Представление информационного сигнала с использованием преобразования с перекрытием
Иллюстрации
Показать всеИзобретение относится к средствам представления информационных сигналов с использованием преобразования с перекрытием. Технический результат заключается в повышении эффективности кодирования. Модуль восстановления информационных сигналов сконфигурирован с возможностью восстанавливать, с использованием подавления наложения спектров, информационный сигнал из представления преобразования с перекрытием информационного сигнала, содержащего для каждой из последовательных перекрывающихся областей информационного сигнала преобразование обработанной методом окна версии соответствующей области, при этом модуль восстановления информационных сигналов сконфигурирован с возможностью восстанавливать информационный сигнал на частоте дискретизации, которая изменяется на границе между предшествующей областью и последующей областью информационного сигнала. Модуль восстановления информационных сигналов содержит повторный преобразователь, сконфигурированный с возможностью применять повторное преобразование к преобразованию обработанной методом окна версии предшествующей области, с тем чтобы получать повторное преобразование для предшествующей области, и применять повторное преобразование к преобразованию обработанной методом окна версии последующей области. 9 н. и 14 з.п. ф-лы, 13 ил.
Реферат
Настоящая заявка относится к представлению информационного сигнала с использованием преобразований с перекрытием и, в частности, к представлению информационного сигнала с использованием представления преобразования с перекрытием информационного сигнала, требующего подавления наложения спектров, к примеру, используемого, например, в технологиях сжатия аудио.
Большинство технологий сжатия спроектированы для определенного типа информационного сигнала и конкретных условий передачи сжатого потока данных, таких как максимальная разрешенная задержка и доступная скорость передачи битов. Например, при сжатии аудио кодеки на основе преобразования, такие как AAC, зачастую превосходят по характеристикам кодеки временной области на основе линейного прогнозирования, такие как ACELP, в случае более высокой доступной скорости передачи битов и в случае кодирования музыки вместо речи. USAC-кодек, например, нацелен на охват большего числа сценариев применения посредством унификации различных принципов кодирования аудио в одном кодеке. Тем не менее, является предпочтительным дополнительно повышать адаптивность к различным условиям кодирования, таким как изменяющаяся доступная скорость передачи битов, чтобы иметь возможность воспользоваться их преимуществом для того, чтобы достигать, например, более высокой эффективности кодирования и т.п.
Соответственно, задача настоящего изобретения заключается в том, чтобы предоставлять такой принцип посредством предоставления схемы представления информационного сигнала в виде преобразования с перекрытием, которая обеспечивает представление информационного сигнала посредством представления преобразования с перекрытием требующего подавления наложения спектров, так что можно адаптировать представление преобразования с перекрытием к фактической потребности, тем самым предоставляя возможность достигать более высокой эффективности кодирования.
Эта задача решается посредством объекта изобретения в находящихся на рассмотрении независимых пунктах формулы изобретения.
Основные идеи, которые приводят к настоящему изобретению, заключаются в следующем. Представления преобразования с перекрытием информационных сигналов зачастую используются для того, чтобы формировать предварительное состояние при эффективном кодировании информационного сигнала с точки зрения, например, восприятия отношения скорости передачи к искажению. Примерами таких кодеков являются AAC или TCX и т.п. Представления преобразования с перекрытием, тем не менее, также могут использоваться для того, чтобы выполнять повторную дискретизацию посредством конкатенации преобразования и повторного преобразования с различными спектральными разрешениями. В общем, представления преобразования с перекрытием, вызывающие наложение спектров в перекрывающихся частях отдельных повторных преобразований из преобразований обработанных методом окна последовательных временных областей информационного сигнала, имеют преимущество с точки зрения меньшего числа уровней коэффициентов преобразования, которые должны быть кодированы, с тем чтобы представлять представление преобразования с перекрытием. В крайней форме, преобразования с перекрытием являются "критически дискретизированными". Иными словами, не увеличивается число коэффициентов в представлении преобразования с перекрытием по сравнению с числом временных выборок информационного сигнала. Примером представления преобразования с перекрытием является гребенка фильтров MDCT (модифицированного дискретного косинусного преобразования) или QMF (квадратурных зеркальных фильтров). Соответственно, зачастую предпочтительно использовать такие представления преобразования с перекрытием в качестве предварительного состояния при эффективном кодировании информационных сигналов. Тем не менее, также должно быть предпочтительным иметь возможность разрешать изменение во времени частоты дискретизации, на которой представляется информационный сигнал с использованием представления преобразования с перекрытием, так что она адаптируется, например, к доступной скорости передачи битов или другим окружающим условиям. Представим себе изменяющуюся доступную скорость передачи битов. Каждый раз, когда доступная скорость передачи битов опускается ниже некоторого предварительно определенного порогового значения, например, может быть предпочтительным понижать частоту дискретизации, а когда доступная скорость передачи снова повышается, должно быть предпочтительным иметь возможность повышать частоту дискретизации, на которой представление преобразования с перекрытием представляет информационный сигнал. К сожалению, перекрывающиеся части с наложением спектров повторных преобразований представления преобразования с перекрытием, вероятно, образуют препятствие для таких изменений частоты дискретизации, причем это препятствие, вероятно, преодолевается только посредством полного прерывания представления преобразования с перекрытием в случаях изменений частоты дискретизации.
