Антивибрационная резиновая композиция, сшитая антивибрационная резиновая композиция и антивибрационная резина
Иллюстрации
Показать всеИзобретение относится к виброизоляционной резиновой композиции и сшитой виброизоляционной резиновой композиции. Виброизоляционная резиновая композиция включает: каучуковый компонент, имеющий сополимер сопряженное диеновое соединение/несопряженный олефин, и полимер на основе несопряженного диена; в качестве вулканизирующего агента - бисмалеимидное соединение. Бисмалеимидное соединение и Ν-фенил-Ν(трихлорметилтио)бензолсульфонамид дают синергетический эффект улучшения полученной резиновой композиции в плане низкого отношения динамического модуля к статическому модулю, устойчивости к разрушению, термостойкости. Изобретение позволяет получать виброизоляционные резиновые композиции и сшитые виброизоляционные резиновые композиции, которые обладают превосходными низким отношением динамического модуля к статистическому модулю, усталостной прочностью при растяжении, низкотемпературными характеристиками и технологичностью. 3 н. и 11 з.п. ф-лы, 3 табл., 23 пр.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к антивибрационной резиновой композиции, сшитой антивибрационной резиновой композиции и антивибрационной резине (каждая из которых далее также упоминается как виброизоляционная резиновая композиция, сшитая виброизоляционная резиновая композиция и виброизоляционная резина соответственно). В частности, настоящее изобретение относится к виброизоляционной резиновой композиции и сшитой виброизоляционной резиновой композиции, антивибрационной резине, которые имеют превосходное низкое отношение динамического модуля к статическому модулю, обладают усталостной прочностью при растяжении, низкотемпературными характеристиками и технологичностью.
Уровень техники
Обычно в целях повышения комфорта пассажиров транспортных средств, таких как автомобили, различные попытки были предприняты по ограничению проникновения вибрации или шума в кузов транспортного средства путем размещения различных изоляторов вибрации на тех деталях, которые могут выступать в качестве источников вибрации и шума.
Например, в зависимости от двигателя, который является основным источником вибрации и шума, виброизолирующая резина была использована для таких деталей, как демпфер крутильных колебаний и опора двигателя, чтобы, таким образом, поглощать вибрацию во время работы двигателя, ограничивать проникновение вибрации или шума в кузов и распространение шума в окружающую среду.
Что касается основных свойств, для такой виброизоляционной резины требуется прочность, характерная для опоры узлов большой массы, таких как двигатель, и виброизоляционные свойства для поглощения и подавления вибрации. Кроме того, виброизоляционная резина для использования в среде с высокой температуры, такой как моторный отсек, должна иметь не только низкое отношение динамического модуля к статическому модулю и отличные виброизоляционные характеристики, но и высокую термостойкость, озоностойкость и остаточную деформация сжатия. В частности, температура в моторном отсеке имеет тенденцию к увеличению в последние годы наряду с высокой мощностью двигателя и уменьшением пространства моторного отсека за счет увеличения внутреннего пространства транспортного средства. Следовательно, виброизоляционная резина для использования в автомобилях должна соответствовать жестким требованиям к термостойкости и т.п.
Кроме того, автомобили также используются в северных широтах, и, таким образом виброизоляционная резина для использования в автомобилях должна иметь низкотемпературные характеристики, в дополнение к вышеуказанным свойствам.
Чтобы придать виброизоляционной резине такие превосходные свойства в полном объеме, были проведены активные исследования резиновой композиции виброизоляционной резины и систем сшивки и других добавок, которые должны быть включены в заданном количестве, и поэтому поданы несколько патентных заявок. В некоторых из этих многочисленных патентных заявок активно используются бисмалеимидные соединение в усовершенствованной системе сшивке.
Например, патентный документ 1 раскрывает резиновую композицию, включающую каучуковый компонент смешанный с серой, бисмалеимидом и определенной газовой сажей, таким образом, чтобы иметь отличную термостойкость, низкое отношение динамического модуля к статическому модулю и т.п.
Кроме того, патентный документ 2 раскрывает использование бисмалеимидного соединения и тиазола в качестве ускорителя вулканизации, что обеспечивает получение резиновой композиции с превосходными термостойкостью, низким отношением динамического модуля к статическому модулю и прочностью.
