Многоцелевое роторное устройство (варианты) и генерирующая система, включающая такое устройство

Иллюстрации

Показать все

Группа изобретений относится к многоцелевому роторному устройству и генерирующей системе, включающей такое устройство. Многоцелевое роторное устройство содержит ротор, включающий некоторое число лопастей по окружности, и тело направления нагрузки, предназначенное для направления потока текучих сред, поступающих внутрь ротора. Тело направления нагрузки включает верхний опорный элемент и нижний опорный элемент, расположенные обращенными друг к другу на их верхней и нижней сторонах и соединенные друг с другом так, чтобы установить ротор с возможностью вращения. Устройство также включает пластины направления нагрузки, конфигурированные соответственно лопастям и установленные с возможностью вращения между верхним и нижним опорными элементами в продольном направлении, и стопорные пальцы, выполненные на внутренних поверхностях, обращенных к верхнему и нижнему опорным элементам, чтобы контролировать угол поворота пластин направления нагрузки. Группа изобретений направлена на получение максимальной эффективности вращения и генерации чистой энергии с высоким КПД, без вреда для глобальной окружающей среды. 3 н. и 20 з.п. ф-лы, 31 ил.

Реферат

[Область техники]

Настоящее изобретение относится к многоцелевому роторному устройству и генерирующей системе, включающей его, и, более конкретно, к многоцелевому роторному устройству, предназначенному для эффективного направления равномерных или неравномерных и исключительно сильных нагрузок, получаемых от энергии потока разных текучих сред, создаваемых в земле, потоках, море и т.д., чтобы довести до максимума эффективность вращения и посредством этого генерировать чистую энергию с высокой эффективностью, без вреда для глобальной окружающей среды, и к генерирующей системе, включающей это устройство.

[Предпосылки для создания изобретения]

В настоящее время, когда существующие ископаемые источники энергии постепенно истощаются и когда на передний план выходят вопросы защиты окружающей среды, уже в течение длительного время ведутся исследования по эффективному использованию чистой альтернативной энергии, в частности нагрузок, получаемых из энергии воды, энергии приливов, энергии волн и т.д., а также нагрузок, вызываемых энергией ветра.

В качестве представительного способа и устройств существует способ генерации энергии воды, в котором используется плотина, генерирующее устройство для энергии прилива, которое использует отлив и прилив морской воды из-за притяжения Луны, генерирующее устройство для энергии волн, которое использует вертикальное движение волн и т.д. Помимо этого существуют генерирующее устройство для энергии ветра с горизонтальной осью и генерирующее устройство для энергии ветра с вертикальной осью, которые используют энергию ветра. Чистая энергия, полученная с использованием таких устройств, эффективно используется во всем мире, но можно видеть, что поля деятельности для усовершенствования не имеют границ.

Для этого эффективно проводятся исследования по технологии генерации с использованием энергии воды или энергии приливов и энергии волн. Однако, как проблемы в исследованиях по использованию энергии приливов, существуют такие проблемы, как трудности, вызываемые направлениями и величиной изменяющихся нагрузок, и громадный объем инвестиций, а также способ строительства бухты. Помимо этого, в течение длительного времени исследуют основные принципы генерации энергии волн, которая использует нагрузки неравномерных волн. Однако из-за разных технических трудностей, таких как трудности монтажа конструкций в сильно изменяющемся море, исследования технологии генерации в настоящее время все еще остаются на этапе испытаний.

Помимо этого, генерация энергии воды используется в течение длительного времени, но из-за трудностей, таких как ограниченность мест строительства дополнительных мощностей для генерации энергии воды и огромный объем расходов. В последнее время развивается строительство малых и сверхмалых гидроэлектростанций, в котором используются малые плотины, перекрывающие реки или потоки. Однако способ блокировки водного пути имеет экологические проблемы, которые приводят к нарушению экосистемы, например, блокируют движение рыбы.

