Способ и установка для энергетически эффективного изготовления горячекатаной стальной полосы
Иллюстрации
Показать всеИзобретение относится к области металлургии и может быть использовано при изготовлении горячекатаной стальной полосы на совмещенной литейно-прокатной установке. В кристаллизаторе (2) литейной установки отливают сляб толщиной 95-110 мм, который обжимают до толщины 60-95 мм в направляющем устройстве (6). Длина (L) опорного участка, измеренная между мениском (13) в кристаллизаторе (2) и обращенным к обжимному стану (4) черновой прокатки концом (14) направляющего устройства (6), составляет 12-15,5 м. Скорость vc литья составляет 3,8-7 м/мин. Прокатку сляба (3) до промежуточной полосы (3′) в обжимном стане (4) черновой прокатки выполняют не дольше 80 с, в по меньшей мере четырех проходах прокатки, с использованием по меньшей мере четырех клетей (41, 42, 43, 44) черновой прокатки. Обеспечивается повышение качества полосы при повышении производственной мощности и эффективном использовании энергии установок разливки и прокатки. 2 н. и 32 з.п. ф-лы, 7 ил.
Реферат
Область техники, к которой относится изобретение
Изобретение относится к способу непрерывного или полунепрерывного изготовления горячекатаной стальной полосы, которая, исходя из выводимого через слябовое направляющее устройство сляба, подвергается прокатке в обжимном прокатном стане до промежуточной полосы, и затем последовательно в стане чистовой прокатки до готового полосового проката, согласно Пункту 1 патентной формулы, а также к соответствующей этому установке для исполнения этого способа согласно Пункту 19 патентной формулы.
О непрерывном изготовлении, или «бесконечной прокатке», говорят, когда литейная установка связана с прокатной установкой таким образом, что отлитый в кристаллизаторе сляб непосредственно - без отделения готовой отлитой части сляба и без промежуточного хранения - направляется в прокатную установку и там подвергается прокатке до желательной в каждом случае конечной толщины. Таким образом, уже начало сляба может быть прокатано до стальной полосы с готовой конечной толщиной, в то время как литейная установка продолжает отливать такой же сляб, то есть, вообще без того, чтобы существовал конец сляба. Также говорят о непосредственно связанной работе, или бесконечной работе литейной и прокатной установок.
При полунепрерывном изготовлении, или, соответственно, «полубесконечной прокатке», отлитый сляб после литья отделяют, и отделенные слябы или, соответственно, плоские заготовки, без промежуточного хранения и охлаждения до температуры окружающей среды направляют в прокатную установку.
Выходящий из кристаллизатора литейной установки сляб сначала проходит через следующее непосредственно после кристаллизатора слябовое направляющее устройство. Слябовое направляющее устройство, называемое также «слябовым направляющим корсетом», включает многочисленные (обычно от трех до шести) направляющие сегменты, причем каждый направляющий сегмент имеет одну или несколько (обычно от трех до десяти) пар направляющих элементов, преимущественно выполненных в виде опорных роликов для сляба. Опорные ролики могут вращаться вокруг оси, проходящей перпендикулярно направлению транспортирования сляба.
Вместо опорных роликов для сляба могут быть использованы отдельные направляющие элементы, выполненные также в виде неподвижных деталей, например, в форме полозьев.
Независимо от конкретного варианта исполнения направляющих элементов, они размещены по обе стороны сляба относительно поверхностей по его ширине таким образом, что сляб пропускается через верхние и нижние серии направляющих элементов и подается в обжимной стан черновой прокатки.
Точнее говоря, сляб поддерживается не только слябовым направляющим устройством, но также уже нижним торцевым участком кристаллизатора, вследствие чего кристаллизатор также можно было бы рассматривать как часть слябового направляющего устройства.
Затвердевание сляба начинается на верхнем конце (проточного) кристаллизатора у поверхности ванны, на так называемом «мениске», причем кристаллизатор типично имеет длину около 1 м (0,3-1,5 м).
Сляб выходит из кристаллизатора вертикально вниз и изменяет направление на горизонтальное. Поэтому слябовое направляющее устройство имеет дугообразный профиль с углом поворота по существу на 90°.
