Способ получения композиционного электродного материала

Изобретение относится к области электрохимической энергетики, а именно к способу получения высокоемкостного композиционного материала на основе активированного углеродного волокнистого материала и гидроксида никеля, используемого в химических источниках тока, в частности в суперконденсаторах и аккумуляторах. Активированный углеродный материал подвергают анодной поляризации в электрохимической установке с разделением анодной и катодной камерами при габаритной плотности анодного тока 10-150 A/м2 и протоке через анодную камеру раствора, содержащего коллоидные частицы гидроксида никеля с концентрацией 0,005-0,01 M до образования осадка гидроксида никеля, массовая доля которого в композите составляет 22-35%. Повышение удельной емкости электродного материала является техническим результатом изобретения, при этом значение удельной емкости может составлять 370-400 Ф/г, измеренной при скорости развертки потенциала 2 мВ/с. 4 пр.

Реферат

Изобретение относится к области электрохимической энергетики, а именно способам получения композиционных материалов на основе углеродных волокнистых металлов и гидроксидов переходных металлов электрохимическим методом. Получаемый заявляемым способом материал может быть использован в качестве высокоемкого электродного материала в химических источниках тока, в частности в суперконденсаторах и аккумуляторах.

Известен способ электрохимического получения композиционного материала NiO/C, используемого в химических источниках тока, содержащего 1-99% NiO, основанный на получении частиц NiO в результате электрохимического окисления и разрушения никелевых электродов в растворах гидроксидов щелочных металлов под действием асимметричного переменного тока частотой 50 Гц при различном соотношении плотностей токов анодного и катодного полупериодов, с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель при перемешивании раствора температурой 60-90°C, последующем фильтровании полученной суспензии композита, промывки и высушивании. Используются плотности тока 1250-5000 A/м2, концентрации растворов 0,1-17 M (1. Пат. РФ №2501127, МПК H01M 4/52, B82B 3/00, опубл. 10.12.2013 г.).

Недостатком известного способа являются большие энергозатраты, связанные с использованием переменного тока частотой 50 Гц высокой плотности, необходимостью поддержания высокой температуры раствора при фильтровании полученной суспензии, а также недостаточно высокая удельная емкость получаемого композиционного материала.

Известен способ приготовления композиционного материала (2. Шевелева И.В., Земскова Л.А., Войт А.В. и др. Формирование и электрохимические свойства композитов оксид никеля/углеродное волокно, полученное в присутствии поверхностно-активных веществ // Электрохимия. 2011. Т. 47. №11. С. 1304-1310.) электроосаждением гидроксида никеля на углеродный волокнистый электрод в потенциостатическом режиме при -0.7. B относительно Ag/AgCl-электрода в присутствии различных ПАВ с последующим прогревом материала при 300°C в течение 1 часа. Осаждение Ni(OH)2 происходит за счет локального увеличения pH при генерировании OH-ионов в приэлектродном слое катода.

Недостатком данного способа является использование дополнительных компонентов раствора в виде ПАВ. Получаемые композиты до прогрева при 300°C в течение 1 часа имели значение удельной емкости ниже (40,6-48,7 Ф/г в зависимости от вида ПАВ), чем у исходного углеродного волокнистого материала (72.5 Ф/г). После прогрева значение удельной емкости возрастает, но в итоге удельная емкость не достаточно высока (73.1-95 Ф/г в зависимости от вида ПАВ).

Наиболее близким к предлагаемому способом, выбранным за прототип, является способ получения композиционного электродного материала (3. Uvarov N.F., Mateyshina Yu.G., Ulihin A.S., Yusin S.I., Varentsova V.I., Varentsov V.K. Surface Electrochemical Treatment of Carbon Materials for Supercapacitors // ECS Transactions. 2010. V. 25. №.21. P. 11-16.) электросорбцией MnO(OH)2 на предварительно электрохимически активированный в серной кислоте углеродный волокнистый материал из коллоидного раствора с концентрацией 0,0025 и 0,01 н. и последующей сушкой на воздухе. Получаемый композиционный материал имеет удельную емкость 70-80 Ф/г, содержание MnO(OH)2 в композите 50%.

