Устройство управления стержнями в ядерном реакторе
Иллюстрации
Показать всеИзобретение относится к системам управления и защиты ядерных реакторов. Устройство управления стержнями (CRDM) содержит направляющий винт, двигатель, закрепленный на резьбе с направляющим винтом для линейного движения направляющего винта в направлении ввода или обратно в направлении изъятия, фиксирующее приспособление, соединенное с направляющим винтом и предназначенное для (i) сцепления с соединительным стержнем и (ii) расцепления от соединительного стержня, и разъединяющий механизм, предназначенный для селективного расцепления фиксирующего приспособления от соединительного стержня. При этом соединительный стержень может свободно двигаться по направлению введения когда отцеплен. Технический результат - повышение быстродействия и надежности устройства управления стержнями. 2 н. и 5 з.п. ф-лы, 25 ил.
Реферат
В настоящее время в ядерных реакторах с водяным охлаждением (PWR) и других видах ядерных реакторов используются подвижные управляющие стержни для управления ядерной реакцией.
Управляющие стержни содержат материал для поглощения нейтронов и расположены так, чтобы их можно было ввести в ядро реактора. В общем случае управляющие стержни вводятся в ядро реактора и основное количество нейтронов поглощается ими и основная ядерная реакция замедляется. Точный контроль степени ввода и точное измерение степени ввода очень важны для точного управления реактивностью. Для такого управления используются устройства управления управляющими стержнями (CRDM).
В экстренных ситуациях управляющие стержни могут быть полностью введены в ядро реактора для того, чтобы быстро погасить ядерную реакцию. В так называемом «быстром выключении реактора» полезно иметь альтернативный быстрый механизм для введения управляющих стержней в ядро реактора. Дополнительно или в качестве альтернативы используются специальные управляющие стержни, которые могут быть полностью введены в ядро реактора (тем самым «выключив» ядерную реакцию) или полностью изъяты из ядра реактора (тем самым возобновив работу реактора). Такие стержни иногда называют «защитными», причем непрерывно регулируемые управляющие стержни иногда называют «серыми стержнями».
Учитывая сказанное, известны конструкции устройства управления стержнями CRDM, использующие соединительный стержень, который сцеплен с помощью отдельной шариковой винтовой пары. В обычном режиме такая шариковая винтовая пара прижата к соединительному стержню с помощью положительной магнитной силы, действующей на подмагниченные пружины. Путем вращения роликовой гайки направляющий винт и, следовательно, присоединенные к ней управляющие стержни передвигаются по направлению к ядру реактора или по направлению от него. При быстром выключении реактора ток прерывает действие магнитной силы, подмагниченные пружины разжимают отдельные роликовые гайки и «серые стержни» вызывают быстрое отключение реактора. Пример такого устройства раскрыт в следующем источнике информации: Domingo Ricardo Giorsetti, "Analysis of the Technological Differences Between Stationary & Maritime Nuclear Power Plants", M.S.N.E. Thesis, Massachusetts Institute of Technology (MIT) Department of Nuclear Engineering (1977), который включен в заявку в качестве ссылки.
Для встроенных ядерных реакторов с водяным охлаждением (PWR) известно использование внешнего устройства CRDM и объединение его вместе с управляющими стержнями внутри корпуса давления для их удобного прохождения. Для уменьшения пространства прохождения было предложено встроить CRDM внутрь корпуса давления. Такая конструкция описана в следующем источнике информации: Ishizaka et al., "Development of a Built-in Type Control Rod Drive Mechanism (CRDM) For Advanced Marine Reactor X (MRX)", Proceedings of the International Conference on Design and Safety of Advanced Nuclear Power Reactors (ANP '92), October 25-29, 1992 (Tokyo Japan) published by the Atomic Energy Society of Japan in October 1992,), который включен в заявку в качестве ссылки.
Существующие конструкции устройств CRDM имеют определенные недостатки. Недостатки проявляются сильнее при внутренней конструкции устройств CRDM, в которой используется электромеханическое оборудование в условиях высокого давления или высокой температуры, внутри корпуса давления. Расположение CRDM внутри корпуса давления также вызывает его сложные структурные изменения.
Отдельные роликовые гайки создают сложную связь между направляющим стержнем, которая плохо влияет на точный ввод «серых стержней» во время обычной работы реактора. Отсоединение роликовой гайки от направляющего винта достаточно сложно и очевидно не происходит немедленно после восстановления контакта, вызывая смещение ее местоположения после быстрого выключения реактора. Быстрая остановка направляющего винта также может вызвать необратимое повреждение его структурной целостности. Также износ при использовании в течение длительного времени является недостатком отдельных роликовых гаек.