Однако резиновые композиции PTL 1 и PTL 2 все еще немного уступают по низкому отношению динамического модуля к статическому модулю, усталостной прочности при растяжении, и низкотемпературным характеристикам, хотя обе обладают достаточно хорошей термостойкостью и низким отношением динамического модуля к статическому модулю. Кроме того, в целях сохранения упругих свойств, крайне необходимых для виброизоляционной резины для подавления степени изменения модуля к минимуму, а также для дополнительного улучшения термостойкости.
В связи с этим, были предприняты попытки снизить отношение динамического модуля к статическому модулю, и для улучшения усталостной прочности при растяжении и низкотемпературных характеристик путем включения серы в качестве агента вулканизации, определенного соединения серы, и бисмалеимидное соединение. Например, патентный документ 3 раскрывает виброизоляционную резиновую композицию, содержащую: серу в количестве не более 0,5 частей масс.; серосодержащее соединение определенной структурой в количестве 0,5-2 частей масс.; и бисмалеимидное соединение в количестве 0,5-3 частей масс., каждое соединение в пересчете на 100 частей масс. диенового каучука.
Перечень ссылок
Патентная литература
RTL1: JP H03-258840
RTL 2: JP 2005-194501
RTL 3: JP 2010-254872
Раскрытие изобретения
Техническая задача, решаемая настоящим изобретением
Виброизоляционная резина, полученная по технологии RTL 3, мая достичь в определенной степени низкого отношения динамического модуля к статическому модулю, усталостной прочности при растяжении и низкотемпературными. Однако дальнейшее улучшение было желательно с точки зрения усталостной прочности при растяжении.
Соответственно, настоящее изобретение было создано для решения вышеуказанных проблем, и, в частности, имеет целью получение виброизоляционной резиновой композиции и сшитой виброизоляционной резиновой композиции, которые оптимизированы по химическим компонентам так, чтобы иметь отличные низкое отношение динамического модуля к статическому модулю, усталостную прочность при растяжении, низкотемпературные характеристики и технологичность, а также для создания виброизоляционной резины с использованием виброизоляционной резиновой композиции и сшитой виброизоляционной резиновой композиции, у каждой из которых превосходные низкотемпературные характеристики и технологичность.
Решение проблемы
В результате интенсивных исследований для решения вышеуказанных проблем, авторы настоящего изобретения обнаружили следующее, и осуществили настоящее изобретение. То есть виброизоляционная резиновая композиция может содержать бисмалеимидные соединение в качестве вулканизирующего агента и N-фенил-N-(трихлорметилтио)бензолсульфонамид, которые дают синергетический эффект улучшения полученной резиновой композиции в плане низкого отношения динамического модуля к статическому модулю, устойчивости к разрушению, термостойкости и долговечность в целом. Кроме того, каучуковый компонент может содержать сополимер сопряженное диеновое соединение/несопряженный олефин для улучшения усталостной прочности при растяжении полученной резиновой композиции.
Настоящее изобретение было выполнено на основе вышеуказанных результатов, и его основные признаки следующие:
(1) виброизоляционная резиновая композиция, включающая: каучуковый компонент, имеющий сополимер сопряженное диеновое соединение/несопряженный олефин и полимер на основе несопряженного диена; вулканизирующий агент, имеющий бисмалеимидное соединение; и N-фенил-N(трихлорметилтио)бензолсульфонамид.
(2) Виброизоляционная резиновая композиция по п. (1), в котором содержится 1,0-5,0 частей масс. бисмалеимидного соединения на 100 частей масс. каучукового компонента и 0,2-4 частей масс. N-фенил-N-(трихлорметилтио)бензолсульфонамида на 100 частей масс. каучукового компонента.
(3) Виброизоляционная резиновая композиция по п. (1), дополнительно содержит 0,2-1,0 частей масс. серы на 100 частей масс. каучукового компонента.
(4) Виброизоляционная резиновая композиция по п. (1), в которой содержание цис-1,4 связей сополимер сопряженное диеновое соединение/несопряженный олефин составляет 50% или более в фрагменте, полученном из соединения сопряженного диена.
(5) Виброизоляционная резиновая композиция по п. (1), в которой среднемассовая молекулярная масса сополимера сопряженное диеновое соединение/несопряженный олефин относительно полистирола составляет 10000-10000000.