К недостаткам способа можно отнести то, что получаемый согласно известному способу композиционный материал имеет невысокое значение удельной емкости, сцепление осадка с подложкой не прочное, осадок не полностью покрывает волокна материала, наблюдается осыпание нанесенного электросорбцией соединения.

Задача, решаемая заявляемым техническим решением, заключается в создании нового высокоемкого композиционного электродного материала на основе соединения гидроксида никеля и активированного углеродного материала для химических источников тока, в частности для суперконденсаторов и аккумуляторов.

Поставленная задача решается благодаря тому, что в заявляемом способе получения композиционного материала путем электрофореза коллоидного раствора гидроксида никеля на активированный углеродный волокнистый материал, активированный углеродный материал подвергают анодной поляризации в электрохимической установке с разделением анодной и катодной камерами при габаритной плотности анодного тока 10-150 A/м2 и протоке через анодную камеру раствора, содержащего коллоидные частицы гидроксида никеля с концентрацией 0,005-0,01 M до образования на его поверхности осадка гидроксида никеля, массовая доля которого в композите составляет 22-35%.

Существенными отличительными признаками заявляемого способа являются:

- активированный углеродный материал подвергают анодной поляризации в электрохимической установке с ионообменной мембраной;

- анодную поляризацию проводят при габаритной плотности тока 10-50 A/м2;

- используют коллоидный раствор гидроксида никеля с концентрацией 0,005-0,01 M;

- анодную поляризацию проводят до образования осадка гидроксида никеля, массовая доля которого в композите составляет 22-35%.

Поставленная задача решается благодаря совокупности существенных отличительных признаков, не известных из существующего уровня техники.

Использование электрохимической установки с ионообменной мембраной позволяет разделить процессы, протекающие на катоде и аноде. В этом случае, коллоидный раствор проходит только через анодную камеру, заряд мицеллы остается положительным, металл не меняет степень окисления и соединение металла остается в том виде, в котором оно было синтезировано. Разделение камер с помощью ионообменной мембраны позволяет поддерживать pH при электроде на постоянном уровне, так как известно, что изменение pH может оказывать влияние на процессы осаждения.

При проведении анодной поляризации при габаритной плотности анодного тока ниже 10 A/м2 необходимый результат не достигается, так как нет достаточного заряжения поверхности электрода, в следствии этого, соединение металла оседает на поверхности нитей только за счет сорбции при протоке коллоидных частиц через поры волокнистого материал. В случае проведения процесса при плотности анодного тока более 150 A/м2, это также не приводит к повышению необходимых показателей композиционного материала, так как при этих условиях повышается скорость электролиза раствора, происходит окисление гидроксида никеля, приводящее к его разрушению и невозможности осаждения на волокне в виде гидроксида.

Использование коллоидного раствора гидроксида никеля с концентрацией 0,005-0,01 M обусловлено методикой синтеза композиционного материала. При концентрации раствора меньше 0,005 M в получаемом композиционном материале содержание гидроксида никеля незначительное, так как низкое содержание его в растворе, что и снижает величину удельной емкости композита. При концентрации раствора более 0,01 M коллоидные частицы коагулируют, что приводит к значительному увеличению их диаметра. Крупные частицы, содержащиеся в растворе, быстро заполняют поры углеродного волокнистого материала, что проводит к забивке части электрода, прекращению протока раствора и всего хода электрофореза.

Электрофорез проводят до образования осадка гидроксида никеля, массовая доля которого в композиционном материале составляет 22-35%, так как повышение этого значения приводит к растрескиванию и отслоению осадка, который может вымываться при протоке коллоидного раствора при промывке, а также крупные частицы осадка осыпаются при сушке композиционного материала.

Предлагаемая методика и условия нанесения гидроксида никеля на углеродный волокнистый материал позволяют получать прочно связанный с волокном осадок соединения металла, осадок не осыпается, и его доля в композиционном материале составляет 22-35%.

Примеры конкретного выполнения заявляемого способа

Пример 1

В качестве материала, который служил основой заявляемого композиционного материала и на который наносился гидроксид никеля, был выбран активированный углеродный волокнистый материал марки «УВИС-АК-В-240». Этот материал производства ООО «НПЦ «УВИКОМ» (г. Мытищи) имел следующие исходные свойства (по данным производителя): удельная электропроводность - 0,02-0,03 См/см; удельная реакционная поверхность, отнесенная к массе образца - до 2000 м2/г; массовая доля золы - 2,3%; адсорбционная активность по индикатору метиловому голубому - 183 мг/г; поверхностная плотность - 255 г/м2, пористость - 0,3-0,8 см3/г.