В то же время, самое распространенное генерирующее устройство для ветровой энергии с горизонтальной осью имеет высокоэффективную конструкцию, в которой используется подъемная сила. Однако, как наибольшая проблема существует ограничение по месту установки, которое имело бы превосходное ветровое качество в том, что ветер непрерывно дует в определенном направлении, поскольку направление вращения может изменяться в зависимости от направления ветра. Трудно создать подъемную силу в случае ветра, имеющего определенную или меньшую скорость, и устройство останавливают для того, чтобы защитить его в случае сильного ветра, имеющего определенную или большую скорость. Существует проблема установки тяжелого генератора на стойку в высоком положении. Поэтому существуют трудности, заключающиеся в том, что требуются высокие расходы на монтаж из-за устройств, используемых для компенсации таких проблем. Помимо этого, в случае генерирующего устройства для ветровой энергии с вертикальной осью, которое не испытывает влияния направления ветра, существует проблема в том, что нагрузки действия и противодействия действуют на нагрузки во всех направлениях от центральной оси, снижая КПД установки. Этот тип устройства классифицируется как тип лобового сопротивления, который эффективен в случае ветра малой скорости, и тип подъемной силы, который эффективен в случае ветра большой скорости. Однако генерирующее устройство для энергии ветра с вертикальной осью имеет малоэффективную конструкцию и в действительности имеет трудности при масштабной генерации.

Поэтому, чтобы преодолеть эту низкую эффективность, которая является слабым местом вертикального типа, в последние годы ведутся многие исследования. Например, проводятся исследования способа использования ротора Савониуса и ротора Дарье вместе и исследования по разработке механической формы лопасти в случае типа Савониуса, конфигурированной для использования лобового сопротивления, или прикрепление вспомогательного устройства, конфигурированного для частичного направления ветра наружу. В случае способа, использующего подъемную силу, совершенствуется конструкция или способ сборки лопасти, или разрабатывается устройство с изменением угла атаки для лопасти. Поэтому разработаны устройства для повышения КПД генерирующего устройства с вертикальной осью.

Однако в случае вспомогательного устройства, конфигурированного для направления ветра на устройство, использующее лобовое сопротивление при вращении, то при увеличении размера устройства возникает проблема в том, что быстрая реакция на направление ветра неэффективна в месте, где направление ветра часто меняется, и в том, что конструкция и конфигурация направляющих лопаток и внутренних лопастей неэффективны, а поэтому непрактичны. В случае малой скорости устройства с изменением угла атаки применимы к лопастям, использующим подъемную силу. Однако, по существу, когда разница в нагрузках заметная или при быстром вращении трудно реагировать эффективно и быстро. Поэтому нельзя получить повышенный КПД.

В то же время, на Фиг. 1a представлена схема, иллюстрирующая первый пример традиционного роторного устройства. Как показано на чертеже, если нагрузки создаются в направлении стрелки с использованием центрального выходного вала 4 в качестве стартовой точки, части ′a1′ и части ′a2′, которые разделены по вертикальной линии 1A, проведенной к центру выходного вала 4 в направлении потока текучих сред, нагрузки действуют на часть ′a1′ в качестве действия, но нагрузки действуют на часть ′a2′ на другой стороне как реакция. Поэтому существует проблема в том, что достигается только очень малая сила вращения ротора 1, соответствующая получаемому КПД из-за изогнутой формы лопастей 5.

Помимо этого, на Фиг. 1b приведена схема, иллюстрирующая второй пример традиционного роторного устройства. Как показано на чертеже, из-за устройства направления нагрузки 2, имеющего форму изогнутых направляющих пластин 6 вне ротора 1, можно направлять нагрузку в такой широкой области как ′b1′. Однако направляющие пластины 6 внешнего устройства направления нагрузки 2 выполнены в изогнутой форме. Поэтому нагрузки, направляемые внутрь по кривой, действуют в направлении центра выходного вала 4 ротора 1. Представлена конструкция как таковая, которая не может развивать большую силу вращения.

На Фиг. 1c представлена схема, иллюстрирующая третий пример традиционного роторного устройства. Как показано на чертеже, из-за устройства направления нагрузки 2a в форме направляющих пластин 6a, которые имеют прямолинейную конструкцию и расположены по диагонали снаружи ротора 1, можно видеть, что нагрузки эффективно направляются. Однако, с точки зрения конструкции лопастей 6a ротора 1, нагрузки, которые направляются на часть ′c2′, расположенную далеко от центрального выходного вала 4, создают большую силу вращения, но часть ′c1′ расположена на небольшом расстоянии от выходного вала 4 и имеет ограничение в том, что с точки зрения конструкции лопастей 6a ротора 1 трудно получить большую силу вращения.

Наиболее близким аналогом (прототипом) предлагаемого технического решения является устройство по KR 20100027571, 11.03.2010. Однако пластины направления нагрузки указанного устройства обладают тем недостатком, что не позволяют достичь относительно большой силы вращения по отношению к заданным нагрузкам текучих сред.