(6) Виброизоляционная резиновая композиция по п. (1), в которой молекулярно-массовое распределение (Mw/Mn) сополимера сопряженное диеновое соединение/несопряженный олефин равно 10 или менее.
(7) Виброизоляционная резиновая композиция по п. (1), в которой содержание сополимера сопряженное диеновое соединение/несопряженный олефин составляет 10-90 частей масс. на 100 частей масс. каучукового компонента.
(8) Виброизоляционная резиновая композиция по п. (1), в которой несопряженный олефин является ациклический олефин.
(9) Виброизоляционная резиновая композиция по п. (1), в которой несопряженный олефин имеет от 2-10 атомов углерода.
(10) Виброизоляционная резиновая композиция по п. (8) или (9), в которой несопряженный олефин является, по меньшей мере, одним соединение, выбранным из группы, состоящей из этилена, пропилена и 1-бутена.
(11) Виброизоляционная резиновая композиция по п. (10), в которой несопряженный олефин является этиленом.
(12) Виброизоляционная резиновая композиция по п. 1, в которой полимер на основе сопряженного диена является, по меньшей мере, одним, выбранным из натурального каучука, бутадиенового каучука, стирол-бутадиенового каучука и полихлоропрена.
(13) Сшитая виброизоляционная резиновая композиция, полученная сшивкой виброизоляционной резиновой композиции по п. (1).
(14) Виброизоляционная резина, в которой используется виброизоляционная резиновая композиция по п. (1) или сшитая виброизоляционная резиновая композиция по п. (13).
Положительный эффект изобретения
В соответствии с настоящим изобретением может быть изготовлена виброизоляционная резиновая композиция и сшитая виброизоляционная резиновая композиция, которые обладают превосходными низким отношением динамического модуля к статическому модулю, усталостной прочностью при растяжении, низкотемпературными характеристиками и технологичностью, а также виброизоляционная резина с использованием виброизоляционной резиновой композиции и сшитой виброизоляционной резиновой композиции с превосходными низкотемпературными характеристиками и технологичностью.
Описание осуществлений
Виброизоляционная резиновая композиция
Виброизоляционная резиновая композиция в соответствии с настоящим изобретением содержит: каучуковый компонент, состоящий из сополимера сопряженное диеновое соединение/несопряженный олефин, а также полимера на основе сопряженного диена; вулканизирующий агент, имеющий бисмалеимидное соединение; и N-фенил-N(трихлорметилтио)бензолсульфонамид.
Каучуковый компонент
Каучуковый компонент образующий виброизоляционную резиновую композицию настоящего изобретения, имеет сополимер сопряженное диеновое соединение/несопряженный олефин, и сопряженное диеновое соединение.
- Сополимер сопряженное диеновое соединение/несопряженный олефин
Когда сополимер сопряженное диеновое соединение/несопряженный олефин включен в каучуковый компонент, компонент несопряженного олефина в сополимере сопряженное диеновое соединение/несопряженный олефин способствует приданию полученной резиновой композиции превосходного низкого отношения динамического модуля к статическому модулю.
Здесь сополимер сопряженное диеновое соединение/несопряженный олефин относится к сополимеру, состоящему из сопряженного диенового соединения и несопряженного олефина, который содержит несопряженный олефин в виде мономерного звена компонента сополимера.
Содержание фрагмента, полученного из сопряженного диенового соединения, конкретно не ограничено и может быть выбрано соответствующим образом в зависимости от предполагаемого использования, которое предпочтительно составляет 30-80% мол. по следующим причинам.
То есть, когда содержание фрагмента, полученного из сопряженного диенового соединения в сополимере сопряженное диеновое соединение/несопряженный олефин, составляет 30% мол. или более может быть улучшено отношение динамического модуля к статическому модулю и может быть обеспечена достаточная технологичность, в то время как содержание 80% мол. или менее увеличивает долю несопряженного олефина, чтобы улучшить усталостную прочность при растяжении.
В то же время содержание фрагмента, полученного из несопряженного олефина в сополимере сопряженное диеновое соединение/несопряженный олефин, конкретно не ограничено и может быть выбрано соответствующим образом в зависимости от предполагаемого использования.
