Способ снижения гетерогенности антител и способ получения соответствующих антител

Иллюстрации

Показать все

Настоящее изобретение относится к области биотехнологии, конкретно к рекомбинантному получению антител, и может быть использовано для снижения гетерогенности антител во время культивирования. Получают антитела с пониженной гетерогенностью, вызванной вариациями в относительном содержании лизинового остатка на С-концах, путем добавления в культуральную среду во время культивирования двухвалентных ионов цинка (Zn+2) в концентрации 0,05-1,5 мМ и путем снижения осмотического давления клеточной культуральной среды от 240 до 260 мОсм/кг. Изобретение позволяет получить моноклональные антитела повышенного качества, по сравнению со стандартной процедурой получения, путем снижения доли основных вариантов у антител, у которых наблюдается С-концевая вариация лизина, что снижает гетерогенность в антителах. 2 н. и 13 з.п. ф-лы, 12 ил., 12 табл., 12 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам улучшения получения белков, например крупномасштабного получения коммерческих белков, например получения антител с использованием модифицированного способа культивирования клеток, включающего фазу клеточного роста и фазу продуцирования полипептидов. Модифицированный способ культивирования клеток регулирует качественные характеристики процесса и рабочие параметры для получения полипептидных продуктов, у которых изменилось соотношение заряженных/основных вариантов. Настоящее описание относится к снижению гетерогенности в антителах. Конкретнее, в описании раскрыт способ выращивания клеток в системе для культивирования клеток, которая снижает гетерогенность среди заряженных вариантов путем снижения доли основных вариантов.

Предпосылки создания изобретения и известный уровень техники

Большую долю продуктов биотехнологии, являются ли они коммерчески доступными или разрабатываются, составляют белковые терапевтические средства. Поэтому имеется постоянно возрастающая потребность в получении белков в клеточных культурах, например культурах животных клеток, и в улучшенных способах, относящихся к такому получению. Так, существенная часть исследований фокусируется на условиях культивирования животных клеток и способах, которые могут оптимизировать выход полипептидов, т.е. условиях и способах, в которых поддерживается высокая плотность клеток и высокий белковый титр.

В биофармацевтических моноклональных антителах часто наблюдается С-концевая вариация лизина. Гетерогенность моноклональных антител может быть связана с различными факторами, такими как аминоконцевые модификации (например, для пироглутамата), неполный процессинг С-конца, деамидирование аспарагина, фосфорилирование, гликозилирование, окисление, мутации и т.д. Подобные вариации происходят во многих типах белков и могут влиять на их активность и устойчивость в биотерапевтических средствах. Однородность антител является важной качественной характеристикой антител и считается существенной для безопасности и эффективности лекарственных средств согласно требованиям FDA и других контролирующих органов.

Показано, что моноклональные антитела имеют С-концевую гетерогенность за счет либо аргинина (Arg), либо лизина (lys) с С-конца. Когда такие С-концевые варианты МАb обрабатывают экзопептидазой карбоксипептидазой В, Arg и Lys отщепляются от С-конца обеих субъединиц антитела, что элиминирует С-концевую гетерогенность.

Карбоксипептидазы (CP) представляют собой ферменты, которые катализируют гидролиз С-концевой пептидной связи в пептидах и белках. Удаление одной или нескольких аминокислот из С-конца пептида или белка может оказать сильное влияние на биологическую активность такой молекулы. Гетерогенность MAb обычно имеет место из-за различных модификаций, вводимых в период жизни молекул от момента синтеза до момента полного выведения из организма. Исследование модификаций терапевтического средства является важным, так как существует возможность влияния на активность/безопасность препарата, что в итоге может привести к потере эффективности и повышенному риску возникновения вредного побочного эффекта.

В патенте США №5126250 раскрывается способ снижения гетереогенности антител, секретированных из клеток, продуцирующих антитела.

Сущность изобретения

Соответственно, настоящее изобретение относится к способу снижения гетерогенности антител, полученных путем культивирования клеток, который включает добавление двухвалентных ионов переходных металлов в культуральную среду для продукции антител, или изменение осмотического давления культуральной среды, или их комбинацию для получения указанных антител с пониженной гетерогенностью, и к способу получения антител с пониженной гетерогенностью, причем указанный способ включает этапы (а) культивирования клеток в культуральной среде для продуцирования антител и добавления в культуральную среду двухвалентных ионов переходных металлов, или изменения осмотического давления культуральной среды, или их комбинацию и (b) извлечения из культуральной среды антител с пониженной гетерогенностью.