[Техническая задача]

Настоящее изобретение направлено на решение вышеуказанных известных проблем, и цель настоящего изобретения заключается в том, чтобы предложить многоцелевое роторное устройство, конфигурированное для эффективного направления равномерных или неравномерных и исключительно тяжелых нагрузок, которые получены за счет энергии потока разных текучих сред, создаваемой землей, потоками, морем и т.д. для получения максимальной эффективности вращения и генерации чистой энергии с высоким КПД, без вреда для глобальной окружающей среды и предложить генерирующую систему, включающую такое устройство.

[Техническое решение]

Один аспект настоящего изобретения предлагает многоцелевое роторное устройство, включающее: ротор, который включает некоторое число лопастей по окружности, и тело направления нагрузки, которое направляет поток текучей среды, поступающий внутрь ротора, причем тело направления нагрузки включает верхний опорный элемент и нижний опорный элемент, которые обращены друг к другу на их верхней и нижней сторонах и соединены друг с другом так, что ротор установлен с возможностью вращения; пластины направления нагрузки, которые соответствуют лопастям и установлены с возможностью вращения между верхним и нижним опорными элементами в продольном направлении; и стопорные пальцы, которые выполнены на внутренних поверхностях, обращенных к верхнему и нижнему опорным элементам, чтобы контролировать угол поворота пластин направления нагрузки, и причем стопорные пальцы выполнены как внутренние стопорные пальцы и наружные стопорные пальцы, чтобы определить пространство, в котором вращаются пластины направления нагрузки, и равномерно распределены в форме окружности в числе, соответствующем пластинам направления нагрузки, и причем пластины направления нагрузки установлены с возможностью вращения в пространство между стопорными пальцами, имеют шарнирные элементы с отверстием для установки шарнирного вала, которые соединены с верхним и нижним концами и установлены с возможностью вращения на верхний и нижний опорные элементы посредством болта вращающегося вала направляющей пластины, закрепленном в отверстии для установки шарнирного вала.

Еще один аспект настоящего изобретения предлагает многоцелевое роторное устройство, включающее: ротор, который включает некоторое число лопастей по окружности, и тело направления нагрузки, которое направляет поток текучей среды, поступающий внутрь ротора, причем тело направления нагрузки включает верхний опорный элемент и нижний опорный элемент, которые обращены друг к другу на их верхней и нижней сторонах и соединены друг с другом так, что ротор установлен с возможностью вращения, и пластины направления нагрузки, которые установлены так, чтобы соответствовать лопастям между верхним и нижним опорными элементами.

Еще один аспект настоящего изобретения предлагает многоцелевое роторное устройство, включающее: ротор, конфигурированный так, чтобы включать некоторое число лопастей по окружности, и тело направления нагрузки, которое направляет поток текучей среды, поступающий внутрь ротора, причем тело направления нагрузки включает верхний опорный элемент и нижний опорный элемент, которые обращены друг к другу на их верхней и нижней сторонах и соединены друг с другом так, что ротор установлен с возможностью вращения, верхнюю опорную плиту и нижнюю опорную плиту, которые выполнены отходящими от верхнего опорного элемента и нижнего опорного элемента, пластины направления нагрузки, которые расположены так, чтобы направлять нагрузки текучих сред в пространство между верхней опорной плитой и нижней опорной плитой, которое соответствует направлению притока текучих сред, посредством лопастей, и пластины предотвращения сопротивления, которые расположены на обоих краях пути потока текучих сред в направлении потока текучих сред и подсоединены и установлены на пластины направления нагрузки, чтобы минимизировать сопротивление вращению ротора.

Еще один аспект настоящего изобретения предлагает генерирующую систему, которая включает многоцелевое роторное устройство, включающее: многоцелевое роторное устройство согласно любому одному из вышеприведенных аспектов и конструкцию для установки роторного устройства, выполненную так, чтобы установить многоцелевое роторное устройство.

Кроме того, конструкция для установки роторного устройства может включать тело, плавающее в воде, которое имеет камеру плавучести для плавания на воде, и фиксирующее средство, которое имеет по меньшей мере одну соединительную проволоку, один конец которой соединен с телом, плавающим в воде, и груз, соединенный с другим концом соединительной проволоки, чтобы зафиксировать тело, плавающее в воде, так, что тело, плавающее в воде, покачивается или переворачивается на воде.