Сляб, выходящий из слябового направляющего устройства, подвергается черновой прокатке в обжимном прокатном стане (HRM, прокатный стан с высокой степенью обжатия) с сокращением толщины, образованная при этом промежуточная полоса нагревается с помощью нагревательного устройства и окончательно прокатывается в прокатном стане чистовой прокатки. В прокатном стане чистовой прокатки происходит горячая прокатка, то есть, прокатываемая полоса при прокатке имеет температуру выше температуры ее рекристаллизации. Для стали она составляет значение в диапазоне выше примерно 750°С, обычно же горячая прокатка выполняется при температурах до 1200°С.
При горячей прокатке стали металл находится главным образом в аустенитном состоянии, в котором атомы железа размещены в кубической гранецентрированной решетке. О прокатке в аустенитном состоянии говорят тогда, когда температура как начала, так и окончания прокатки находится в аустенитной области данной конкретной стали. Аустенитная область стали зависит от состава стали, но, как правило, составляет выше 800°С.
Решающими параметрами в процессе изготовления горячекатаной стальной полосы из комбинированных установок литья-прокатки являются скорость литья, с которой сляб покидает кристаллизатор (и проходит через слябовое направляющее устройство), а также массовый расход, или, соответственно, объемный расход, который задается как произведение скорости литья на толщину сляба, и обычно выражается единицей [мм×м/мин].
Полученные стальные полосы, помимо всего прочего, впоследствии подвергаются переработке для автомобилей, предметов домашнего обихода и строительства.
Уровень техники
Из прототипа уже известно непрерывное и полунепрерывное изготовление горячекатаных стальных полос. Ввиду сочетания литейной установки и прокатной установки настоятельной технологической необходимостью представляется управление всеми без исключения параметрами установки. Модификации процесса литья и прокатки, в частности, изменением скорости литья в комбинации с толщиной сляба, а также специфических для материала и регулируемых охлаждением коэффициентов затвердевания, оказывают значительное влияние на качество изготовления и эффективность энергопотребления установки.
Соответствующие данному типу способ и, соответственно, установки известны, например, из патентных документов ЕР 0415987 В1, ЕР 1469954 В1, и DE 10 2007058709 А1 и WO 2007/086088 А1 или RU 2166387 С2.
Значительные успехи в технологии горячей прокатки были достигнуты, в частности, фирмой Acciaieria Arvedi S.p.A., которая разработала основывающийся на ISP-технологии (поточного производства полос) способ бесконечного получения тонких
листовых заготовок под наименованием Arvedi ESP (производство бесконечной полосы).
С помощью этой технологии может быть без проблем намотки изготовлена стальная полоса с толщиной менее 0,8 мм, причем по всей ширине и длине стальной полосы могут быть обеспечены единообразные и воспроизводимые механические свойства.
В этом ESP-способе процессы литья и прокатки объединены друг с другом особенно благоприятным путем так, что последующая холодная прокатка для многих горячекатаных стальных листовых изделий уже больше не требуется. В случае таких горячекатаных стальных листовых изделий, для которых все же необходима последующая холодная прокатка, может быть сокращено число прокатных клетей сравнительно с традиционными прокатными станами.
Например, ESP-установка для изготовления горячекатаной полосовой стали, обнародованная на Конференции по прокатке и обработке 2008 года (сентябрь) и смонтированная в фирме Arvedi, Кремона, Италия, включает последующий после установки для литья сляба обжимной стан черновой прокатки с тремя прокатными клетями черновой прокатки, два устройства для разделения полос, индукционную печь для промежуточного нагрева подвергнутой черновой прокатке промежуточной полосы, с последующим прокатным станом чистовой прокатки с пятью прокатными клетями чистовой прокатки. Выходящая из обжимного стана черновой прокатки готовая полоса охлаждается на участке охлаждения и с помощью трех подпольных моталок наматывается в рулоны ленты с весом до 32 тонн. Перед подпольными моталками расположено разделительное устройство в форме быстродействующих ножниц. В зависимости от сортов стали и толщин прокатанной стальной полосы, производственная мощность этой одностренговой производственной линии составляет около 2 миллионов тонн в год. Эта установка приблизительно описана также в следующих публикациях: авторов Hohenbichler и др., «Arvedi ESP - technology and plant design» («Arvedi ESP - технология и конструкция установки»), Millenium Steel 2010, 1 марта 2010 года, страницы 82-88, Лондон, и авторов Siegl и др., «Arvedi ESP - First Tin Slab Endless Casting and Rolling Results» («Технология Arvedi ESP - первые результаты непрерывного литья и прокатки тонкого сляба»), 5th European Rolling Conference («5-ая Европейская конференция по прокатке»), Лондон, 23 июня 2009 года.