Например, с целью обеспечения атмосферостойкости и трещиностойкости содержание фрагмента, полученного из несопряженного олефина может предпочтительно составлять 20-70% мол. по следующим причинам. Когда содержание фрагмента, полученного из несопряженного олефина в сополимере сопряженное диеновое соединение/несопряженный олефин составляет 20% мол. или более, может быть улучшена усталостная прочность при растяжении, а содержание 70% мол. или менее позволяет улучшить технологичность в каучуковом компоненте.
Содержание 1,4-цис связи во фрагменте, полученном из сопряженного диенового соединения в сополимере сопряженное диеновое соединение/несопряженный олефин, особенно не ограничено и может быть выбрано в зависимости от предполагаемого использования. Однако содержание 1,4-цис связи предпочтительно может составлять 50% или более.
Когда фрагмент, полученный из сопряженного диенового соединения, содержит 1,4-цис связей 50% или более, можно сохранять низкую температуру стеклования (Tg), что может улучшить физические свойства, такие как отношение динамического модуля к статическому модулю, усталостная прочность при растяжении и износостойкость.
Кроме того, количество цис-1,4-связей в фрагменте, полученном из сопряженного диенового соединения, может составлять более 92%, чтобы тем самым обеспечить улучшение отношения динамического модуля к статическому модулю, усталостной прочности при растяжении, атмосферостойкости и термостойкости; количество может составлять 95% или более для дальнейшего улучшения отношения динамического модуля к статическому модулю, усталостной прочности при растяжении, атмосферостойкости и термостойкости.
Следует отметить, что количество 1,4-цис связей относится к количеству во фрагменте, полученному из сопряженного диенового соединения, и их не следует рассматривать как долю всего сополимера.
Между тем несопряженный олефин, используемый в качестве мономера в сополимере сопряженное диеновое соединение/несопряженный олефин, относится к несопряженному олефину за исключением сопряженного диенового соединения, и использование несопряженного олефина позволяет обеспечить превосходную термостойкость, понижая долю количества двойных связей в основной цепи сополимера, и кристалличность для повышения степени свободы при разработке в качестве эластомера. Кроме того, ациклический олефин является предпочтительным в качестве несопряженного олефина. Кроме того, несопряженный олефин предпочтительно имеет 2-10 атомов углерода.
Таким образом, предпочтительные примеры несопряженного олефина включает α-олефины, таких как: этилен; пропилен; 1-бутен; 1-пентен; 1-гексен; 1-гептен; и 1-октен, этилен, пропилен и 1-бутен является более предпочтительными и этилен является особенно предпочтительным. Здесь несопряженный олефин не включает стирол. α-Олефин имеет двойную связь в α положении олефина, и, таким образом, может быть эффективно сополимеризован с сопряженным диеном. Вышеприведенные примеры несопряженного олефина могут быть использованы отдельно или в комбинации двух или более. Здесь олефин относится к соединению, содержащему алифатический ненасыщенный углеводород, имеющий одну или несколько двойных связей углерод-углерод.
Кроме того, сополимер обладает фиксированной кристалличностью, когда включает блок-фрагмент, состоящий из мономерных звеньев несопряженного олефина, и, таким образом, обладает превосходными механическими свойствами, такими как прочность на разрыв.
Следует отметить, что сопряженное диеновое соединение, используемое в качестве мономера в сополимере сопряженное диеновое соединение/несопряженный олефин, может предпочтительно иметь 4-12 атомов углерода. Конкретные примеры сопряженного диенового соединения могут включать: 1,3-бутадиен, изопрен, 1,3-пентадиен и 2,3-диметилбутадиен, предпочтительными являются 1,3-бутадиен и изопрен. Вышеприведенные примеры сопряженного диенового соединения могут быть использованы по отдельности или в комбинации из двух или нескольких.
Следует отметить, что любой из конкретных вышеуказанных примеров сопряженного диенового соединения аналогично может быть использован для получения сополимера настоящего изобретения по тому же механизму.
Среднемассовая молекулярная масса (Mw) сополимера сопряженное диеновое соединение/несопряженный олефин может быть особо не ограниченной, не вызывая проблему низкой молекулярной массы. В свете применения в материале полимерной матрицы среднемассовая молекулярная масса (Mw) сополимера относительно полистирола предпочтительно составляет 10000-10000000, более предпочтительно 10000-1000000 и наиболее предпочтительно 50000-600000. Mw, превышающая 10000000, приводит к возможному ухудшению формуемости.