[Полезные эффекты]

Согласно многоцелевому роторному устройству настоящего изобретения, поскольку равномерные или неравномерные и исключительно тяжелые нагрузки, получаемые за счет энергии потока разных текучих сред, создаваемых землей, потоками, морем и т.д., эффективно направляются на ротор с использованием непроводящего направляющего тела, и этим может быть получена сила вращения (момент вращения), можно генерировать чистую электрическую энергию с высокой эффективностью, не нанося вреда глобальной окружающей среде. В частности, поскольку нагрузки одновременно действуют на некоторое число лопастей, которые расположены на краевой части, отстоящей от центра (оси) ротора, один эффект заключается в получении большой силы вращения.

Также, с учетом характеристик (плотности и т.д.) текучих сред (воздух, вода и т.д.), поступающих в тело направления нагрузки, или величины (скорость потока и т.д.) нагрузок, поскольку лопасти ротора могут быть легко заменены на лопасти для подъемной силы, лопасти для лобового сопротивления, гибридные лопасти и т.д. и имеют форму, зависящую от различных окружающих сред и мест или мощностей, может быть реализовано многоцелевое роторное устройство большой мощности.

Помимо этого, поскольку величину нагрузки, поступающей в ротор, можно регулировать или блокировать средством открывания и закрывания нагрузки, в случае проведения технического обслуживания или в случае природных бедствий, таких как тайфун, приливные волны, преимущество заключается в том, что можно закрыть пластины направления нагрузки, чтобы текучая среда не поступала внутрь ротора, и надежно защитить многоцелевое роторное устройство.

В то же время, генерирующая система, включающая многоцелевое роторное устройство согласно настоящему изобретению, не только может преобразовывать и производить все нагрузки энергии волн, энергии приливов и энергии ветра, генерируемой на море в электрическую энергию, но и может быть эффективно использована в качестве морской генерирующей системы, поскольку она имеет камеру с маяком. В частности, поскольку тело, плавающее в воде, имеет полую конструкцию, генерирующую систему легко перемещать. Когда вода нагнетается во внутреннее пространство после того, как генерирующая система перемещена на место установки, поскольку генерирующая система более прочно зафиксирована массой воды, даже хотя генерирующая система расположена в открытом море, она может удерживаться в стабильном установленном состоянии без качания или переворачивания тайфуном или приливными волнами.

[Описание чертежей]

Фиг. 1a - Фиг. 1c - схемы, иллюстрирующие традиционное роторное устройство;

Фиг. 2a - перспективный вид, иллюстрирующий многоцелевое роторное устройство согласно первому варианту осуществления настоящего изобретения;

Фиг. 2b - перспективный вид с пространственным разделением деталей, иллюстрирующий многоцелевое роторное устройство согласно первому варианту осуществления настоящего изобретения;

Фиг. 2c - вид в разрезе по линии G-G с Фиг. 2a;

Фиг. 2d - схематический вид в плане, иллюстрирующий работу многоцелевого роторного устройства согласно первому варианту осуществления настоящего изобретения;

Фиг. 2e и Фиг. 2f - схемы, иллюстрирующие другие примеры лопастей, применимых в многоцелевом роторном устройстве согласно первому варианту осуществления настоящего изобретения;

Фиг. 2g - перспективный вид с пространственным разделением деталей, иллюстрирующий модифицированный пример многоцелевого роторного устройства согласно первому варианту осуществления настоящего изобретения;

Фиг. 2h - вырез перспективного вида с пространственным разделением деталей, иллюстрирующий одну из основных деталей для описания модифицированного примера многоцелевого роторного устройства согласно первому варианту осуществления настоящего изобретения;

Фиг. 3a - перспективный вид, иллюстрирующий схематическую конфигурацию многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения;

Фиг. 3b - перспективный вид с пространственным разделением деталей, иллюстрирующий схематическую конфигурацию многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения;

Фиг. 3c - вид в разрезе по линии H-H с Фиг. 3a;

Фиг. 3d - увеличенный и перспективный вид с пространственным разделением деталей части В с Фиг. 3a;

Фиг. 3e - увеличенный вид в плане, в разрезе, иллюстрирующий одну из основных деталей для описания работы многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения;

Фиг. 3f - вид в разрезе по линии H-H с Фиг. 3a для описания модифицированного примера многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения;