Следующий важный вопрос - это надежность. Быстрая остановка стержней является критичной для безопасности и должна происходить надежно, даже в случае потери охлаждающей жидкости (LOCA) или в других нештатных режимах, которые могут вызвать прекращение питания электрической энергией, в случае больших изменений давления и тому подобное.
Детекторы положения управляющего стержня также являются достаточно сложным устройством. В некоторых системах используются внешний детектор положения, которые требуют прохождения вдоль стенки корпуса давления. Для внутреннего CRDM в ядерном реакторе MRX типа был разработан сложный детектор положения, в котором передатчик генерирует импульсы, которые проходят по магниторезистивному волноводу, и измеряет напряженность магнитного поля для определения положения стержня.
Обычно внутренний детектор положения, работающий на основе измерения электрического сопротивления, предрасположен к ошибкам измерений в связи с изменением сопротивления материала вследствие температурных изменений.
ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
В одном варианте осуществления изобретения, устройство управления стержнями в ядерном реакторе включает, по меньшей мере, один управляющий стержень, предназначенный для введения в активную зону ядерного реактора для поглощения нейтронов; полый направляющий винт; двигатель, оперативно соединенный с полым направляющим винтом для его линейного поступательного движения по направлению к ядру ядерного реактора или от него; соединительный стержень, соединенный с, по меньшей мере, одним вышеупомянутым управляющим стержнем и расположенный частично внутри полого направляющего винта; фиксирующее приспособление с фиксаторами, которые в зафиксированном положении оперативно соединяют соединительный стержень с направляющим винтом, так что соединительный стержень и, по меньшей мере, один вышеупомянутый управляющий стержень перемещаются вместе направляющим винтом, приводимым в движение двигателем; расцепляющее приспособление в случае быстрой остановки реактора управляющего стержня от направляющего винта, причем соединительный стержень и, по меньшей мере, один вышеупомянутый управляющий стержень останавливаются, а направляющий винт остается оперативно соединен с двигателем и не останавливается.
В другом варианте осуществления устройство управления управляющими стержнями (CRDM) содержит направляющий винт, двигатель, соединенный на резьбе с направляющим винтом для осуществления линейного перемещения направляющего винта по направлению его введения или наоборот его изъятия; фиксирующее приспособление, закрепленное с направляющим винтом и предназначенное для (i) фиксации соединительного стержня и (ii) расцепления от соединительного стержня, обеспечивая тем самым возможность его перемещения по направлению введения; и разъединительное приспособление, предназначенное для избирательного разъединения фиксирующего приспособления и соединительного стержня.
В другом варианте осуществления устройство управления управляющими стержнями (CRDM) содержит множество CRDM устройств, каждое из которых включает направляющий винт и двигатель, предназначенный для управления направляющим винтом; опору с установленными на ней CRDM устройствами в корпусе реактора и двигателями управления CRDM устройствами, расположенными на различной высоте относительно ядра реактора в корпусе ядерного реактора. Каждое CRDM устройство соединено с одним и более управляющими стержнями внутри, вне зоны или в пределах ядра реактора.
В другом варианте осуществления устройство управления стержнями, описанное в предыдущем параграфе, предназначено для возможности извлечения стержня путем приведения фиксирующего приспособления в расцепленное состояние и вытягивания соединительного стержня из ядра ядерного реактора с помощью CRDM устройства.
КРАТКОЕ ОПИСАНИЕ СОПРОВОДИТЕЛЬНЫХ ЧЕРТЕЖЕЙ
Изобретение может иметь различные варианты осуществления конкретных деталей и механизмов, а также различных технологических операций и деталей технологических операций. Чертежи являются способом иллюстрации (пояснения) и не должны рассматриваться как ограничение рассматриваемого изобретения.
Фигура 1 схематично показывает корпус ядерного реактора с водяным охлаждением (PWR).
Фигура 2 схематично показывает верхний внутренний отдел иллюстрируемого корпуса ядерного реактора, изображенного на фигуре 1.
Фигуры 3-5 схематично показывают виды системы отключения управляющих стержней с использованием гидравлического подъемного устройства.
Фигуры 6-15 схематично показывают виды системы управления стержнями с функцией электромагнитной серого стержня и магнитной фиксирующей системы с функцией быстрой остановки реактора.