Кроме того, молекулярно-массовое распределение (Mw/Mn) сополимера сопряженное диеновое соединение/несопряженный олефин предпочтительно составляет 10 или менее и более предпочтительно 6 или менее, молекулярно-массовое распределение представлено отношением среднемассовой молекулярной массы (Mw) и среднечисленной молекулярной массой (Mn). В противном случае, молекулярно-массовое распределение более 10 делает физические свойства неоднородными.
В описании среднемассовая молекулярная масса и молекулярно-массовое распределение могут быть определены с помощью гель-проникающей хроматографии (ГПХ) с использованием полистирола в качестве стандартна.
Содержание фрагментов 1,2 аддукта (включая фрагменты 3,4 аддукта) сопряженного диенового соединения во фрагменте, полученном из сопряженного диенового соединения, в сополимере сопряженное диеновое соединение/несопряженный олефин особенно не ограничено и может быть выбрано соответствующим образом в зависимости от предполагаемого использования, которое предпочтительно составляет 5% или менее, более предпочтительно 3% или менее и наиболее предпочтительно 2,5% или менее.
Когда содержание фрагментов 1,2 аддукта (включая фрагменты 3,4 аддукта) в сопряженном диеновом соединении во фрагменте, полученном из сопряженного диенового соединения в сополимере сопряженное диеновое соединение/несопряженный олефин, равно 5% или менее, может быть дополнительно улучшена атмосферостойкость и усталостная прочность при растяжении сополимера. Между тем, когда содержание фрагментов 1,2 аддукта (включая фрагменты 3,4 аддукта) в сопряженном диеновом соединении во фрагменте, полученном из сопряженного диенового соединения в сополимере сопряженное диеновое соединение/несопряженный олефин равно 2,5% или менее, может быть дополнительно улучшена атмосферостойкость и усталостная прочность при растяжении сополимера.
Следует отметить, что содержание фрагментов 1,2 аддукта (включая фрагменты 3,4 аддукта) относится к количеству фрагмента, полученного из сопряженного диенового соединения, и его не следует рассматривать как долю всего сополимера. Кроме того, содержание фрагментов 1,2 аддукта (включая фрагменты 3,4 аддукта) сопряженного диенового соединения во фрагменте, полученном из сопряженного диенового соединения в сополимере сопряженное диеновое соединение/несопряженный олефин, равно содержанию 1,2 винильных связей, когда сопряженное диеновое соединение является бутадиеном.
Сополимер сопряженное диеновое соединение/несопряженный олефин может иметь цепочечную структуру, которая не является особенно ограниченной и может быть выбрана соответствующим образом в зависимости от предполагаемого использования. Сополимер сопряженное диеновое соединение/несопряженный олефин может включать, например, блок-сополимер, статистический сополимер, градиентный сополимер и чередующийся сополимер.
Блок-сополимер
Блок-сополимер имеет структуру, включающую одну из (A-B)x, A-(BA)x и B-(AB)x (здесь A представляет блок фрагмента, включающего мономерные звеньев несопряженного олефина, B представляет блок фрагмента, включающего мономерные звенья сопряженного диенового соединения, и x представляет целое число, равное, по меньшей мере, 1). Здесь блок-сополимер, включающий несколько структур (A-B) или (B-A), относится к мультиблочному сополимеру.
Когда сополимер сопряженное диеновое соединение/несопряженный олефин структурирован в виде блок-сополимера, блок фрагмента, включающего мономеры несопряженного олефина, обладает фиксированной кристалличностью и, следовательно, сополимер показывает отличные механические свойства, такие как прочность на разрыв.
Статистический сополимер
Когда сополимер сопряженное диеновое соединение/несопряженный олефин является статистическим сополимером, мономерные звенья несопряженного олефина расположены случайным образом и, таким образом сополимер не претерпевает фазового разделения, в результате чего температура кристаллизации фрагмента блока не может быть определена. Другими словами, можно ввести несопряженный олефин, имеющий свойство термостойкости или тому подобное, в основную цепь сополимера, чтобы тем самым улучшить термостойкость.