Фиг. 4a - перспективный вид, иллюстрирующий многоцелевое роторное устройство согласно третьему варианту осуществления настоящего изобретения;

Фиг. 4b - перспективный вид с пространственным разделением деталей, иллюстрирующий многоцелевое роторное устройство согласно третьему варианту осуществления настоящего изобретения;

Фиг. 4c - вид в плане, в разрезе, иллюстрирующий многоцелевое роторное устройство согласно третьему варианту осуществления настоящего изобретения;

Фиг. 4d - увеличенный вид в разрезе части D с Фиг. 4a;

Фиг. 4e - перспективный вид с пространственным разделением деталей части E с Фиг. 4d;

Фиг. 4f и Фиг. 4g - увеличенный вид одной из основных деталей и вид в плане, в разрезе, иллюстрирующий работу многоцелевого роторного устройства согласно третьему варианту осуществления настоящего изобретения;

Фиг. 5a - схематический вид в плане, иллюстрирующий многоцелевое роторное устройство согласно четвертому варианту осуществления настоящего изобретения;

Фиг. 5b - схематический вид сбоку, иллюстрирующий многоцелевое роторное устройство согласно четвертому варианту осуществления настоящего изобретения;

Фиг. 5c - вид в разрезе по линии J-J с Фиг. 5a;

Фиг. 5d - вид в разрезе по линии K-K с Фиг. 5b;

Фиг. 5e - схематический вид в плане, в разрезе, иллюстрирующий модифицированный пример многоцелевого роторного устройства согласно четвертому варианту осуществления настоящего изобретения;

Фиг. 6a - перспективный вид, иллюстрирующий генерирующую систему, включающую многоцелевое роторное устройство согласно первому варианту осуществления настоящего изобретения; и

Фиг. 6b - полномасштабный вид в разрезе, иллюстрирующий конструкцию для установки роторного устройства генерирующей системы, включающей многоцелевое роторное устройство согласно первому варианту осуществления настоящего изобретения.

[Осуществление изобретения]

[Лучшие варианты осуществления настоящего изобретения]

Ниже будет приведено подробное описание многоцелевых роторных устройств согласно примерам вариантов осуществления настоящего изобретения и генерирующей системы со ссылками на прилагаемые чертежи.

На Фиг. 2a показан перспективный вид, иллюстрирующий многоцелевое роторное устройство согласно первому варианту осуществления настоящего изобретения, на Фиг. 2b приведен перспективный вид с пространственным разделением деталей, иллюстрирующий многоцелевое роторное устройство согласно первому варианту осуществления настоящего изобретения, на Фиг. 2c показан вид в разрезе по линии G-G с Фиг. 2a, на Фиг. 2d приведен схематический вид в плане, иллюстрирующий работу многоцелевого роторного устройства согласно первому варианту осуществления настоящего изобретения, и на Фиг. 2e и Фиг. 2f приведены схемы, иллюстрирующие другие примеры лопастей, применимых в многоцелевом роторном устройстве согласно первому варианту осуществления настоящего изобретения.

Со ссылкой на Фиг. 2a-Фиг. 2f, многоцелевое роторное устройство 1R согласно первому варианту осуществления настоящего изобретения является устройством, конфигурированным так, чтобы получить стабильную однонаправленную силу вращения (момент вращения) с высокой эффективностью при равномерной и неравномерной или нерегулярной нагрузке, при которой положение заметно изменяется, за счет действия сил природы, таких как энергия воды, энергия волн, энергия приливов и энергия ветра, независимо от направления приложения нагрузки, причем устройство включает тело направления нагрузки 10 и ротор 20.

Тело направления нагрузки 10 включает верхний опорный элемент 12 и нижний опорный элемент 12′, которые обращены друг к другу на их верхней и нижней сторонах и соединены друг с другом так, что ротор 20 установлен с возможностью вращения, и некоторое число пластин направления нагрузки 13, которые расположены в продольном направлении и конфигурированы так, что образован круг между верхним и нижним опорными элементами 12 и 12′, чтобы соответствовать лопастям 21 ротора 20.

Верхний опорный элемент 12 и нижний опорный элемент 12′ выполнены в одинаковой или сходной форме, так что они соединены друг с другом соответственно, и включают круглые кольца 12a, имеющие диаметры, на которых может быть расположено некоторое число пластин направления нагрузки 13 по окружности, и некоторое число соединительных секций 12b, расположенных так, чтобы пересекать центр круглых колец 12a.