Фигуры 16-21 схематично показывают особенности системы управляющего стержня с функцией серого стержня и фиксирующую систему с функцией быстрой остановки реактора.
Фигуры 22 и 23 показывают общий вид и общий вид в разрезе относительно применяемой структуры CRDM, использующего вертикально расположенное в шахматном порядке двигающее приспособление.
Фигуры 24 и 25 показывают общий вид и общий раскрытый вид соответственно соединения с канавкой между нижним концом соединительного стержня и группой стержней.
ДЕТАЛЬНОЕ ОПИСАНИЕ ПРДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ
Как следует из фигуры 1, на ней схематично изображен корпус ядерного реактора с водяным охлаждением (PWR). Как изображено, первичный корпус 10 содержит ядро реактора 12, внутренние спиральные парогенераторы 14 и внутренние управляющие стержни 20. Изображенный корпус реактора включает четыре основные части, а именно 1) малый корпус 22, 2) верхние внутрикорпусные устройства 24, 3) головную часть корпуса 28. Средний фланец 29 расположен между нижней секцией 22 и верхней секцией 26 корпуса. Также могут быть предусмотрены иные конфигурации корпуса. Следует понимать, что фигура 1 схематична и не показывает такие элементы корпуса как внутренности корпуса давления для перетекания вторичного охлаждающего вещества внутрь и наружу парогенераторов, также фигура 1 не показывает электрические детали электрических элементов и так далее.
Нижний корпус 22, изображенный на фигуре 1, корпуса ядерного реактора содержит ядро реактора 12, которое может иметь по существу любую подходящую конфигурацию. Одна из подходящих конфигураций включает ядро из нержавеющей стали, образующее структуру, которая содержит топливные сборки, которые могут заменяться для дозаправки ядерного реактора и которые закрепляются с помощью нижнего корпуса. Изображенный верхний корпус 26 закрывает парогенераторы 14 в изображенном ядерном реакторе с водяным охлаждением, который имеет вид внутреннего парогенератора (иногда называемый интегральным PWR). Парогенератор 14 схематично изображен на фигуре 1. Цилиндрическая внутренняя оболочка верхнего кожуха 30 отделяет отдел центрального подъемного устройства 32 от кольцевого вертикального отдела 34, в котором расположены спиральные парогенераторы 14. Изображенный парогенератор 14 имеет вид спиралевидной катушки, хотя может иметь и другой внешний вид. Первичное охлаждающее вещество протекает вдоль внешней поверхности труб парогенератора 14, а вторичное охлаждающее вещество протекает внутри труб парогенератора 14. При обычном типе циркуляции первичное охлаждающее вещество нагревается от ядра ядерного реактора 12 и протекает через отдел центрального подъемного устройства 32 на выход оболочки внешнего кожуха 30, после чего первичная охлаждающая жидкость протекает вниз через нижний встречный отдел 34 и вдоль парогенераторов 14. Такая первичная охлаждающая жидкость может регулироваться естественной конвекцией, внутренними или внешними насосами первичной охлаждающей жидкости (не показаны на фигурах) или комбинацией насоса и естественной конвекции. Хотя на фигурах изображен реактор PWR типа, то же самое подразумевается для сосуда давления с внешним парогенератором (не показан на фигуре), в этом случае проникновение в корпус давления способствует переносу охлаждающей жидкости по направлению к внешнему парогенератору и от него. Изображенная головная часть корпуса 28 является отдельной деталью. Также показано, что головная часть корпуса встроена в верхний корпус 26, в этом случае парогенератор 14 и внешний кожух 30 дополнительно опираются на панели внутри головной части корпуса.
Изображенный вариант осуществления изобретения ядерного реактора с водяным охлаждением включает внутренние водяные генераторы 14, которые могут иметь различные геометрические формы, в частности, такие как цилиндрическая, вертикальная, наклонная и другие. С целью дублирования в общем случае выгодно иметь более одного парогенератора, трубы которого прокладываются внутри нижнего встречного отдела 34 для достижения тепловой равномерности, однако предполагается, что можно использовать и только один парогенератор. Хотя изображенные на фигурах парогенераторы 14 расположены или закрыты непосредственно внешним кожухом 30, в общем случае парогенераторы могут занимать существенный объем отдела опускной камеры 34, и в некоторых вариантах осуществления парогенераторы могут существенно занимать кольцеобразное пространство между внешней поверхностью внешнего кожуха 30 и внутренней поверхностью корпуса давления 10. Также предусмотрено, что внутренние парогенераторы или их части могут быть расположены полностью или частично в отделе подъемного устройства 32 над внешним кожухом 30 либо внутри корпуса давления 10. С другой стороны, в некоторых вариантах осуществления ядерный реактор с водяным охлаждением может не иметь встроенные парогенераторы, то есть в некоторых вариантах осуществления изображенные внутренние парогенераторы могут отсутствовать, так есть один и более внешних парогенераторов. Таким образом, изображенный ядерный реактор с водяным охлаждением приведен в качестве примера и в качестве других вариантов осуществления это может быть кипящий ядерный реактор (BWR) и иной с использованием как внутренних, так и внешних парогенераторов.