Краткое описание прилагаемых фигур

Для того чтобы описание было легче понять и перенести описанное здесь на практику, можно обратиться к примерам осуществления, которые проиллюстрированы прилагающимися фигурами. Фигуры вместе с нижерасположенным подробным описанием включены в описание как его часть или служат для дополнительной иллюстрации вариантов изобретения и для пояснения различных принципов и преимуществ настоящего изобретения.

На фигуре 1 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка на момент 264 час, т.е. на 11 день (антитела 1).

На фигуре 2а показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка на момент 168 час, т.е. на 7 день (антитела 1).

На фигуре 2b показано различие в % основных вариантов в присутствии и в отсутствие ионов магния на момент 168 час, т.е. на 7 день (антитела 1).

На фигуре 3 показано различие в % основных вариантов в среде с низким осмотическим давлением (240-260 мОсм/кг (mOsm/kg)) с ионами цинка и продуцирующей средой с осмотическим давлением 320 мОсм/кг на момент 168 час, т.е. на 7 день (антитела 1).

На фигуре 4 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка на момент 168 час, т.е. на 7 день (антитела 2).

На фигуре 5 показано различие в % основных вариантов в среде с низким осмотическим давлением (240-260 мОсм/кг) с ионами цинка и продуцирующей среде с интервалом осмотического давления (310-320 мОсм/кг) (антитела 3).

На фигуре 6 показано различие в % всех основных вариантов с различным начальным осмотическим давлением среды (антитела 1).

На фигуре 7 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка (1 мМ) на момент 168 час, т.е. на 7 день (антитела 1).

На фигуре 8 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка (0,5 мМ) на момент 168 час, т.е. на 7 день (антитела 1).

На фигуре 9 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка на момент 168 час, т.е. на 7 день (антитела 3).

На фигуре 10 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка на момент 168 час, т.е. на 7 день (антитела 4).

На фигуре 11 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка на момент 168 час, т.е. на 7 день (антитела 1).

На фигуре 12 показано различие в % основных вариантов в присутствии и в отсутствие ионов цинка на момент 192 час, т.е. на 8 день (антитела 3).

Примечание: в контрольные образцы ионы цинка не вводят.

Подробное описание раскрытия

Настоящее изобретение относится к способу снижения гетерогенности антител, полученных путем культивирования клеток, который включает добавление ионов металлов в культуральную среду, продуцирующую антитела, или изменение осмотического давления культуральной среды или их комбинацию для получения указанных антител с пониженной гетерогенностью.

В одном воплощении настоящего изобретения гетерогенность имеет место из-за доли заряженных вариантов антител, и при этом снижение гетерогенности осуществляют путем уменьшения доли антител с лизиновым остатком на С-конце.

В другом воплощении настоящего изобретения путем осуществления указанного способа снижается гетерогенность для доли антител, колеблющейся от примерно 75% до примерно 100%.

В еще одном воплощении настоящего изобретения антитела являются антителами, встречающимися в природе, или рекомбинантными антителами, выбранными из группы, включающей моноклональные антитела, модифицированные антитела, производные антител и фрагменты антител или их любую комбинацию.

В еще одном воплощении настоящего изобретения гетерогенность снижают путем уменьшения доли основных вариантов антител на от примерно 3% до примерно 30% и возрастания отношения основной пик/0 лизин на от примерно 5% до примерно 25%.

В еще одном воплощении настоящего изобретения двухвалентный ион переходного металла представляет собой Zn+2 в концентрации, колеблющейся от примерно 0,05 мМ до примерно 1,5 мМ.

В еще одном воплощении настоящего изобретения осмотическое давление культуральной среды изменяют для обеспечения осмотического давления, колеблющегося от примерно 240 мОсм/кг до примерно 260 мОсм/кг.