Установка подобного рода позволяет в режиме непрерывного производства изготавливать горячекатаные полосы с конечной толщиной между 0,8 и 4 мм. В режиме полунепрерывной работы могут быть изготовлены рулоны стальной полосы с конечными толщинами полосы между 4 и 12 мм, однако, согласно расчетам авторов настоящего изобретения, для малоуглеродистых сталей в режиме непрерывного производства требуется минимальная в расчете на ширину пропускная способность около 450 мм×м/мин, чтобы в прокатном стане чистовой прокатки могли быть задействованы все пять прокатных клетей чистовой прокатки.
Ниже этой минимальной пропускной способности могут быть использованы только четыре прокатных клети чистовой прокатки, причем для сортов стали, которые вследствие специфических требуемых свойств материала должны отливаться медленнее, едва ли достигается объемный расход на уровне 400 мм×м/мин. При необходимом по производственно-технологическим соображениям более сильном охлаждении горячекатаной стальной полосы (промежуточной полосы), даже при величинах объемного расхода в диапазоне 400-450 мм×м/мин, становится сомнительным применение четырех прокатных клетей чистовой прокатки, и, соответственно, показано использование только трех прокатных клетей чистовой прокатки.
Недостатком оказалась, в частности, слишком большая длина слябового опорного участка, составляющая 17 м, которая, более точно, соответствует называемому «металлургической длиной» расстоянию между зоной разливки из кристаллизатора, точнее говоря, между называемой «мениском» поверхностью ванны жидкой стали и обращенным к обжимному стану черновой прокатки концом слябового направляющего устройства.
Как уже было описано вначале, слябовое направляющее устройство между направляющими элементами и, соответственно, слябовыми опорными роликами, образует частично изогнутый приемный ручей для подхватывания свежеотлитого (еще содержащего жидкую сердцевину) сляба.
Таким образом, в данной ситуации под концом слябового направляющего устройства понимают предусмотренную для контакта со слябом активно направляющую поверхность или, соответственно, образующую последнего направляющего элемента, обращенного к обжимному стану черновой прокатки, или, соответственно, последнего опорного ролика верхней серии направляющих элементов.
Длина слябового опорного участка в 17 м приводит к тому, что сердцевина поперечника сляба еще до выхода сляба, а именно уже за несколько метров до конца слябового направляющего устройства, полностью затвердевает. Известное из ISP-способа технологическое в плане переработки преимущество горячей сердцевины стальной полосы тем самым не достигается или же проявляется лишь в недостаточной мере. Прокатка полностью затвердевшего насквозь и, соответственно, более холодного отлитого сляба требует гораздо большего расхода энергии, чем прокатка отлитого сляба с очень горячей сердцевиной поперечника.
По мере удаления от мениска сляб или, соответственно, находящаяся в своей исходной форме стальная полоса, транспортируемая в слябовом направляющем устройстве, все более и более охлаждается. Та внутренняя область сляба, которая еще является жидкой или, соответственно, имеет тестообразную полужидкую консистенцию, в дальнейшем будет обозначаться как жидкостный зумпф. Наиболее удаленная от кристаллизатора «вершина зумпфа» жидкостного зумпфа определяется как та расположенная в центре поперечного сечения область сляба, в которой температура еще в значительной степени соответствует как раз температуре солидуса стали, и затем падает ниже этого значения. Поэтому температура вершины зумпфа соответствует температуре солидуса данного сорта стали (как правило, между 1300°С и 1535°С).
Для величин объемного расхода ниже 380-400 мм×м/мин до сих пор в ISP- или ESP-способе имело место только изготовление в периодическом режиме («прерывная работа»).