На фигуре 2 детально изображен внутри корпусной отдел 24. Изображенный внешний вид внутрикорпусного отдела 24 предусматривает размещение устройства управления стержнями 40, 42 и направляющие 44 для управляющего стержня, а также устройство, через которое поступают энергия для механизма управления стержнем, а также управляющие сигналы. Это позволяет независимо от устройства управления стержнем или других элементов заменять верхний корпус 26 и встроенный парогенератор 14. Однако также предусмотрен более цельный внешний вид, предусматривающий установку CRDM и встроенного парогенератора в общем отделе.
На фигуре 2 изображен вариант осуществления верхнего внутрикорпусного отдела 24, включающего верхнюю внутрикорпусную корзину 46, опорный элемент 48 CRDM, направляющие 44 для управляющего стержня и устройство управления стержнем 40, 42. Верхняя внутрикорпусная корзина 46 представляет собой соответствующим образом сваренную структуру, которая включает средний фланец 29 и опорный элемент для направляющих 44 для управляющего стержня. В одном из вариантов осуществления, направляющие 44 для управляющего стержня представляют собой сварную конструкцию из нержавеющей стали марки 304L, привинченную к своему месту, средний фланец 29 представляет собой штамповку из углеродистой стали марки SA508 Gr 4N С12, остальные детали выполнены из нержавеющей стали марки 304L. Опорный элемент CRDM состоит из опорных решеток для механизмов управления стержнем 40, 42 и направляющих для внутриреакторных приборов. Все детали выполнены из нержавеющей стали марки 304L. Опорный элемент CRDM привинчен к верхней внутрикорпусной корзине 46. Ясно, что описаны иллюстративные материалы и конструкции и что возможны другие варианты конструкций и/или совместимых с ядерным реактором материалов для осуществления данного изобретения.
На фигуре 2 в качестве примера изображены два типа механизмов для управления стержнями 40, 42: гидравлический тип 42 механизма управления стержнем, который осуществляет отключение стержней, которые либо полностью изъяты, либо полностью введены в ядро реактора; а также электрический тип 40 механизма для управления стержнями, который управляет серыми стержням, которые вводятся в различном количестве на протяжении жизненного цикла ядерного реактора для управления скоростью ядерной реакции во время нормальной работы реактора. Серые стержни также предназначены для быстрого выключения реактора путем быстрого введения в ядро реактора 12 во время чрезвычайных ситуаций. В другом варианте осуществления предусмотрено полностью исключить стержни для остановки реактора, в этом случае «серые стержни» также предусматривают операцию остановки.
На фигуре 2 и далее на фигурах 3-5 изображены детали выполнения стержней для остановки реактора. Стержни для остановки специальным образом размещены в группы, закрепленные в сети или тому подобное, которые работают как единая группа, и все стержни могут двигаться с помощью одного механизма 42. Фигуры 3-5 показывают только механизм 42, а сети и отдельные стержни не показаны. Эта конфигурация указывает на то, что стержни для отключения реактора работают в режиме включено/выключено, так что все стержни полностью введены в ядро реактора 12 для его остановки либо все стержни полностью изъяты из ядра реактора 12 для обеспечения его нормальной работы.
На фигуре 3 изображен механизм остановки стержня 42, включающий цилиндрический корпус 50, цилиндрическую крышку 52, цилиндрическую опорную плиту 54 и соединительный стержень 54, обеспечивающий соединение с решеткой остановки стержня (не показана). Изображенный на фигурах 3-5 механизм остановки стержней 42 приводится в действие гидравлически с использованием оставшейся очищенной охлаждающей реактор жидкости, поступающей из нагнетающих под высоким давлением насосов, при температуре примерно 500 градусов по Фаренгейту (260 градусов по Цельсию) и давлением 1600 psi для удерживания группы стержней вне зоны ядра реактора 12.