В еще одном воплощении настоящего изобретения культивирование представляет собой периодическое культивирование с подпиткой и включает культивирование клеток млекопитающих, предпочтительно культивирование линии клеток яичника китайского хомячка (СНО).

В еще одном воплощении настоящего изобретения добавление ионов металла осуществляют во время культивирования клеток, первый раз во время фазы клеточного роста и второй раз во время фазы продуцирования полипептидов; или добавление ионов металла осуществляют на начальной фазе перед указанным культивированием клеток.

Настоящее изобретение также относится к способу получения антител с пониженной гетерогенностью, причем указанный способ включает действия (а) культивирования клеток в культуральной среде для продуцирования антител и добавления в культуральную среду двухвалентных ионов переходных металлов, или изменения осмотического давления культуральной среды, или их комбинацию и (b) извлечения из культуральной среды антител с пониженной гетерогенностью.

В одном воплощении настоящего изобретения клетки культивируют в концентрации, колеблющейся от примерно 0,5×106 клеток/мл до примерно 0,6×106 клеток/мл.

В другом воплощении настоящего изобретения культивирование осуществляют при температурах, колеблющихся от примерно 36°С до примерно 38°С.

В еще одном воплощении настоящего изобретения антитела являются антителами, встречающимися в природе, или рекомбинантными антителами, выбранными из группы, включающей моноклональные антитела, модифицированные антитела, производные антител и фрагменты антител или их любую комбинацию.

В еще одном воплощении настоящего изобретения гетерогенность имеет место из-за доли заряженных вариантов антител, и при этом снижение гетерогенности осуществляют путем уменьшения доли антител с лизиновым остатком на С-конце.

В еще одном воплощении настоящего изобретения путем осуществления указанного способа снижают гетерогенность для доли антител, колеблющейся от примерно 75% до примерно 100%.

В еще одном воплощении настоящего изобретения гетерогенность снижают путем уменьшения доли основных вариантов антител на от примерно 3% до примерно 30% и возрастания отношения основной пик/0 лизин на от примерно 5% до примерно 25%.

В еще одном воплощении настоящего изобретения культивирование представляет собой периодическое культивирование с подпиткой и включает культивирование клеток млекопитающих, предпочтительно культивирование клеточной линии яичника китайского хомячка (СНО).

В еще одном воплощении настоящего изобретения ион металла представляет собой Zn+2 в концентрации, колеблющейся от примерно 0,05 мМ до примерно 1,5 мМ.

В еще одном воплощении настоящего изобретения осмотическое давление культуральной среды изменяют для обеспечения осмотического давления, колеблющегося от примерно 240 мОсм/кг до примерно 260 мОсм/кг.

В еще одном воплощении настоящего изобретения добавление ионов металла осуществляют во время культивирования, во-первых, первый раз во время фазы клеточного роста и второй раз во время фазы продуцирования полипептидов при температурах, колеблющихся от примерно 30°С до примерно 32°С, или добавление ионов металла осуществляют на начальной фазе перед указанным культивированием клеток.

В еще одном воплощении настоящего изобретения в фазе клеточного роста концентрация клеток колеблется от примерно 12×106 клеток/мл до примерно 13×106 клеток/мл, и при этом в фазе продуцирования полипептида концентрация клеток колеблется от примерно 13×106 клеток/мл до примерно 15×106 клеток/мл.

В еще одном воплощении настоящего изобретения двухвалентные ионы цинка предпочтительно используют в форме гептагидрата сульфата цинка. Другие соединения цинка могут включать, но не ограничиваются указанным, ZnH2, Zn(OH)2, Zn(NO3)2·6H2O и ZnCl2.

В одном воплощении настоящего изобретения снижение гетерогенности осуществляют путем уменьшения доли антител с лизиновым остатком на С-конце без использования фермента для удаления лизиновых остатков.

Настоящее изобретение преодолевает ограничения известного уровня техники в отношении способа снижения гетерогенности антител. Целью настоящего изобретения являются способы улучшения получения белка, т.е. крупномасштабного получения белка, например получения антител, с использованием модифицированного способа культивирования клеток, включающего фазу клеточного роста и фазу продуцирования полипептидов.

В соответствии с другим вариантом настоящего изобретения количество основных вариантов антител уменьшают путем добавления ионов металла, подобных ионам цинк+2.