Известные из прототипа способы CSP (компактное производство полосы) работают при толщинах сляба 45-65 мм, также с величинами объемного расхода ниже, чем около 400 мм×м/мин, при использовании печи с роликовым подом с длиной 250 м и более, причем происходит исключительно изготовление в периодическом режиме («прерывная работа») или полунепрерывное изготовление. При последнем выполняется бесконечная прокатка 3-6 разделенных (больше не связанных с литейной установкой и, соответственно, кристаллизатором) слябов или, соответственно, плоских заготовок.
В патентном документе ЕР 0 889 762 В1 для бесконечных литья и прокатки горячекатаной полосы предложена величина объемного расхода >0,487 мм2/мин (в пересчете на упомянутую вначале общеупотребительную единицу: >487 мм×м/мин). Однако литье при столь высоком объемном расходе со сравнительно малой толщиной сляба для многих сортов стали оказывается слишком быстрым, чтобы оно могло обеспечить достаточное качество готовой продукции.
Сущность изобретения
В условиях все ужесточающихся требований к рентабельности и производству становится актуальной дальнейшая оптимизация изготовления горячекатаной стальной полосы.
В частности, должна быть заметно повышена эффективность использования энергии установок обсуждаемого типа для изготовления горячекатаной стальной полосы, и тем самым обеспечена возможность более экономичного производства.
Чтобы оптимально использовать теплоту этапа литья во время процесса производства горячекатаной полосовой стали, должно быть обеспечено то, чтобы вершина зумпфа, то есть именно еще тестообразная полужидкая сердцевина поперечника сляба, транспортируемого в слябовом направляющем устройстве, постоянно находилась как можно ближе к концу слябового направляющего устройства, и тем самым по возможности близко ко входу в обжимной стан черновой прокатки.
Поэтому в основу изобретения положена задача найти для многочисленных сортов стали, параметров охлаждения и толщин слябов такие параметры литья и характеристики установки, при которых вершина зумпфа в слябе могла бы удерживаться в отдалении от кристаллизатора, то есть, по возможности близко к концу слябового направляющего устройства.
При такой постановке задачи необходимо принимать во внимание, что в зависимости от специфического для материала коэффициента затвердевания и предусмотренной в каждом случае толщины сляба, скорость литья и, соответственно, величина пропускаемого через слябовое направляющее устройство объемного расхода также не могут быть слишком высокими, поскольку в таком случае могло бы происходить смещение вершины зумпфа наружу за пределы слябового направляющего устройства, и тем самым вспучивание и растрескивание сляба.
Эта задача решена с помощью способа с признаками согласно Пункту 1 патентной формулы, и установки с признаками согласно Пункту 19 патентной формулы.
Способ непрерывного или полунепрерывного изготовления горячекатаной стальной полосы, которая, исходя из выводимого через слябовое направляющее устройство сляба, подвергается прокатке в обжимном стане черновой прокатки до промежуточной полосы, и затем последовательно в прокатном стане чистовой прокатки до готового полосового проката, соответственно изобретению включает следующие технологические этапы:
- литье сляба в кристаллизаторе литейной установки, причем выходящий из кристаллизатора и поступающий в слябовое направляющее устройство сляб имеет толщину сляба между 95 и 110 мм, предпочтительно толщину сляба между 102 и 108 мм, и причем сляб в режиме обжатия с жидкой сердцевиной (LCR) посредством последующего слябового направляющего устройства при жидкой сердцевине поперечника сляба обжимается до толщины сляба между 60 и 95 мм, предпочтительно до толщины сляба между 70 и 85 мм,
- причем длина слябового опорного участка, измеренная между мениском, то есть, поверхностью ванны литейной установки, и обращенным к обжимному стану черновой прокатки концом слябового направляющего устройства, составляет между 13 м и 15,5 м, предпочтительно в диапазоне между 13 и 15 м, в особенности предпочтительно между 14,2 и 15 м,
- и причем скорость литья сляба (которая по существу также соответствует скорости перемещения сляба через слябовое направляющее устройство) варьирует в диапазоне 3,8-7 м/мин.
При сочетании этих параметров литья обеспечивается то, что вершина зумпфа в слябе, независимо от данных в каждом случае обусловленных качеством материала максимальных скоростей литья, всегда доходит до места вблизи конца слябового направляющего устройства.