На фигуре 4 изображен частный вид поршня со стержнем в извлеченном состоянии. На увеличенной части фигуры 4 показаны вентиляционный канал 60 цилиндрической крышки 52 вместе с подъемным механизмом поршня 62, поршневые кольца 64 (которые выполнены из металла в некоторых вариантах осуществления), амортизатор быстрой остановки 66, буферная пружина 68. Показанное на фигуре 4 извлеченное состояние соответствует цилиндру управляющего механизма 42 в закрытом герметизированном состоянии.
На фигуре 5 изображен частный вид поршня со стержнем во введенном состоянии. На увеличенной части фигуры 5 показаны подъемный механизм поршня, поршневые кольца 64, амортизатор быстрой остановки или поршень амортизатора быстрой остановки 66, направляющая стержневая втулка 70, уплотнительные стержневые кольца 72 (которые выполнены из металла в некоторых вариантах осуществления). Цилиндрическая опорная пластина 54 видна на увеличенной части фигуры включая канал давления и входной канал 74. Показанное на фигуре 5 введенное состояние соответствует цилиндру управляющего механизма 42 в разгерметизированном состоянии.
В некоторых вариантах осуществления допускается просачивание охлаждающей жидкости мимо поршня и уплотнения вала 64, 72 и становится частью остатков, возвращающихся в корпус реактора 10. Цилиндр останавливающего стержень механизма 42 расположен над ядром реактора 12. Гидравлическая линия (не показана) для приведения в действие цилиндра 42 проложена через фланец 29 и приборные линии проложены через герметизированные трубы к общим соединителям, которые также дополнительно используются для механизмов серого стержня. Удлинительные стержни, которые соединяют сети управляющих стержней с решеткой останавливающего стержня, могут быть дополнительно предназначены для того, чтобы скользить через решетку таким образом, чтобы не один отдельный пучок не препятствовал опусканию других управляющих стержней. Дополнительно, удлинительные стержни предназначены для расцепления от сети управляющих стержней таким образом, чтобы останавливающие стержни оставались в ядре реактора при извлечении внутрикорпусного отдела 24. Высвобождение и сцепление выполняются с использованием дистанционного управления во время операций по дозаправке.
Во время обычной работы реактора останавливающие стержни подвешены полностью вне зоны ядра реактора (то есть находятся в изъятом состоянии) путем герметизации гидравлического цилиндра 42 останавливающего стержня. Например, в одном из вариантов осуществления очищенная охлаждающая реактор жидкость поступает из нагнетающих под высоким давлением насосов при температуре примерно 500 градусов по Фаренгейту (260 градусов по Цельсию) и давлением 1600 psi к верхней части подъемного устройства поршня 626 через входной канал 74 основания цилиндра 54. В этом примере, жидкость присутствует в цилиндре 50 над поршнем 60, поступая из корпуса реактора 10 через вентиляционный канал 60 крышки цилиндра, и, следовательно, в корпусе реактора температура составляет 600 градусов по Фаренгейту (315 градусов по Цельсию) и давление 1500 psi, приводя фактически к разнице давления 100 psi на концах поршня 62. Размер поршня выбран таким образом, что достигаемая разница давления достаточна для поддержки необходимой нагрузки останавливающих стержней и поддержки сетей и других связанных компонентов и подъема группы останавливающих стержней через цилиндр к верхнему ограничителю поршня 62.
В случае быстрой остановки герметичного корпуса, группа останавливающих стержней внезапно разблокируется путем прекращения подачи охлаждающей жидкости в верхнюю часть подъемного устройства поршня 62, приводя давление в питающей линии к уровню атмосферного. В вышеупомянутом примере, в корпусе давления верхнего участка подъемного устройства поршня 62 первоначально образуется разница давления 1500 psi, действующего на подъемное устройство поршня, которое действуя совместно с силой тяжести, является достаточным для передвижения деталей, включая подъемное устройство поршня 62, амортизатор быстрой остановки 66, буферную пружину 68, соединительный стержень 56, решетку остановочного стержня (не показана), сверху вниз к положению полного введения в ядро реактора, как изображено на фигуре 5. Во время спуска передвигаемых деталей сила буферной пружины 68 удерживает амортизатор быстрой остановки 66 вне отверстия подъемного устройства поршня 62, предотвращая заполнение жидкостью полости между поршнями 62, 66. Когда верхняя поверхность амортизатора быстрой остановки 66 касается неподвижной цилиндрической опорной плиты 54, последовательное движение подъемного устройства поршня 62 вытесняет задержавшуюся жидкость через регулируемые потоком заслонки, уменьшая, таким образом, кинетическую энергию передвигаемых деталей. Дополнительно, кинетическая энергия уменьшается за счет упругой деформации компонентов передвигаемых деталей, в особенности длинного и относительно тонкого соединительного стержня 56. Предполагаются и другие механизмы уменьшения кинетической энергии. При вытеснении жидкости из полости подъемное устройство поршня 62 касается амортизатора поршня 66, приводя передвигаемые детали к остановке.