В соответствии с еще одним вариантом настоящего изобретения концентрация ионов цинка находится в интервале 0,05-1,5 мМ.

В соответствии с еще одним вариантом настоящего изобретения количество основных вариантов антител уменьшают путем снижения осмотического давления производственных питательных сред.

Еще один объект настоящего изобретения заключается в способе выращивания клеток в системе культивирования, которая снижает гетерогенность среди заряженных вариантов путем возрастания образования главный пик/0 лизин, при этом в С-концах любых цепей антитела имеется, по существу, ноль лизинов.

Еще одной целью настоящего изобретения является уменьшение основного варианта в клеточной культуральной среде на 3-30%.

Соответственно, настоящее изобретение относится к способам улучшения получения белка, например крупномасштабного коммерческого получения белка, например, получения антител, с использованием модифицированного способа культивирования клеток, включающего фазу клеточного роста и фазу продуцирования полипептидов.

Настоящее изобретение также относится к снижению микрогетерогенности в антителах. Конкретнее, изобретение включает способ выращивания клеток в системе культивирования клеток, которая снижает гетерогенность среди заряженных вариантов путем уменьшения образования основных вариантов.

Настоящее изобретение относится к способу получения моноклональных антител с измененной долей основных вариантов путем культивирования клеток млекопитающих и извлечения MAb из культуральной среды и/или клеток.

В одном воплощении настоящего изобретения количество основных вариантов антител уменьшают путем добавления ионов металла, подобных ионам цинк+2, в интервале 0,05-1,5 мМ и путем использования производственных питательных сред с осмотическим давлением в интервале 240-260 мОсм/кг.

В еще одном воплощении настоящего изобретения снижается % основных вариантов антитела, которые обычно связаны со стандартной процедурой получения. Преимущественно изобретение обеспечивает экономическую и коммерческую выгоду, возникшую благодаря получению большего количества продукта нужного качества, в особенности, в случае биоподобных антител.

Определение терминов

Термин «антитело» включает антитела или производные антител или их фрагменты, и характеристики антител также применяют к препаратам антитела настоящего изобретения. К фрагментам антител, функциональным эквивалентам или гомологам антител относят любой полипептид, который включает связывающий домен иммуноглобулина, или пептиды, имитирующие данный связывающий домен вместе с Fc-областью или областью, гомологичной Fc-области или, по меньшей мере, ее части. Химерные молекулы, включающие связывающий домен иммуноглобулина, или эквиваленты, слитые с другим полипептидом, также включены.

Типичные молекулы антител представляют собой интактные молекулы иммуноглобулина и те части иммуноглобулина, которые содержат паратоп, включая те части молекулы, которые известны как Fab, Fab′, F(ab′)2, Fc и F(v), а также структуру N-гликана.

Антитело описывают как функциональный компонент сыворотки, и этот термин часто относят или к набору молекул (антител или иммуноглобулинов, фрагментам и т.п.), или к одной молекуле (к молекуле антитела или молекуле иммуноглобулина). Молекула антитела способна связываться или взаимодействовать со специфической антигенной детерминантой (антигеном или эпитопом антигена), что, в свою очередь, может привести к индукции иммунологических эффекторных механизмов. Индивидуальную молекулу антитела обычно рассматривают как моноспецифическую, а композиция молекул антител может быть как моноклональной (т.е. состоящей из идентичных молекул антитела) или поликлональной (т.е. состоящей из разных молекул антител, реагирующих с одним и тем же или с различными эпитопами на одном и том же антигене или на отдельных, различных антигенах). Отдельные и различные молекулы антител, составляющие поликлональное антитело, могут быть названы «члены». Каждая молекула антитела обладает уникальной структурой, которая дает ей возможность специфически связываться с соответствующим ей антигеном, и все природные молекулы антител, в целом, имеют одинаковую основную структуру, состоящую из двух идентичных легких цепей и двух идентичных тяжелых цепей. Гетерогенность определяется как феномен, при котором секретированные антитела имеют различные дискретные биохимические формы, такие как дополнительная аминокислота или кислоты на карбокси-конце одной или обеих тяжелых цепей антитела, или как модификация аминокислоты, что вызывает различие в общем распределении заряда антитела, и другие.