Градиентный сополимер
Градиентный сополимер относится к сополимеру, включающему и статистический сополимер и блок-сополимер, и сформированному из: фрагмента блока (также называемого блочной структурой), по меньшей мере, одного фрагмента блока, включающего звенья мономера сопряженного диенового соединения и фрагмента блока, включающего звенья мономера несопряженного олефина; и статистического фрагмента (также называемого разупорядоченной структурой), имеющего случайно расположенные звенья мономера сопряженного диенового соединения и несопряженного олефина.
Структура градиентного сополимера имеет непрерывное или дискретное распределение состава, включающего компонент сопряженного диенового соединения и компонент несопряженного олефина. В описании компонент несопряженного олефина предпочтительно имеет цепную структуру, которая включает большое число компонентов блока несопряженного олефина с короткой цепью (низкомолекулярного), без включения такого большого числа компонентов блока несопряженного олефина с длинной цепью (с высокой молекулярной массой).
Чередующийся сополимер
Чередующийся сополимер относится к сополимеру, включающему сопряженное диеновое соединение и несопряженный олефин, которые расположены попеременно (структура молекулярной цепи -ABABABAB-, где A представляет несопряженный олефин и B представляет сопряженное диеновое соединение).
В соответствии с настоящим изобретением, сополимер сопряженное диеновое соединение/несопряженный олефин является чередующимся сополимером, позволяющим достичь одновременно и гибкость и адгезивность. Сополимер предпочтительно может быть, по меньшей мере, одним, выбранным из блок-сополимера и градиентного сополимера.
Содержание сополимера сопряженный диен соединение/несопряженный олефин в 100 частей масс. каучукового компонента, может предпочтительно составлять 10-90 частей масс. и более предпочтительно 10-60 частей масс.
Когда содержание сополимера сопряженное диеновое соединение/несопряженный олефин составляет менее 10 частей масс., не могут быть получены искомые отношение динамического модуля к статическому модулю, низкотемпературные характеристики и усталостная прочность при растяжении. С другой стороны, содержание, превышающее 90 частей масс., может ухудшать обрабатываемость и стойкость к разрезанию.
- Способ изготовления сополимера сопряженное диеновое соединение/несопряженный олефин
Далее приведено описание способа изготовления вышеуказанного сополимера на основе несопряженного олефина. Однако способ изготовления, подробно описанный ниже, проиллюстрирован только в качестве примера.
Способ изготовления сополимера на основе несопряженного олефина предпочтительно включает стадию полимеризации несопряженного олефина и сопряженного диенового соединения в присутствии первой композиции катализатора полимеризации, второй композиции катализатора полимеризации или третьей композиции катализатора полимеризации, описанной ниже. Здесь в качестве способа полимеризации может быть использован произвольно выбранный способ, включающий полимеризацию в растворе, суспензионную полимеризацию, полимеризацию в массе в жидкой фазе, эмульсионную полимеризацию, полимеризацию в паровой фазе и твердофазную полимеризацию. Кроме того, в случае использования растворителя в реакции полимеризации, может быть использован любой растворитель, который является инертным в реакции полимеризации, и его примеры могут включать толуол, гексан, циклогексан и их композиции.
Первая композиция катализатора полимеризации
Вышеуказанная первая композиция катализатора полимеризации (далее также называемая как ′первая композиция катализатора полимеризации′) иллюстрируется в виде композиции катализатора полимеризации, включающей, по меньшей мере, один комплекс, выбранный из группы, состоящей из: металлоценового комплекса, представленного следующей общей формулой (I); металлоценового комплекса, представленного следующей общей формулой (II); и катионного полуметаллоценового комплекса, представленного следующей общей формулой (III):
(в формуле (I), M представляет лантанид, скандий или иттрий, CpR каждый независимо представляет собой незамещенную или замещенную инденильную группу; Ra-Rf каждый независимо представляет собой атом водорода или алкильную группу, имеющую 1-3 атомов углерода; L представляет собой нейтральное основание Льюиса; и w представляет собой целое число 0-3);
(в формуле (II), M представляет лантанид, скандий или иттрий, CpR каждый независимо представляет собой незамещенную или замещенную инденильную группу; X′ представляет собой атом водорода, атом галогена, алкоксигруппу, тиолатную группу, амидную группу, синильную группу или углеводородную группу, содержащую 1-20 атомов углерода, L представляет собой нейтральное основание Льюиса; и w представляет собой целое число от 0-3); и
(в формуле (III), M представляет лантанид, скандий или иттрий, CpR каждый независимо представляет собой незамещенный или замещенный циклопентадиенил, инденил, флуоренил; X представляет собой атом водорода, атом галогена, алкоксигруппу, тиолатную группу, амидную группу, синильную группу или углеводородную группу, содержащую 1-20 атомов углерода, L представляет собой нейтральное основание Льюиса; w представляет собой целое число 0-3, и [B]- представляет некоординирующий анион).