На фигурах 1 и 2, а также на фигурах 6-14 изображен вариант осуществления серых стержней и связанных с ним устройств управления 40. Как видно на фигуре 6, существует два различных типа серого стержня (тип 1 и тип 2). Серые стержни 80 сгруппированы в группы, которые в свою очередь образуют подгруппы из двух или четырехзвенных механизмов, закрепленных с помощью соединительных стержней 82, как показано на фигуре 6. Тип 1 также состоит из противовеса 84 на месте одного из блоков группы/соединительного стержня. В частности, хомут 86 соединяет два соединительных стержня 82 и противовес 84, образуя серый стержень тип 1. Хомут 88 соединяет три соединительных стержня 84, образуя серый стержень тип 2. Механизм управления 40 серым стержнем располагается над ядром реактора 12. Фигура 7 показывает вид сверху расположения механизмов управления 40 серым стержнем и цилиндрический корпус 50 останавливающих стержней, относительно опорного элемента 48 CRDM. Цилиндрический корпус 50 останавливающих стержней расположен центрально. Четырехзвенные наружные механизмы управления 40 серыми стержнями, каждый двигающий два стержня типа 1, включая хомут 86, работают одновременно. Два внешних механизма 40, каждый двигающий четыре стержня типа 2, включая хомут 88, также работают одновременно. Эти различные группы механизмов 40 по выбору могут работать вместе или отдельно друг от друга. Провода для передачи сигналов и питания проложены через герметичные трубы или через приборный короб 90 к соединителям на среднем фланце 29 (не показан на фигуре 7).
В отношении останавливающих стержней, удлинительные стержни, которые соединяют сети управляющих стержней с решеткой стержня, изготовлены так, чтобы они могли проходить через решетку и отдельные группы и не мешали друг другу опускаться. Дополнительно, удлинительные стержни необязательно могут быть высвобождены из сети управляющих стержней, так что серые стержни могут оставаться в ядре реактора, тогда как верхние внутрикорпусные устройства извлечены или извлекаются, в то время как внутрикорпусные устройства в основании ядра остаются на месте. Существует два варианта изготовления управляющих устройств серыми стержнями: «магнитное гнездо» и «ходовой винт». Второй тип обеспечивает более точное управление положением группы серых стержней, соответственно изображенный вариант осуществления использует вариант второго типа.
На фигуре 8, в одном из вариантов осуществления устройства управления 40 серыми стержнями используют конструкцию подъемного стержня с шариковой винтовой парой. Фигура 8 показывает полностью введенное состояние (слева) и полностью извлеченное состояние (справа). Изображения на фигуре 8 показывают хомут 88 типа 2, для типа 1 устройство хомута 88 заменено хомутом 86. В варианте осуществления, показанном на фигуре 8, верхнее устройство остановки/амортизации расположено на опоре реактора 101, также дополнительно предусмотрена электромагнитная катушка с дополнительными боковыми опорами. Нижняя и верхняя опорные трубы 102, 104, которые расположены на вершине верхней части стопора 100, обеспечивают направляющие для направляющего винтового/вращающегося приемного устройства. Шариковая винтовая пара/двигатель 106 расположены на вершине верхней опорной трубы 104 и электромагнитная катушка 108 расположена на вершине двигателя. Внутри электромагнитной катушки 108 располагается винтовое фиксирующее приспособление 110, которое (в зафиксированном) состоянии поддерживает подъемное приспособление/соединительный стержень 112 (дополнительно видно во введенном состоянии на левом рисунке).