Этим путем гарантируется, что сляб во время сокращения его толщины, по меньшей мере в первом расположенном после слябового направляющего устройства прокатном стане, имеет достаточно горячую сердцевину поперечника, чтобы быть прокатанным с относительно малым расходом энергии и при обеспечении высокого качества изготовления.
Тем самым значительно сокращается расход энергии при прокатке горячекатаной стальной полосы, и повышается эффективность установок обсуждаемого типа.
Чтобы дополнительно оптимизировать соответствующий изобретению способ, с помощью расчетов и экспериментальных установок были определены специальные технологические параметры, которые обеспечивали возможность значительного прогресса в отношении качества изготовления и эффективности энергопотребления при изготовлении горячекатаной стальной полосы.
Согласно одному предпочтительному варианту осуществления изобретения, предусмотрено, что в обжимном стане черновой прокатки выполняется черновая прокатка сляба до промежуточной полосы по меньшей мере в четырех проходах прокатки, то есть, с использованием четырех клетей черновой прокатки, предпочтительно в пяти проходах прокатки, то есть, с использованием пяти клетей черновой прокатки. В то время как в способах согласно прототипу черновая прокатка сляба выполняется главным образом в трех проходах прокатки, проведением согласно изобретению четырех или пяти проходов прокатки может быть дополнительно повышена эффективность энергопотребления в способе литья/прокатки. Поскольку четыре или пять проходов прокатки проводятся в возможно более быстрой последовательности, оптимально используется еще присутствующая в слябе теплота этапа литья. Кроме того, при выполнении четырех или пяти проходов прокатки, почти независимо от исходной толщины отлитого сляба, достигается очень узкий диапазон толщин промежуточной полосы (между 3 и 15 мм, предпочтительно между 4 и 10 мм), так что последующее после обжимного стана черновой прокатки нагревательное устройство, например, индукционная печь с нагревом в поперечном магнитном поле, может быть точно рассчитано на конкретный диапазон толщин промежуточной полосы. Тем самым можно избежать потерь энергии вследствие слишком крупных габаритов приемного участка нагревательного устройства.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что выполняемые в обжимном стане черновой прокатки четыре или пять проходов прокатки производятся в течение не дольше 80 секунд, предпочтительно в течение не дольше 50 секунд.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что первый проход прокатки в обжимном стане черновой прокатки выполняется в пределах времени не дольше 5,7 минут, предпочтительно в пределах не дольше 5,3 минут от начала затвердевания находящегося в литейной установке жидкого сляба. В идеальном случае, первый проход прокатки в обжимном стане черновой прокатки выполняется в пределах времени не дольше 4,8 минут, что также соответствует скоростям литья в диапазоне 4 м/мин.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что между концом слябового направляющего устройства и входным участком обжимного стана черновой прокатки допускается охлаждение сляба, обусловленное исключительно воздействием условий окружающей среды в форме естественной конвекции и излучения, то есть, не производится никакое искусственное охлаждение сляба с помощью охлаждающего устройства.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что в обжимном стане черновой прокатки за каждый проход прокатки производится сокращение толщины сляба на 35-60%, предпочтительно на 40-55%. Таким образом, если предусматриваются именно четыре прокатных клети, то получается, что из обжимного стана 4 черновой прокатки выходит промежуточная полоса с толщиной от около 3 до 15 мм, предпочтительно с толщиной от 4 до 10 мм. По сравнению с этим промежуточная полоса в описанной вначале ESP-установке согласно прототипу прокатывается до толщины между 10 и 20 мм.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что скорость потери температуры выходящей из обжимного стана черновой прокатки промежуточной полосы составляет менее максимальной величины 3 К/м, предпочтительно ниже максимальной величины 2,5 К/м. Была бы представимой также реализация скорости потери температуры <2 К/м.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что нагрев выходящей из обжимного стана черновой прокатки промежуточной полосы выполняется с помощью индукционного нагревательного устройства, предпочтительно способом нагрева в поперечном магнитном поле, начиная от температуры выше 725°С, предпочтительно выше 850°С, до температуры по меньшей мере 1100°С, предпочтительно до температуры выше 1180°С.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что нагрев промежуточной полосы выполняется в пределах периода времени от 4 до 30 секунд, предпочтительно в пределах промежутка времени от 5 до 15 секунд.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что при выполнении именно четырех проходов прокатки в обжимном стане черновой прокатки предусматривается, что промежуток времени между первым проходом прокатки и поступлением в нагревательное устройство при толщинах промежуточной полосы 5-10 мм составляет не дольше 110 секунд, предпочтительно не дольше 70 секунд.