Первая композиция катализатора полимеризации может дополнительно включать другой компонент, такой как сокатализатор, который содержится в общей композиции катализатора полимеризации, включающей металлоценовый комплекс. В описании металлоценовый комплекс является комплексным соединением, имеющим одну или несколько циклопентадиенильных групп или производных циклопентадиенильных групп, связанных с центральным металлом. В частности, металлоценовый комплекс может упоминаться как полуметаллоценовый комплекс, когда количество циклопентадиенильных групп или ее производных соединенных с центральным металлом является единицей.
В системе полимеризации концентрация комплекса, содержащегося в первой композиции катализатора полимеризации предпочтительно составляет 0,1-0,0001 моль/л.
В металлоценовом комплексе, представленном выше общими формулами (I) и (II), CpR в формулах представляет незамещенную или замещенную инденильную группу. CpR, имеющий инденильное кольцо, в качестве основы структуры может быть представлен C9H7-xRx или C9H11-xRx. В описании x представляет целое число 0-7 или 0-11. Каждый R независимо предпочтительно означает гидрокарбильную группу или металлоидную группу. Гидрокарбильная группа предпочтительно имеет 1-20 атомов углерода, более предпочтительно 1-10 атомов углерода и наиболее предпочтительно 1-8 атомов углерода. Предпочтительные конкретные примеры гидрокарбильной группы включают метильную группу, этильную группу, фенильную группу и бензильную группу. С другой стороны, примеры металлоида в металлоидной группе включают гермил (Ge), станнил (Sn) и силил (Si). Кроме того, металлоидная группа предпочтительно имеет гидрокарбильную группу, которая подобна вышеописанной гидрокарбильной группе. Конкретные примеры металлоидной группы включают триметилсилильную группу. Конкретные примеры замещенной инденильной группы включают 2-фенилинденильную, 2-метилинденильную и 1-метил-2-фенилинденильную группу. Два CpR в общих формулах (I) и (II) могут быть одинаковыми или отличаться друг от друга.
В полуметаллоценовом катионном комплексе, представленном общей формулой (III), C p R ' в формулах представляет замещенный или незамещенный циклопентадиенил, инденил или флуоренил, причем замещенный или незамещенный инденил является предпочтительным. C p R ' с циклопентадиенильным кольцом в качестве основы структуры представлен C5H5-XRX. В описании X представляет целое число 0-5. Кроме того, каждый R независимо предпочтительно представляет гидрокарбильную группу или металлоидную группу. Гидрокарбильная группа предпочтительно имеет 1-20 атомов углерода, более предпочтительно 1-10 атомов углерода и наиболее предпочтительно 1-8 атомов углерода. Предпочтительные конкретные примеры гидрокарбильной группы включают метильную группу, этильную группу, пропильную группу, фенильную группу и бензильную группу. Примеры металлоида в металлоидной группе включают гермил (Ge), станнил (Sn) и силил (Si)* (металлоиды в данном случае германий, олово и кремний, но не указанные радикалы). Кроме того, металлоидная группа предпочтительно имеет гидрокарбильную группу, которая подобна вышеописанной гидрокарбильной группе. Конкретные примеры металлоидной группы включают триметилсилильную группу. C p R ' , имеющий циклопентадиенильное кольцо в качестве основы структуры специально проиллюстрирован следующим образом.
(В формуле, R представляет атом водорода, метильную группу или этильную группу).
В общей формуле (III) C p R ' , имеющий инденильное кольцо в качестве основы структуры, определяется также как и CpR в общей формуле (I), и предпочтительные примеры включают те же, что и CpR общей формулы (I).
