 2005) описывают систему питающих клеток, получаемую в результате спонтанного дифференцирования человеческих эмбриональных стволовых клеток.
В еще одном примере Miyamoto et al. (Stem Cells 22: 433-440, 2004) описывают получение питающих клеток из человеческой плаценты.
Amit et al (Biol. Reprod 68: 2150-2156, 2003) описывают слой питающих клеток, полученных из человеческой крайней плоти.
В другом примере Inzunza et al. (Stem Cells 23: 544-549, 2005) описывают слой питающих клеток, полученных из человеческих фибробластов постнатальной крайней плоти.
В патенте № US6642048 описывается среда, поддерживающая рост плюрипотентных стволовых клеток приматов (пПС) в среде, не содержащей питающих клеток, и клеточные линии, которые могут использоваться для производства такой среды. В патенте № US6642048 говорится: «Настоящее изобретение включает мезенхимо- и фибробласто-подобные клеточные линии, полученные из эмбриональной ткани или дифференцированные из эмбриональных стволовых клеток. В документе описываются и иллюстрируются способ получения таких клеточных линий, обработки среды и выращивания стволовых клеток с применением кондиционированной среды».
В другом примере, заявке на патент № WO2005014799, описывается кондиционированная среда для поддержания, пролиферации и дифференцировки клеток млекопитающих. В заявке на патент № WO2005014799 говорится: «Культуральная среда, изготовленная в соответствии с настоящим изобретением, кондиционируется при помощи секреторной активности клеток мыши, в частности активности дифференцированных и иммортализованных трансгенных гепатоцитов, именуемых MMH (Met Murine Hepatocyte)».
В другом примере Xu et al. (Stem Cells 22: 972-980, 2004) описывают кондиционированную среду, полученную из производных человеческих эмбриональных стволовых клеток, генетически модифицированных для увеличения экспрессии обратной транскриптазы человеческой теломеразы.
В другом примере, заявке на патент № US20070010011, описывается культуральная среда определенного химического состава для поддержания плюрипотентных стволовых клеток.
В альтернативной культуральной системе используется не содержащая сыворотки среда, обогащенная факторами роста, способными стимулировать пролиферацию эмбриональных стволовых клеток. Например, Cheon et al. (BioReprod DOI:10.1095/biolreprod.105.046870, October 19, 2005) описывают не содержащую питающих клеток и сыворотки культуральную систему, в которой эмбриональные стволовые клетки поддерживаются в некондиционированной, заменяющей сыворотку среде (SR), обогащенной различными факторами роста, способными запустить самообновление эмбриональных стволовых клеток.
В другом примере Levenstein et al. (Stem Cells 24: 568-574, 2006) описывают способы длительного культивирования человеческих эмбриональных стволовых клеток в отсутствие фибробластов или кондиционированной среды с применением среды, обогащенной основным фактором роста фибробластов (bFGF).
В другом примере, заявке на патент № US20050148070, описывается способ культивирования человеческих эмбриональных стволовых клеток в среде с определенным составом без сыворотки и без питающих клеток-фибробластов, где данный способ включает: культивирование стволовых клеток в культуральной среде, содержащей альбумин, аминокислоты, витамины, минеральные вещества, по меньшей мере один трансферрин или заменитель трансферрина, по меньшей мере один инсулин или заместитель инсулина, культуральную среду, в основном не включающую эмбриональную сыворотку млекопитающих и содержащую по меньшей мере приблизительно 100 нг/мл фактора роста фибробластов, способного активировать сигнальный рецептор фактора роста фибробластов, при этом фактор роста фибробластов происходит из источника, иного, чем просто слой питающих клеток-фибробластов, среду, поддерживающую пролиферацию стволовых клеток в недифференцированном состоянии без слоя питающих клеток или кондиционированной среды.
В другом примере, заявке на патент № US20050233446, описывается среда с определенным составом, которая может использоваться при культивировании стволовых клеток, включая недифференцированные зародышевые стволовые клетки приматов. В растворе среда по существу является изотонической относительно культивируемых стволовых клеток. В данной культуре указанная среда содержит основную среду и количество bFGF, инсулина и аскорбиновой кислоты, достаточное для поддержки роста зародышевых стволовых клеток без значительной дифференцировки.
В другом примере, патенте № US6800480, говорится: «В одном варианте осуществления предлагается культуральная среда для выращивания клеток зародышевых стволовых клеток приматов, в значительной степени в недифференцированном состоянии, включающая основную среду с низким содержанием эндотоксина и низким осмотическим давлением, которая эффективно поддерживает рост зародышевых стволовых клеток приматов. Основная среда объединяется с питательной сывороткой, способной поддерживать рост зародышевых стволовых клеток приматов, и субстратом, выбираемым из группы, включающей питающие клетки и экстраклеточный матрикс, полученный из питающих клеток. Среда также содержит аминокислоты, не относящиеся к незаменимым, антиоксидант и первый фактор роста, выбираемый из группы, содержащей нуклеозиды и соль-пируват».
В другом примере, заявке на патент № US20050244962, говорится: «В одном аспекте, в изобретении предлагается способ культивирования эмбриональных стволовых клеток приматов. Стволовые клетки культивируются в культуре, в основном не содержащей эмбриональной сыворотки млекопитающих (предпочтительно также в основном не содержащей эмбриональной сыворотки любых животных) и в присутствии фактора роста фибробластов, полученного из источника, иного, чем просто питающие клетки-фибробласты. В предпочтительной форме слой питающих фибробластов, ранее необходимый для поддержания культуры стволовых клеток, становится необязательным вследствие добавления достаточного количества фактора роста фибробластов».
В другом примере, заявке на патент № WO2005065354, описывается изотоническая культуральная среда определенного состава, в основном не содержащая питающих клеток и сыворотки, включающая: a. базовую среду, b. количество bFGF, достаточное для поддержки роста в основном не дифференцированных стволовых клеток млекопитающих, c. количество инсулина, достаточное для поддержки роста в основном не дифференцированных стволовых клеток млекопитающих, и d. количество аскорбиновой кислоты, достаточное для поддержки роста в основном не дифференцированных стволовых клеток млекопитающих.
В другом примере в заявке на патент № WO2005086845 описывается способ поддержания недифференцированных стволовых клеток, включающий воздействие на стволовые клетки одним членом семейства белков трансформирующего ростового фактора-бета (TGF-β), одним членом семейства белков фактора роста фибробластов (FGF) или никотинамидом (NIC) в количестве, достаточном для поддержания клеток в недифференцированном состоянии в течение периода времени, достаточного для получения желаемого результата.
Плюрипотентные стволовые клетки могут быть нанесены на подходящий культуральный субстрат. В одном из вариантов осуществления подходящим культуральным субстратом является компонент экстраклеточного матрикса, например, полученный из базальной мембраны или тот, который может участвовать в образовании связи между рецептором молекул адгезии и лигандом. В одном из вариантов осуществления подходящим культуральным субстратом является MATRIGEL® (Becton Dickenson). MATRIGEL® представляет собой растворимый препарат из клеток опухоли Энгельбрета-Холма-Суорма, который при комнатной температуре превращается в гель и обра