Как применены в настоящем документе, выражения «полипептид» или «полипептидный продукт» представляют собой синонимы терминов «белок» и «белковый продукт», соответственно, и, как это обычно понимают в данной области техники, относятся, по меньшей мере, к одной цепи аминокислот, последовательно связанных посредством пептидных связей. В определенных воплощениях, «представляющий интерес белок» или «представляющий интерес полипептид» или тому подобное представляет собой белок, кодируемый экзогенной молекулой нуклеиновой кислоты, которой была трансформирована клетка-хозяин. В определенных воплощениях, в которых экзогенная ДНК, которой была трансформирована клетка-хозяин, кодирует «представляющий интерес белок», последовательность нуклеиновой кислоты экзогенной DNA определяет последовательность аминокислот. В определенных воплощениях, «представляющий интерес белок» представляет собой белок, кодируемый молекулой нуклеиновой кислоты, которая эндогенна по отношению к клетке-хозяину. В определенных воплощениях, экспрессию такого эндогенного представляющего интерес белка изменяют путем трансфекции в клетку-хозяина молекулы экзогенной нуклеиновой кислоты, которая, например, может содержать одну или несколько регуляторных последовательностей и/или кодирует белок, который увеличивает экспрессию представляющего интерес белка.

В настоящем документе, термин «вариант антитела» относится к антителу, имеющему последовательность аминокислот, которая отличается от аминокислотной последовательности исходного антитела. Предпочтительно, вариант антитела включает вариабельный домен тяжелой цепи или вариабельный домен легкой цепи, имеющий аминокислотную последовательность, которая не встречается в природе. Такие варианты обязательно имеют менее чем 100% идентичности или сходства в последовательности с родительским антителом. В предпочтительном воплощении, вариант антитела будет иметь аминокислотную последовательность с от примерно 75% до менее чем 100% идентичности или сходства аминокислотной последовательности с аминокислотной последовательностью вариабельного домена или тяжелой, или легкой цепи исходного антитела, более предпочтительно, от примерно 80% до менее чем 100%, более предпочтительно, от примерно 85% до менее чем 100%, более предпочтительно, от примерно 90% до менее чем 100%, и наиболее предпочтительно, от примерно 95% до менее чем 100%. Идентичность или сходство по отношению к данной последовательности определяют в настоящем документе как процент аминокислотных остатков в последовательности-кандидате, который идентичен (т.е. тот же самый остаток) остаткам исходного антитела, после выравнивания последовательностей и введения, при необходимости, разрывов для достижения максимального процента идентичности последовательности. Термины «среда», «среда для культивирования клеток» и «культуральная среда», как применены в настоящем документе, относятся к раствору, содержащему питательные вещества, которые питают растущие животные клетки, например клетки млекопитающих, и также могут относиться к среде вместе с клетками (Например, могут использоваться коммерчески доступные среды, такие как культуральные среды Hyclone CDM4NS0, Hyclone CDM4Mab, Invitrogen CDOptiCHO и Lonza Power CHO).

Предпочтительными клетками-хозяевами млекопитающих являются клетки СНО, и предпочтительным типом ферментации является периодическая ферментация с подпиткой. Примерами других клеточных линий являются NS0 (несекретирующие) и ВНК (почки детеныша хомяка).

Способы и векторы для генной инженерии клеток и/или клеточных линий для экспрессии белка, представляющего интерес, хорошо известны специалистам в данной области техники. Методы генной инженерии включают, но не ограничиваются перечисленным, экспрессирующие векторы, направленную гомологичную рекомбинацию и активацию генов. Необязательно белки экспрессируются под контролем гетерологичного регуляторного элемента, такого как, например, промотор, который в природе не направляет продуцирование такого полипептида. Например, промотор может представлять собой сильный вирусный промотор (например, CMV, SV40), который направляет экспрессию полипептида млекопитающего. Клетка-хозяин может или не может продуцировать этот белок в природе. Например, клетка-хозяин может представлять собой клетку СНО, которая создана методами генной инженерией для продуцирования белка, что означает, что в клетку СНО введена нуклеиновая кислота, кодирующая белок.