При соблюдении этих параметров получается очень компактная установка, в которой расстояние от нагревательного устройства до литейной установки и, соответственно, до обжимного стана черновой прокатки поддерживается очень малым, что позволяет достигнуть благоприятного термического коэффициента полезного действия.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что чистовая прокатка нагретой промежуточной полосы в прокатном стане чистовой прокатки выполняется за четыре прохода прокатки, то есть, с использованием четырех прокатных клетей чистовой прокатки, или в пяти проходах прокатки, то есть, с использованием пяти прокатных клетей чистовой прокатки, для получения готового полосового проката с толщиной <1,5 мм, предпочтительно <1,2 мм. С помощью соответствующего изобретению способа возможна также прокатка до конечных толщин <1 мм.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, предусмотрено, что проводимые внутри прокатного стана чистовой прокатки с помощью пяти или четырех прокатных клетей чистовой прокатки проходы прокатки выполняются в пределах промежутка времени максимально 12 секунд, предпочтительно в пределах промежутка времени максимально 8 секунд.
Согласно одному дополнительному предпочтительному варианту осуществления изобретения, направляющие элементы слябового направляющего устройства, предварительно предназначенные для сокращения толщины сляба в режиме обжатия с жидкой сердцевиной (LCR) при контактировании сляба с ними, могут (поперечно) регулироваться относительно продольной оси сляба, причем регулирование направляющих элементов предпринимается в зависимости от материала сляба и/или скорости литья, чтобы сократить толщину сляба на величину до 30 мм.
Согласно одному усовершенствованию изобретения, при этом предусматривается, что толщина сляба однократно устанавливается квазистатической, то есть, сразу после начала литья или, соответственно, разливки ленточной отливки, как только называемый «головкой сляба» горячий передний участок сляба проходит через предусмотренные для сокращения толщины направляющие элементы.
Но в одном особенно предпочтительном варианте исполнения может быть также предусмотрено, что толщина сляба регулируется динамически, то есть, может произвольно варьироваться во время процесса литья или, соответственно, во время прохода сляба через слябовое направляющее устройство. Тогда динамическая регулировка предпочтительно выполняется технологическим персоналом в зависимости от сорта стали и фактической скорости литья, в такой мере, насколько она изменяется только от случая к случаю. Сокращение толщины в режиме LCR составляет между 0 и 30 мм, предпочтительно между 3 и 20 мм.
В одном предпочтительном варианте исполнения динамического применения LCR эта функция может быть передана также автоматизированному устройству, в частности, тогда, когда были бы обычными или необходимыми очень частые изменения толщины или скорости.
Связь регулирования толщины сляба в согласовании со скоростью литья выводится с помощью предлагаемых согласно изобретению факторов К скорости, выбор которых производится в зависимости от длины слябового опорного участка и сорта слябовой стали.
Для фактора К скорости в каждом случае задаются диапазоны граничных значений, в пределах которых эксплуатация с позиции технологии литья может быть проведена эффективно и целесообразно.
На положение вершины зумпфа внутри сляба большое влияние оказывает характеристика охлаждения данных сортов стали. Быстро затвердевающие сорта стали позволяют эксплуатировать установку с относительно высокими скоростями vc литья, тогда как для медленнее затвердевающих сортов стали должны выбираться меньшие скорости vc литья, чтобы предотвратить вспучивание и растрескивание сляба в области вершины зумпфа. В связи с быстротой охлаждения сляба говорят о «жестком охлаждении» (быстрое затвердевание), «среднежестком охлаждении» и «мягком охлаждении» (более медленное затвердевание).
Для охлаждения сляба на него в области слябового направляющего устройства (между торцом кристаллизатора и обращенным к обжимному стану черновой прокатки концом слябового направляющего устройства) наносится охлаждающее средство, предпочтительно вода. Нанесение охлаждающего средства на сляб выполняется с помощью распылительного устройства, которое может включать любое число распылительных форсунок.