Круглые кольца 12a и соединительные секции 12b могут быть в форме одного элемента, но в этом варианте осуществления круглые кольца 12a и соединительные секции 12b выполнены, соответственно, как отдельный независимый элемент и конфигурированы для крепления болтами, и соединительные секции 12b выполнены в форме, в которой отверстие 12c для установки подшипника проходит через центр тела, выполненного приблизительно крестообразным.

Также, стойка вала 16 соединена с отверстием 12c для установки подшипника на стороне нижнего опорного элемента 12′, так что тело направления нагрузки 10 может быть установлено в секциях, которые будут установлены (не показаны, установочная конструкция или место, в котором установлено многоцелевое роторное устройство). Стойка вала 16 выполнена так, что фланец 16a расположен на верхней стороне тела цилиндрической формы и прикреплен к соединительным секциям 12b болтами, и выходной вал 22 ротора 20 установлен с возможностью вращения в стойку вала 16.

Пластины направления нагрузки 13 служат в качестве вертикальных элементов, имеющих расстояние, соответствующее расстоянию между верхним и нижним опорными элементами 12 и 12′, и выполнены так, что текучие среды, поступающие в пространства между пластинами направления нагрузки 13, не выходят наружу и направляются на лопасти 21. В этой связи, как показано на Фиг. 2c, форма поперечного сечения пластин направления нагрузки 13 сформирована из прямолинейных секций 13a, выполненных линейно от наружной окружности края верхнего опорного элемента 12 и нижнего опорного элемента 12′ в направлении центра ротора 10, и диагональных секций 13b, которые изогнуты на концах прямолинейных секций 13a в направлении вращения ротора 10 и доходят до точки, близкой к наружной окружности края лопастей 21.

В частности, прямолинейные секции 13a и диагональные секции 13b пластин направления нагрузки 13 выполнены с наклоном, по которому текучие среды, проходящие между соседними диагональными секциями 13b пластин направления нагрузки 13 направляются к наружной части (часть края лопастей, удаленных от выходного вала ротора).

В то же время, как показано на Фиг. 2b и Фиг. 2c, ротор 20 включает лопасти 21, выходной вал 22, который выполнен в форме бруса смещен по вертикали, центральный цилиндр 23, который соединен с выходным валом 22 и выполнен в форме цилиндра, и круглые обода 24, которые установлены на верхней и нижней сторонах центрального цилиндра 23 посредством некоторого числа опор 25, так что лопасти 21 зафиксированы и установлены с возможностью вращения на теле направления нагрузки 10 подшипниками 26, установленными между верхним и нижним концами выходного вала 22 и в отверстии 12c для установки подшипника верхнего опорного элемента 12 и нижнего опорного элемента 12′.

Лопасти 21 предназначены для создания силы вращения из-за нагрузок текучих сред, проходящих через пластины направления нагрузки 13, и могут быть выбраны из лопастей для лобового сопротивления (см. Фиг. 2f), конфигурированных для вращения из-за лобового сопротивления, создаваемого на лопастях типа весла, или типа Савониуса, или лопастей для подъемной силы (см. Фиг. 2d), конфигурированных для вращения из-за подъемной силы, создаваемой на лопастях типа Дарье или типа H (Gyromill), или можно использовать сочетание лопастей для лобового сопротивления и лопастей для подъемной силы. Однако в этом варианте осуществления лопасти 21 выполнены так, что используются лопасти для подъемной силы с превосходными аэродинамическими характеристиками при отношении окружной скорости 1 или больше.

Например, как показано на Фиг. 2c, лопасть для подъемной силы выполнена как лопасть с аэродинамическим профилем, который является представительной формой. Как известно в данной области техники, лопасть с аэродинамическим профилем имеет поперечное сечение обтекаемой формы, и части а заднего края помещены в круглые обода 24 и соединены с ними, и части b переднего края установлены по окружности ротора 20.

Также, лопасть с аэродинамическим профилем имеет установочную канавку 21a, которая имеет вертикальный вогнутый профиль на ее заднем конце для введения в круглые обода 24 и крепится к круглым ободам 24 болтами, прикрепленными к фиксирующей скобе 21b, которая выступает так, чтобы входить в контакт с установочной канавкой 21a.