Специалисту в данной области техники известно, при какой температуре и/или концентрации следует культивировать определенную клеточную линию. Например, большинство клеток млекопитающих, например клетки СНО, хорошо растут в интервале температур от примерно 35°С до 39°С, предпочтительно, при 37°С, в то время как клетки насекомых как правило, культивируют при 27°С.

В одном воплощении раскрытия белок, полученный с использованием способа по изобретению, представляет собой антитело или его антигенсвязывающий фрагмент. Используемый в данном случае термин «антитело» включает белок, включающий, по меньшей мере, один, как правило, два домена VH или их части и/или, по меньшей мере, один, как правило, два домена VL или их части. В некоторых воплощениях антитело представляет собой тетрамер из двух тяжелых цепей иммуноглобулина и двух легких цепей иммуноглобулина, при этом тяжелые и легкие цепи иммуноглобулина взаимосвязаны, например, дисульфидными связями. Антитела или их части могут быть получены из любого источника, включая, но не ограничиваясь перечисленным, грызуна, примата (например, человека и примата, не являющегося человеком), акулы и т.д., или они могут быть получены рекомбинантно, например химерные, гуманизированные и/или созданными in vitro, например, способами, хорошо известными специалистам в данной области техники.

В предпочтительном воплощении культивирование клеток по настоящему раскрытию выполняют во встряхиваемой колбе (рабочий объем 30 мл) и/или биореакторе (1 л/50 л) и используют периодический способ с подпиткой. При культивировании с подпиткой сначала подают клетки-хозяева млекопитающих и культуральную среду с осмотическим давлением 300-310 мОсм/кг и периодически добавляют питательные вещества (аминокислоты, глюкозу и витамины). Цикл производственной ферментации начинают с начального числа клеток 0,5-0,6×106 клеток/мл при 37±1°С и первые 3-4 суток предназначают для роста клеток. Следующая стадия включает понижение температуры до 31±1°С и добавление ионов цинка дважды с промежутком, так что общее количество добавки доходит до 0,05-1,5 мМ (одна доза во время фазы роста на 3ий/4ый день и другая доза во время фазы продуцирования на 6ой/7ой/8ой день). В препарате антител в соответствии с воплощениями настоящего изобретения предпочтительно, по меньшей мере, 90%, предпочтительно, по меньшей мере, 95%, предпочтительнее, по меньшей мере, 99%, наиболее предпочтительно, 100% модифицированных антител, их производных или фрагментов утрачивают С-концевой остаток лизина, в частности, определенный по сумме тяжелых цепей (которые обычно могут включать лизин). Так как антитела могут иметь больше цепей, которые потенциально включают С-концевой лизин, следует иметь в виду, что количественный процент утраты лизина относится ко всем цепям, которые потенциально имеют С-концевой лизин. Показано, что моноклональные антитела являются гетерогенными в случае наличия С-концевого лизина.

В другом воплощении культивирование клеток по настоящему изобретению выполняют во встряхиваемой колбе (рабочий объем 30 мл) и/или биореакторе (1 л/50 л) и используют периодический способ с подпиткой. При предпочтительном культивировании с подпиткой сначала подают клетки-хозяева млекопитающих и культуральную среду с пониженным осмотическим давлением 240-260 мОсм/кг, и периодически добавляют питательные вещества (аминокислоты, глюкозу и витамины). Осмотическое давление среды снижают путем разбавления сред Milli/WFI. Цикл производственной ферментации начинают с начального числа клеток 0,5-0,6×106 клеток/мл при 37±1°С и первые 3-4 суток предназначают для роста клеток. Следующая стадия включает понижение температуры до 31±1°С и добавление ионов цинка дважды с промежутком в концентрации 0,1 мМ (одна доза во время фазы роста на 3ий/4ый день и другая доза во время фазы продуцирования на 5ый/6ой/7ой/80ой день). В препарате антител в соответствии с воплощениями настоящего изобретения предпочтительно, по меньшей мере, 90%, предпочтительно, по меньшей мере, 95%, предпочтительнее, по меньшей мере, 99%, наиболее предпочтительно, 100% модифицированных антител, их производных или фрагментов утрачивают С-концевой остаток лизина, в частности, определенный по сумме тяжелых цепей (которые обычно могут включать лизин). Так как антитела могут иметь больше цепей, которые потенциально включают С-концевой лизин, следует иметь в виду, что количественный процент утраты лизина относится ко всем цепям, которые потенциально имеют С-концевой лизин. Показано, что моноклональные антитела являются гетерогенными в случае наличия С-концевого лизина.