Индикатор местоположения расположен на опорных трубах 102, 104 между шариковой винтовой парой/двигателем 106 и верхней частью стопора 100. В некоторых вариантах осуществления, индикатором местоположения является линейный потенциометр, расположенный специальным образом под фиксирующим приспособлением, хотя возможны и другие варианты компоновки. Изображенный линейный потенциометр включает стяжную катушку 120, установленную на опорной трубе 102, а также «шнур» или кабель 122, одним концом соединенный с подъемно/соединительной стержневой сборкой 112, так что шнур или кабель вытягивается из катушки 120 в зависимости от натяжения подъемного приспособления/соединительной стержня 112 (и, следовательно, присоединенной группы серых стержней), двигаясь в направлении ядра реактора 12 (не показан на фигуре 8). Когда движение меняет направление, натяжение стяжной катушки 120 вызывает обратное наматывание шнура или кабеля 122 на катушку 120. Сенсор вращения 124 измеряет скорость вращения стяжной катушки 120 с помощью счетчика, который подсчитывает число контрольных меток или с помощью других мер измерения скорости. Расположение линейного потенциометра может быть иное, чем изображенное на фигурах, поскольку натяжная катушка 120 расположена так, что остается неподвижной относительно серого стержня и движение обеспечивается шнуром или кабелем 122. Также возможно объединить сенсор вращения 124 вместе со стяжной катушкой 120. Линейный потенциометр выдает выходной электрический сигнал, согласованный с положением соединительного стержня или других деталей 112, которые двигаются вместе с серым управляющим стержнем, таким образом, обеспечивая информацию о положении серого стержня внутри ядра реактора 12. Электрический сигнал, указывающий положение, пересылается из корпуса реактора 10 по проводам (не показаны), которые могут быть меньшего размера, чем другие электрические выводы. Устройство определения положения изготовлено и откалибровано для работы при температуре и уровню радиации, свойственному ядерному реактору.
На следующей фигуре 8, а также на фигурах 9-14, на изображенном варианте осуществления передвигаемые детали серого стержня CDRM 40 включают три элемента: пара направляющий винт/вращательный отборник, пара подъемное устройство/соединительный стержень, фиксирующая система, которая быстро сцепляет поднимающийся стержень с направляющим винтом. Фигура 9 показывает общий вид (слева) и вид в разрезе (справа) пары направляющий винт/вращательный отборник. Двигатель включает корпус статора 130, закрывающий статор 132 и ротор 134. Верхняя торцевая крышка 136 статора и радиальные подшипники 138 с регулируемыми промежутками 140 занимают верхнюю часть двигателя, тогда как нижняя часть корпуса 142 и опорные подшипники 144 занимают нижнюю его часть. Нижняя шариковая винтовая пара 150 расположена в нижней части корпуса 142 и навинчена на ротор 134, и верхняя шариковая винтовая пара 152 также навинчена на ротор 134. Обе шариковые винтовые пары 150, 152 соединены между собой, так как накручены на направляющий винт 160 (как показано на фигуре 9). Фигура 9 также показывает часть подъемного стержня и верхней опорной трубы 104.
На фигуре 10 изображены фиксатор, включающий подъемные стержни, винтовое фиксирующее приспособление 110 и часть электромагнитной катушки 108. Также на фигуре 10 показан наконечник 111 подъемного стержня 112 и соседний наконечник 160 направляющего винта, заканчивающегося на фиксирующем приспособлении 110. Фиксаторы 170 непосредственно соединяют верхний наконечник 111 подъемного стержня 112 с направляющим винтом 160 для нормальной работы и разъединяют подъемный стержень 112 во время аварийной остановки (смотри фигуру 11). Верх подъемного стержня 112 соединен резьбой с верхом соединительного стержня 82 (например, с помощью хомутов 86 или 88), образуя, таким образом, непрерывную связку: подъемный стержень/соединительный стержень. Верх соединительного стержня 82 соединен непосредственно с сетями управляющего стержня, присоединяя, таким образом, управляющие стержни к механизмам. Дополнительно, магнит 113 расположен в непосредственной близости от верхней части 111 подъемного стержня 112 для передачи магнитного сигнала на индикатор положения (смотри фигуру 21). Фигура 10 также показывает часть мотора, включая часть корпуса 130, статор 132, ротор 134, который полностью показан на фигуре 9.
Фиксаторы 170 закрыты корпусом 172, который включает пружинную направляющую для фиксирующей пружины 174. Дополнительные элементы изображенной фиксирующей системы включают корпус электромагнита 176, закрывающий электромагниты 177, формируя блок электромагнитных катушек, и постоянные магниты 178 на фиксаторах 170. Направляющий винт 160 вкручен в опору фиксирующей системы 179 корпуса фиксатора 172. Фиксаторы 170 вращаются с помощью шарниров 180 для обеспечения надежной аварийной остановки, вызванной введением опускаемого стержня.