В то же время, как показано на Фиг. 2e, лопасти для подъемной силы могут быть выполнены как лопасть с аэродинамическим профилем, имеющая вырез с, выполненный во внутренней поверхности. В лопасти с аэродинамическим профилем, имеющей выполненный в ней вырез, когда вырез с выполнен во внутренней поверхности, лобовое сопротивление, а также подъемную силу создают текучие среды, действующие на одну сторону внутренней поверхности. Преимущество здесь заключается в создании момента вращения лобовым сопротивлением в области потока низкой скорости при отношении окружной скорости (скорость аэродинамического конца/скорость вращения лопастей) 1 или меньше.

Теперь будет описана работа многоцелевого роторного устройства согласно первому варианту осуществления настоящего изобретения.

В многоцелевом роторном устройстве 1R согласно первому варианту осуществления настоящего изобретения пластины направления нагрузки 13, используемые для направления основных нагрузок текучих сред на лопасти 21, выполнены по всей окружности ротора 20 и в форме, которая может эффективно направлять нагрузки текучих сред на ротор. Таким образом, даже когда нагрузки текучих сред действуют со всех направлений, может быть получена большая сила вращения.

Как показано на Фиг. 2c, так как структура поперечного сечения пластин направления нагрузки 13 включает прямолинейные секции 13a, выполненные линейно в направлении центра, и диагональные секции 13b, которые изогнуты на конце прямолинейных секций 13a и доходят до точки рядом с наружной окружностью края лопастей 21, текучие среды, поступающие в пространства между пластинами направления нагрузки 13, не выходят наружу и направляются к лопастям 21. Преимущество как таковое здесь заключается в получении относительно большой силы вращения при ограниченных нагрузках текучих сред.

В теле направления нагрузки 10 согласно этому варианту осуществления, как показано на Фиг. 2d - Фиг. 2f, поскольку нагрузки эффективно направляются в широком диапазоне A1, эти нагрузки одновременно действуют на все лопасти. В результате, на выходном вале 22 ротора 20 может быть получена очень большая сила вращения.

На Фиг. 2g приведен перспективный вид с пространственным разделением деталей, иллюстрирующий модифицированный пример многоцелевого роторного устройства согласно первому варианту осуществления настоящего изобретения, На Фиг. 2h показан вырез перспективного вида с пространственным разделением деталей, иллюстрирующий одну из основных деталей для описания модифицированного примера многоцелевого роторного устройства согласно первому варианту осуществления настоящего изобретения.

Со ссылкой на Фиг. 2g и Фиг. 2h, многоцелевое роторное устройство согласно модифицированному примеру включает тело направления нагрузки 10, ротор 20 и средство регулировки нагрузки и массы 19, конфигурированное так, что массу многоцелевого роторного устройства можно регулировать, тогда как нагрузки текучих сред, действующие на ротор 20, равномерно сглаживаются как однонаправленная сила вращения.

Средство регулировки нагрузки и массы 19 включает тело регулировки нагрузки и массы 19a, имеющее выходной вал 22, выполненный на верхней и нижней сторонах, и однонаправленные подшипники 26′, установленные на верхней и нижней сторонах выходного вала 22 и имеющие конструкцию, вращающуюся только в одном направлении.

Как показано на Фиг. 2h, тело регулировки нагрузки и массы 19a выполнено в роторе 20 и разделено на пространства 19с маховика, которые определены перегородкой 19b, выступающей к центральному пространству цилиндрического тела и создающей отсек, и конфигурированы для приема текучих сред, и пространства плавучести 19d, конфигурированные для регулировки плавучести. В каждом из пространств 19 с маховика и пространств плавучести 19d выполнено регулировочное отверстие 19e, чтобы регулировать количество нагнетаемых текучих сред.

При работе вышеупомянутого средства регулировки нагрузки и массы 19, как показано на Фиг. 2g и Фиг. 2h, в том случае, если нагрузки, такие как неравномерный поток энергии волн через тело направления нагрузки 10 и на лопасти 21, преимущество заключается в том, что однонаправленные подшипники 26′ оказывают нагрузки только в одном направлении, сила вращения равномерно сглаживается из-за эффекта маховика, получаемого за счет массы воды, принятой в пространстве 19с маховика в теле регулировки нагрузки и массы 19a, и масса ротора 20 снижается за счет использования пространств плавучести 19d, наполненных легким газом, таким как воздух, чтобы за счет плавучести повысить эффективность вращения в воде.