Следующие описания конкретных воплощений настоящего изобретения представлены для целей иллюстрации и описания. Они не предназначены для того, чтобы быть исчерпывающими или ограничивать изобретение определенными раскрытыми формами. С учетом вышеизложенных идей возможны различные модификации и вариации. Кроме того, многие модификации могут быть сделаны для адаптации конкретной ситуации, материала, состава вещества, способа, стадии или стадий способа к цели, духу и объему настоящего изобретения. Все такие модификации должны находиться в пределах объема прилагаемой формулы изобретения.

Далее, технология настоящей заявки будет детально представлена с помощью следующих примеров. Однако примеры не должны быть истолкованы как ограничивающие объем изобретения

Примеры

В настоящем изобретении раскрывается получение антител со сниженной гетерогенностью. Антитело-1 представляет собой гуманизированное моноклональное антитело, которое ингибирует сосудистый эндотелиальный фактор роста A (VEGF-A). Антитело-2 представляет собой моноклональное антитело, которое препятствует рецептору HER2/neu (антитело против her 2). Антитело-3 представляет собой гуманизированное моноклональное антитело, которое ингибирует TNF, и антитело-4 представляет собой антитело против CD6.

Пример 1

Использование ионов цинка для уменьшения основных вариантов или возрастания соотношения главный пик/0 лизин антитела-1

Обеспечивают культуральные среды с осмотическим давлением 300-310 мОсм/кг которые инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. Когда количество клеток на 4ый день достигает 12-13×106/мл, температуру изменяют с 37°С на 31°С. Первую дозу цинка загружают в концентрации 0,1 мМ. На 8ой день загружают еще одну дозу цинка в концентрации 0,1 мМ, когда количество клеток достигнет 13-15×106/мл. Процесс проводят до 11го дня. Наблюдаемая гетерогенность приводится в таблице ниже.

Пример 2

Использование ионов цинка для уменьшения основных вариантов или возрастания соотношения главный пик/0 лизин антитела-1

Культивирование клеток выполняют по типу периодического культивирования с подпиткой. При периодическом культивировании с подпиткой сначала обеспечивают клетки-хозяева млекопитающих и культуральную среду и периодически добавляют питательные вещества. Культуральные среды инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. Когда количество клеток достигает 12-13×106/мл (на 3ий день), температуру изменяют с 37°С на 31°С, и затем загружают первую дозу ионов цинка в концентрации 0,1 мМ. Другую дозу в концентрации 0,1 мМ загружают, когда количество клеток достигнет 13-15×106/мл (на 6ой день), и проводят процесс в колбе еще до 7ого дня. В другую культуральную среду загружают ионы магния, которые не показывают различия в отношении основных вариантов, и данный пример приводится как отрицательный контроль. Наблюдаемая гетерогенность приводится в таблице ниже.

Пример 3

Использование производственных питательных сред с низким осмотическим давлением с ионами цинка для уменьшения основных вариантов или возрастания соотношения главный пик/0 лизин антитела 1

Культивирование клеток выполняют по типу периодического культивирования с подпиткой. При культивировании сначала обеспечивают клетки-хозяева млекопитающих и культуральную среду с низким осмотическим давлением и периодически добавляют питательные вещества. Культуральные среды инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. Когда количество клеток достигает 12-13×106/мл (на 3ий день), температуру изменяют с 37°С на 31°С, и затем загружают первую дозу ионов цинка в концентрации 0,1 мМ. Еще одну дозу в концентрации 0,1 мМ загружают, когда количество клеток достигнет 13-15×106/мл (на 6ой день), и проводят ферментацию еще до 7ого дня. Наблюдаемое осмотическое давление приводится в таблице ниже.