В общей формуле (III), C p R ' , имеющий вышеуказанное флуоренильное кольцо в качестве основы структуры, может быть представлен C13H9-XRX или C13H17-XRX. Здесь X представляет целое число 0-9 или 0-17. R независимо предпочтительно обозначает гидрокарбильную группу или металлоидную группу. Гидрокарбильная группа предпочтительно имеет 1-20 атомов углерода, более предпочтительно 1-10 атомов углерода и наиболее предпочтительно 1-8 атомов углерода. Предпочтительные конкретные примеры гидрокарбильной группы включают метильную группу, этильную группу, фенильную группу и бензильную группу. С другой стороны, примеры металлоида в металлоидной группе включают гермил (Ge), станнил (Sn) и силил (Si). Кроме того, металлоидная группа предпочтительно имеет гидрокарбильную группу, которая подобна вышеописанной гидрокарбильной группе. Конкретный пример металлоидной группы включает триметилсилильную группу.
Центральный металл, представленный M в общих формулах (I), (II) и (III), представляет лантанид, скандий ил иттрий. Лантаниды включают 15 элементов с атомными номерами 57-71, и могут быть любым из них. Предпочтительные примеры центрального металла, представленного М, включают самарий (Sm), неодим (Nd), празеодим (Pr), гадолиний (Gd), церий (Ce), гольмий (Ho), скандий (Sc) и иттрий (Y).
Металлоценовый комплекс, представленный общей формулой (I), включает силиламидный лиганд, представленный [-N(SiR3)2]. Группы, представленные R(Ra-Rf в общей формуле (I)) в силиламидном лиганде, каждая независимо представляют атом водорода или алкильную группу, имеющую 1-3 атомов углерода, и предпочтительно, по меньшей мере, один из Ra-Rf представляет атом водорода. Катализатор может быть легко синтезирован, когда, по меньшей мере, один из Ra-Rf является атомом водорода и занимаемый объем вокруг кремния может быть снижен, чтобы тем самым обеспечить простое введение несопряженного олефина. Для этой же цели более предпочтительно, чтобы, по меньшей мере, один из Ra-Rf являлся атомом водорода, и, по меньшей мере, один из Rd-Rf являлся атомом водорода. Предпочтительной алкильной группой является метильная группа.
Металлоценовый комплекс, представленный общей формулой (II) включает синильный лиганд, представленный [ − S i X 3 ' ] . X′ в силильном лиганде, представленном [ − S i X 3 ' ] , является группой, определенной также, как и X в общей формуле (III), описанной ниже, и предпочтительные примеры включают те же, что и для X в общей формуле (III).
В общей формуле (III), X представляет группу, выбранную из группы, состоящей из атома водорода, атома галогена, алкоксигруппы, тиолатной группы, амидной группы, силильной группы и углеводородной группы, содержащей 1-20 атомов углерода. В общей формуле (III), алкоксигруппа, представленная X, может быть любой алифатической алкоксигруппой, такой как метокси группа, этокси группа, пропокси группа, n-бутокси группа, изобутокси группа, втор-бутокси группа и трет-бутокси группа; и арилоксидной группой (ароматические алкокси группы), такие как фенокси группа, 2,6-ди-трет-бутилфенокси группа, 2,6-диизопропилфенокси группа, 2,6-динеопентилфенокси группа, 2-трет-бутил-6-изопропилфенокси группа, 2-трет-бутил-6-неопнтилфенокси группа и 2-изопропил-6-неопентилфенокси группы, предпочтительной является 2,6-ди-трет-бутилфенокси группа.
В общей формуле (III) тиолатная группа, представленная X, может быть любой из: алифатических тиолатных групп, таких как тиометокси группа, тиоэтокси группа, тиопропокси группа, тио-n-бутокси группа, тиоизобутокси группа, тио-втор-бутокси группа и тио-трет-бутокси группа; и арилтиолатных групп, таких как тиофенокси группа, 2,6-ди-трет-бутилтиофенокси группа, 2,6-диизопропилтиофенокси группа, 2,6-динеопентилтиофенокси группа, 2-трет-бутил-6-изопропилтиофенокси группа, 2-трет-бутил-6-тионеопентилфенокси группа, 2-изопропил-6-тионеопентилфенокси группа и 2,4,6-триизопропилтиофенокси группа, предпочтительной является 2,4,6-триизопропилтиофенокси группа.
В общей формуле (III), амидная группа, представленная X, может быть любой из: алифатических амидных групп, таких как диметиламидная группа, диэтиламидная гру