Коллоидный раствор, содержащий частицы Ni(OH)2, готовился непосредственно перед электрофорезом. Для этого к 100 мл раствора MiSO4 с концентрацией 0,01 M при перемешивании добавлялся по каплям 1 M раствор КОН до полного изменения окраски растворов. При этом протекала следующая реакция: NiSO4(изб)+2КОН=Ni(OH)2+K2SO4. По этой методике синтезируется положительно заряженная мицелла Ni(OH)2. В растворе содержались только вещества, синтезирующиеся в данной реакции. Концентрация Ni(OH)2 в полученном коллоидном растворе соответствовала концентрации прекурсора и составляла 0,01 М.

Электрофорез проводился в электрохимической ячейке, изготовленной из оргстекла, с катионообменной мембраной, разделяющей катодную и анодную области. Материал марки «УВИС-АК-В-240», который был основным электродом, вырезался в виде цилиндра диаметром 1 см и толщиной 0,1 см и помещался в специальный вкладыш из оргстекла в анодную область. Вкладыш ограничен с одной стороны ПВХ сеткой, а с другой - перфорированным титановым токоподводом. Титановый токоподвод зажимался титановыми стержнями, выходящими из корпуса электрохимической ячейки.

В катодной области помещен второй электрод, которым служила платиновая проволока, один конец которой выведен из корпуса ячейки и служил токоподводом. К титановым стержням и платиновой проволоке подавался ток, с плотностью анодного тока 150 A/м2. Коллоидный раствор, объемом 0,1 л, прямотоком пропускался через основной электрод из материала «УВИС-АК-240» со средней скоростью протока 0,01 мл/с. В работе использовалась тыльная подача раствора и тыльный токоподвод, относительно катода. Серная кислота с концентрацией 0,25 М, объемом 250 мл, циркулировала через катодное пространство. После электрофореза материал извлекался из электрохимической ячейки, промывался в дистиллированной воде и высушивался при 150°C до постоянного веса. По этому способу получается композиционный материал, содержащий 30% по массе Ni(OH)2 и имеющий значение удельной емкости 370-380 Ф/г, измеренной при скорости развертки потенциала 2 мВ/с.

Пример 2

Процесс аналогичен приведенному в Примере 1 и отличается тем, что концентрация Ni(OH)2 в коллоидном растворе составляла 0,005 М. Содержание Ni(OH)2 в композиционном материале составило 26-28%, удельная емкость была 350-370 Ф/г при скорости развертки потенциала 2 мВ/с.

Пример 3

Процесс аналогичен приведенному в Примере 1 и отличается тем, что концентрация Ni(OH)2 в коллоидном растворе составляла 0,005 M и габаритная плотность анодного тока 50 A/м2. Содержание Ni(OH)2 в композиционном материале составило 22-27%, удельная емкость была 100-120 Ф/г при скорости развертки потенциала 2 мВ/с.

Пример 4

Процесс аналогичен приведенному в Примере 1 и отличается тем, что концентрация Ni(OH)2 в коллоидном растворе составляла 0,005 M и габаритная плотность анодного тока 10 A/м2. Содержание Ni(OH)2 в композиционном материале составило 30-35%, удельная емкость была 105-120 Ф/г при скорости развертки потенциала 2 мВ/с.

Как видно из примеров, заявляемый способ позволяет получить композиционный электродный материал с повышенной емкостью.

Способ получения композиционного электродного материала путем электрофореза коллоидного раствора гидроксида металла на активированный углеродный волокнистый материал, отличающийся тем, что активированный углеродный материал подвергают анодной поляризации в электрохимической установке с разделением анодной и катодной камерами при габаритной плотности анодного тока 10-150 А/м2 и протоке через анодную камеру раствора, содержащего коллоидные частицы гидроксида никеля с концентрацией 0,005-0,01 М, до образования на его поверхности осадка гидроксида никеля, массовая доля которого в композите составляет 22-35%.