Для жесткого охлаждения расходуются от 3 до 4 литров охлаждающего средства на кг слябовой стали, тогда как для среднежесткого охлаждения потребляются от 2 до 3,5 литров охлаждающего средства на кг слябовой стали, и для мягкого охлаждения расходуются <2,2 литров охлаждающего средства на кг слябовой стали. Указанные количества охлаждающего средства для жесткого, среднежесткого и мягкого охлаждения перекрываются, поскольку практическое исполнение жесткого, среднежесткого или мягкого охлаждения зависит не только от количества охлаждающего средства, но также от конструктивного исполнения распылительного устройства, в частности, типа конструкции форсунок (существуют форсунки для чистой воды и воздушно-водяные форсунки, так называемые «двухфазные форсунки»). Дополнительными факторами влияния на быстроту охлаждения сляба являются конструкция направляющих элементов и, соответственно, слябовых опорных роликов слябового направляющего устройства (слябовых опорных роликов с внутренним или поверхностным охлаждением), расположение опорных роликов, в частности, отношение диаметра опорных роликов к расстоянию между соседними опорными роликами, характер распыления форсунками, а также температура охлаждающего средства или, соответственно, воды.
В пределах предлагаемых согласно изобретению диапазонов граничных значений выбор конкретного фактора К скорости производится, в частности, в зависимости от сорта стали и, соответственно, характеристики охлаждения сляба. Для быстро охлаждаемых сортов стали может быть привлечен фактор К скорости, находящийся в верхней области предлагаемого согласно изобретению диапазона граничных значений, тогда как для медленнее охлаждаемых сортов стали привлекается находящийся в срединной или нижней области предлагаемого согласно изобретению диапазона граничных значений фактор К скорости.
Таким образом, согласно технологической оптимизации предусматривается, что для слябовых сталей, подвергаемых жесткому охлаждению с помощью распылительного устройства в области слябового направляющего устройства, то есть, при нанесении от 3 до 4 литров охлаждающего средства на кг слябовой стали, при стационарно-непрерывной работе установки взаимосвязь измеряемой в [мм] толщины d сляба с измеряемой в [м/мин] скоростью vc литья соблюдается согласно формуле vc=K/d2, причем входящий в формулу фактор К скорости при длине слябового опорного участка L=13 м находится в диапазоне граничных значений от 30000 до 35200, предпочтительно в диапазоне граничных значений от 32500 до 35200, тогда как фактор К скорости при длине слябового опорного участка L=16,5 м находится в диапазоне граничных значений от 38000 до 44650, предпочтительно в диапазоне граничных значений от 41000 до 44650, причем для определения (целевых) скоростей vc литья или (целевых) толщин d сляба для установок с длинами L слябового опорного участка, лежащими между длинами слябового опорного участка L=13 м и L=16,5 м, может быть выполнена интерполяция между вышеуказанными диапазонами граничных значений.
Под стационарно-непрерывной работой установки в данной связи следует понимать производственные фазы с продолжительностью >10 минут, в течение которых скорость литья является по существу постоянной. Определение стационарно-непрерывной работы установки служит, с одной стороны, только для разграничения между фазой литья, во время которой жидкая сталь сначала проходит через слябовое направляющее устройство, и во время которой скорость литья является основополагающим параметром, или, соответственно, с другой стороны, также периодически возможными ускоренными фазами для повышения пропускной способности и/или технологически необходимыми замедленными фазами (когда нужно дождаться доставки жидкой стали, или из-за качества сляба, отсутствия охлаждающей воды, …).
Для охлаждаемых в среднежестком режиме слябовых сталей, то есть, при нанесении от 2 до 3,5 литров охлаждающего средства на кг слябовой стали, при стационарно-непрерывной работе установки соблюдается взаимосвязь измеряемой в [мм] толщины d сляба с измеряемой в [м/мин] скоростью vc литья согласно формуле vc=K/d2, причем входящий в формулу фактор (К) скорости при длине L слябового опорного участка 13 м находится в диапазоне граничных значений от 28700 до 33800, предпочтительно в диапазоне граничных значений от 31250 до 33800, тогда как фактор К скорости при длине слябового опорного участка L=16,5 м находится в диапазоне граничных значений от 36450 до 42950, предпочтительно в диапазоне граничных значений от 39700 до 42950, причем для определения (целевых) скоростей vc литья или (целевых) толщин d сляба для установок с длинами L слябового опорного участка, лежащими между длинами слябового опорного участка L=13 м и L=16,5 м, может производиться интерполяция между вышеуказанными диапазонами граничных значений.