Пример 4

Использование ионов цинка для уменьшения основных вариантов или возрастания соотношения главный пик/0 лизин антитела-2

Культивирование клеток выполняют по типу периодического культивирования с подпиткой. Сначала обеспечивают культуры клеток-хозяев млекопитающих и культуральную среду (с низким осмотическим давлением) и периодически добавляют питательные вещества. Культуральные среды инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. Когда количество клеток достигает 12-13×106/мл (на 3ий день), температуру изменяют с 37°С на 31°С, и затем загружают первую дозу ионов цинка в концентрации 0,1 мМ. Еще одну дозу в концентрации 0,1 мМ добавляют, когда количество клеток достигнет 13-15×106/мл (на 6ой день), и проводят ферментацию еще до 7ого дня. Наблюдаемая гетерогенность приводится в таблице ниже.

Пример 5

Использование производственных питательных сред с низким осмотическим давлением для уменьшения основных вариантов или возрастания отношения главный пик/0 лизин антитела 3

Культивирование клеток выполняют в промышленном биореакторе, и используют тип периодического культивирования с подпиткой. При культивировании с подпиткой сначала подают клетки-хозяева млекопитающих и культуральную среду с низким осмотическим давлением и периодически добавляют питательные вещества. В данном опыте биореактор инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. Когда количество клеток достигает 12-13×106/мл (на 3ий день), температуру изменяют с 37°С на 31°С, и затем загружают первую дозу ионов цинка в концентрации 0,1 мМ. Еще одну дозу в концентрации 0,1 мМ загружают, когда количество клеток достигнет 13-15×106/мл (на 5ый день), и проводят ферментацию еще до 12ого дня.

Наблюдаемое осмотическое давление приводится в таблице ниже.

Пример 6

Использование производственных питательных сред с низким осмотическим давлением для уменьшения основных вариантов или возрастания отношения главный пик/0 лизин антитела 1

Культивирование клеток выполняют по типу периодического с подпиткой. При периодическом культивировании с подпиткой сначала подают клетки-хозяева млекопитающих и культуральную среду с низким осмотическим давлением и периодически добавляют питательные вещества. Используют три среды с различными уровнями начального осмотического давления. Культуральные среды инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. Периодическое культивирование допускают еще до 7ого дня. Культуральные среды показывают, что при снижении осмотического давления начальной среды имеет место снижение общего % основных вариантов. Различия в профиле роста клеточной линии не отмечают. Наблюдаемое снижение количества основных вариантов со снижением осмотического давления приводится в таблице ниже.

Пример 7

Использование ионов цинка для уменьшения основных вариантов или повышения отношения главный пик/0 лизин антитела 1

Культивирование клеток выполняют по типу периодического с подпиткой. При периодическом культивировании с подпиткой сначала подают клетки-хозяева млекопитающих и культуральную среду (включая 1 мМ ионов цинка) и периодически добавляют питательные вещества. Культуральные среды инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. Когда количество клеток достигает 12-13×106/мл, температуру изменяют с 37°С на 31°С, и проводят процесс в колбе еще до 7ого дня. Наблюдаемое снижение гетерогенности приводится в таблице ниже.

Пример 8

Использование ионов цинка для уменьшения основных вариантов или повышения отношения главный пик/0 лизин антитела 1

Культивирование клеток выполняют по типу периодического с подпиткой. Культуральные среды с 0,5 мМ ионов цинка инокулируют 0,5-0,6×106/мл клеток, и в культуру периодически добавляют питательные вещества. По достижении числа клеток 12-13×106/мл температуру изменяют с 37°С на 31°С, и проводят ферментацию еще до 7ого дня. Наблюдаемое снижение гетерогенности приводится в таблице ниже.

Пример 9

Использование ионов цинка для уменьшения основных вариантов или повышения отношения главный пик/0 лизин антитела-3

Культивирование клеток выполняют с использованием периодического типа культивирования с подпиткой. Культуральные среды инокулируют клетками в концентрации 0,5-0,6×106/мл и позволяют им расти. По достижении числа клеток 12-13×106/мл температуру изменяют с 37°С на 31°С, и загружают первую дозу ионов цинка в концентрации 0,1 мМ, и другую дозу загружают в 6ой день, и проводят процесс еще до 7ого дня. Наблюдаемая гетерогенн