В этом варианте осуществления, направляющий винт 160 непрерывно опирается на шариковые винтовые пары двигателя (хорошо видно на фигуре 9), что позволяет очень хорошо управлять положением направляющего винта и, следовательно, хорошо управлять положением управляющего стержня. В изображено варианте осуществления, двигатель (например, статор 132, ротор 134) является синхронным двигателем, в котором ротор 134 является постоянным магнитом. Это выполнение имеет преимущества, такие как компактность и простота, однако, возможны другие варианты выполнения двигателя.
Направляющий винт 160 не останавливается быстро. Напротив, во время аварийной остановки верхний наконечник подъемного устройства стержня 112 пара подъемный стержень/соединительный стержень отсоединяется от направляющего винта 160 с помощью магнитоуправляемой фиксирующей системы (смотри фигуру 11). Когда энергия в электромагнитах 177 пропадает, надежная фиксирующая система разъединяет пару подъемный/соединительный стержни (и управляющий стержень) от направляющего винта, вызывая аварийную остановку. Верхний упор и буферная система (не показана, но похожа на верхний упор и буферную систему изображенных останавливающих стержней описанных выше и изображенных на фигурах 4 и 5) встроены в блок опора/буфер для уменьшения кинетической энергии в конце аварийной остановки и для поднятия нижней части стержня. Вращающийся отборник (не показан) соединен с направляющим винтом 160, вызывая вращение мотора, вызывая передвижение пары направляющий винт/управляющий стержень.
Нормальное состояние устройства (до аварийной остановки) показано на фигуре 9 и 10. Фигура 9 показывает шариковую винтовую пару/двигатель, фигура 10 показывает фиксирующую систему в нормальном состоянии. Как видно на фигуре 11, постоянные магниты 178 на фиксаторах 170 притянуты магнитной силой в направлении заряженных электромагнитов 177, вращая фиксаторы 170 вокруг поворотных фиксаторов 180 и сцепляя фиксаторы 170 со стыковочной областью подъемного стержня 112. Таким образом, фиксаторы 170 закреплены вместе подъемным стержнем 112 в нормальном состоянии, показанном на фигуре 10. Далее, опора 179 фиксирующей системы соединена резьбой или иным образом прикреплена к направляющему винту 160. Соответственно, в нормальном состоянии на фигуре 10 подъемный стержень 112 прикреплен к направляющему винту 160 через фиксирующую систему, и для того чтобы шариковая винтовая пара/двигатель, показанные на фигуре 9, перемещали направляющий винт 160, подъемный стержень 112 перемещается направляющим винтом 160.
Аварийная остановка описана на фигуре 11, которая показывает подъемный стержень 112 и, следовательно, сборку управляющего стержня, во время аварийной остановки. Аварийная остановка вызывается отключением электроэнергии в электромагнитах 177, то есть они отключаются. Это вызывает пропадание силы притяжения в постоянных магнитах 178 фиксаторов 170, и фиксирующая пружина 174 растягивается до разворота фиксаторов 170 с помощью шарниров 180 и в сторону от стыковочной области подъемного стержня 112. Это расцепляет фиксаторы 170 от подъемного стержня 112, и пара подъемный стержень/соединительный стержень (а также сборка управляющего стержня) опускается в направлении реактора 12. Направляющий винт 160 виден на фигуре 11 на уровне, соответствующем положению до его изъятия (то есть направляющий винт 160 не был аварийно остановлен), но электроэнергия в электромагнитах 177 отключилась так, что магнитная сила в катушках пропала.
Как далее показано на фигуре 11, поворот фиксаторов 170 с помощью шарниров 180 прекращается за счет столкновения в точке 181 с направляющей пружиной корпуса фиксатора 172.
На фигуре 11 и далее на фигурах 12 и 13 изображен направляющий винт 160, приводимый, для повторного сцепления устройства, в полностью введенное положение двигателем с шариковой винтовой парой (смотри также фигуру 9). Направляющий винт содержит на своем основании датчик для подтверждения его полного введения. На фигуре 12 изображен направляющий винт 160 в полностью введенном положении к угловой кулачковой поверхности 182 на наконечнике 111 подъемного стержня 112, который аварийно останавливается до основания, приводя фиксаторы 170 в полностью сомкнутое положение. На фигуре 13 изображены фиксаторы 170, когда питание электроэнергией электромагнитов восстановлено, повторно сцепленные со стыковочной областью подъемного стержня 112, так что сборка подъемный стержень/соединительный стержень повторно присоединена к направляющему стержню 160. Затем нормальный режим работы возобн