Для охлаждаемых в мягком режиме слябовых сталей, то есть, при нанесении менее 2,2 литров (предпочтительно между 1,0 и 2,2 литрами) охлаждающего средства на кг слябовой стали, при стационарно-непрерывной работе установки соблюдается взаимосвязь измеряемой в [мм] толщины d сляба с измеряемой в [м/мин] скоростью vc литья согласно формуле vc=K/d2, причем входящий в формулу фактор К скорости при длине L слябового опорного участка 13 м находится в диапазоне граничных значений от 26350 до 32359, предпочтительно в диапазоне граничных значений от 29350 до 32359, тогда как фактор К скорости при длине слябового опорного участка L=16,5 м находится в диапазоне граничных значений от 34850 до 41200, предпочтительно в диапазоне граничных значений от 38000 до 41200, причем для определения (целевых) скоростей vc литья или (целевых) толщин d сляба для установок с длинами L слябового опорного участка, лежащими между длинами слябового опорного участка L=13 м и L=16,5 м, может быть выполнена интерполяция между вышеуказанными диапазонами граничных значений.
Подробный/конкретизированный выбор фактора скорости, наряду с длиной слябового опорного участка, зависит, в частности, от содержания углерода в разливаемых сталях, характеристик их затвердевания и превращения, их прочностных свойств и пластичности, и т.д.
Ведение процесса работы в соответствии с предлагаемыми согласно изобретению факторами К скорости обеспечивает возможность оптимального использования содержащейся в слябе теплоты этапа литья для последующего процесса прокатки, а также оптимизации пропускной способности материала и тем самым благоприятной производительности (при технологически обусловленном снижении скорости литья может быть увеличена толщина сляба и тем самым повышена пропускная способность материала).
Пункт 19 патентной формулы направлен на установку для исполнения соответствующего изобретению способа непрерывного или полунепрерывного изготовления горячекатаной стальной полосы, включающую литейную установку с кристаллизатором, размещенное после нее слябовое направляющее устройство, следующий за ним обжимной стан черновой прокатки, размещенное за ним индукционное нагревательное устройство, и размещенный после него прокатный стан чистовой прокатки, причем слябовое направляющее устройство имеет нижнюю серию направляющих элементов и параллельно или с сужением относительно нее размещенную верхнюю серию направляющих элементов, и между обеими сериями направляющих элементов сформирован приемный ручей, предназначенный для подхватывания выходящего из литейной установки сляба, который в результате создания различных расстояний между противолежащими направляющими элементами относительно друг друга сужается, по меньшей мере отдельными участками, по направлению транспортирования сляба, и тем самым может сокращаться толщина сляба. Согласно изобретению предусмотрено, что просвет по ширине захвата приемного ручья на его обращенном к кристаллизатору входном участке составляет между 95 и 110 мм, предпочтительно между 102 и 108 мм, что приемный ручей на своем обращенном к обжимному стану черновой прокатки конце имеет соответствующий толщине сляба просвет по ширине захвата между 60 и 95 мм, предпочтительно между 70 и 85 мм, причем измеренная между поверхностью ванны в литейной установке и обращенным к обжимному стану черновой прокатки концом приемного ручья слябового направляющего устройства длина слябового опорного участка составляет между 12 м и 15,5 м, преимущественно в диапазоне между 13 и 15 м, предпочтительно между 14,2 м и 15 м, и причем предусмотрено управляющее устройство, с помощью которого скорость литья сляба может поддерживаться в диапазоне между 3,8-7 м/мин.
Согласно одному предпочтительному варианту исполнения соответствующей изобретению установки предусмотрено, что обжимной стан черновой прокатки включает четыре или пять прокатных клетей черновой прокатки.
Согласно одному дополнительному предпочтительному варианту исполнения соответствующей изобретению установки предусмотрено, что между концом приемного ручья и, соответственно, слябового направляющего устройства, и входным участком обжимного стана черновой прокатки не пр