[Лучший вариант осуществления настоящего изобретения]

На Фиг. 3a приведен перспективный вид, схематически иллюстрирующий конфигурацию многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения. На Фиг. 3b приведен перспективный вид с пространственным разделением деталей, схематически иллюстрирующий конфигурацию многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения. На Фиг. 3c приведен вид в разрезе по линии H-H с Фиг. 3a. На Фиг. 3d приведен увеличенный и перспективный вид с пространственным разделением деталей части B с Фиг. 3a, на Фиг. 3e приведен увеличенный в плане, в разрезе, иллюстрирующий одну из основных деталей для описания работы многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения, и на Фиг. 3f приведен вид в разрезе по линии H-H с Фиг. 3a для описания модифицированного примера многоцелевого роторного устройства согласно второму варианту осуществления настоящего изобретения.

Со ссылкой на Фиг. 3a - Фиг. 3e, многоцелевое роторное устройство 1R согласно второму варианту осуществления настоящего изобретения включает тело направления нагрузки 10, ротор 20 и верхний опорный элемент 12 и нижний опорный элемент 12′, в которых расположено тело направления нагрузки 10 и которые соединены друг с другом на верхней и нижней сторонах, так что ротор установлен с возможностью вращения, некоторое множество пластин направления нагрузки 13 установлены с возможностью вращения в продольном направлении между верхним и нижним опорными элементами 12 и 12′, чтобы соответствовать лопастям 21 ротора 20, и стопорные пальцы 14 выполнены на внутренней стороне верхнего и нижнего опорных элементов 12 и 12′ и предназначены для управления углом вращения пластин направления нагрузки 13.

Поскольку верхний опорный элемент 12 и нижний опорный элемент 12′ соединены, чтобы соответствовать друг другу, верхний опорный элемент 12 и нижний опорный элемент 12′ выполнены в одинаковой или сходной форме и включают круглые кольца 12a, выполненные со стопорными пальцами 14, некоторое множество соединительных секций 12b расположены так, чтобы проходить через центр круглых колец 12a, и отверстие 12c для установки подшипника выполнено так, чтобы проходить через центры соединительных секций 12b.

Верхний опорный элемент 12 и нижний опорный элемент 12′ прикреплены друг к другу некоторым числом опорных стоек 15, установленных в продольном направлении, и опорные стойки 15 могут быть выполнены в разных формах. Однако, в этом варианте осуществления верхний опорный элемент 12 и нижний опорный элемент 12′ имеют такую конструкцию, что фланцы 15a выполнены на верхнем и нижнем концах стержнеобразной опоры и конфигурированы для соединения с опорными частями 12d, выступающими за них в круглые кольца 12a.

Стойка вала 16 соединена с отверстием 12c для установки подшипника на стороне нижнего опорного элемента 12′, так что тело направления нагрузки 10 установлено в секциях, которые будут установлены. Стойка вала 16 имеет фланцы 16a, выполненные на верхней стороне ее цилиндрического тела, прикреплена к соединительным секциям 12b и имеет выходной вал 22 ротора 20, установленный в ней с возможностью вращения.

В то же время, как показано на Фиг. 3c и Фиг. 3d, пластины направления нагрузки 13 имеют такую форму, при которой нагрузки текучих сред направляются по существу на лопасти 21, и установлены с возможностью вращения в пространстве между стопорными пальцами 14 с помощью болта вращающегося вала направляющей пластины 18, который прикреплен к верхнему и нижнему опорным элементам 12 и 12′. Шарнирные элементы 17 направляющих пластин, имеющие отверстие для установки шарнирного вала 17a, конфигурированы для соединения с верхним и нижним концами пластин направления нагрузки 13 крепежными элементами, такими как болты, и нижняя часть болта вращающегося вала направляющей пластины 18 конфигурирована для введения в отверстие для установки шарнирного вала 17a шарнирных элементов 17 направляющих пластин.

Стопорные пальцы 14 имеют такую конфигурацию, в котором выполнено пространство для вращения, так что пластины направления нагрузки 13 вращаются в заданном диапазоне и равномерно распределены по форме кольца в количестве, соответствующем пластинам направления нагрузки. Стопорные пальцы 14 расположены так, что внутренние стопорные пальцы 14a и наружные стопорные пальцы 14b спарены для каждой из пластин направления нагрузки 13. В этом случае, как показано на Фиг. 3e, положения внутренних стопорных пальцев 14a и наружных стопорных пальцев 14b расположены на внутренней и наружной сторонах круглых колец