Авторы настоящего изобретения, тем не менее, реализовали решение вышеуказанной проблемы, тем самым обеспечивая эффективное использование представлений преобразования с перекрытием, заключающих в себе рассматриваемое наложение спектров и изменение частоты дискретизации. В частности, посредством интерполяции предшествующая и/или последующая область информационного сигнала повторно дискретизируется в части подавления наложения спектров согласно изменению частоты дискретизации на границе между обеими областями. Модуль комбинирования затем имеет возможность выполнять подавление наложения спектров на границе между повторными преобразованиями для предшествующей и последующей областей, полученных посредством повторной дискретизации в части подавления наложения спектров. Посредством этой меры изменения частоты дискретизации фактически обходятся с исключением разрывностей представления преобразования с перекрытием при изменениях/переходах частоты дискретизации. Аналогичные меры также осуществимы на стороне преобразования, чтобы надлежащим образом формировать преобразование с перекрытием.
С использованием вышеприведенной идеи можно предоставлять технологии сжатия информационных сигналов, к примеру технологии сжатия аудио, которые имеют высокую эффективность кодирования в широком диапазоне окружающих условий кодирования, таких как доступная полоса пропускания передачи, посредством адаптации передаваемой частоты дискретизации к этим условиям без штрафа за счет самих случаев изменений частоты дискретизации.
Преимущественные аспекты настоящего изобретения представляют собой предмет зависимых пунктов формулы изобретения для заданных независимых пунктов формулы изобретения. Кроме того, предпочтительные варианты осуществления настоящего изобретения описываются ниже относительно чертежей, на которых:
фиг. 1a показывает блок-схему информационного кодера, в котором могут быть реализованы варианты осуществления настоящего изобретения;
фиг. 1b показывает блок-схему декодера информационных сигналов, в котором могут быть реализованы варианты осуществления настоящего изобретения;
фиг. 2a показывает блок-схему возможной внутренней структуры базового кодера по фиг. 1a;
фиг. 2b показывает блок-схему возможной внутренней структуры базового декодера по фиг. 1b;
фиг. 3a показывает блок-схему возможной реализации модуля повторной дискретизации по фиг. 1a;
фиг. 3b показывает блок-схему возможной внутренней структуры модуля повторной дискретизации по фиг. 1b;
фиг. 4a показывает блок-схему кодера информационных сигналов, в котором могут быть реализованы варианты осуществления настоящего изобретения;
фиг. 4b показывает блок-схему декодера информационных сигналов, в котором могут быть реализованы варианты осуществления настоящего изобретения;
фиг. 5 показывает блок-схему модуля восстановления информационных сигналов в соответствии с вариантом осуществления;
фиг. 6 показывает блок-схему преобразователя информационных сигналов в соответствии с вариантом осуществления;
фиг. 7a показывает блок-схему кодера информационных сигналов в соответствии с дополнительным вариантом осуществления, в котором может быть использован модуль восстановления информационных сигналов согласно фиг. 5;
фиг. 7b показывает блок-схему декодера информационных сигналов в соответствии с дополнительным вариантом осуществления, в котором может быть использован модуль восстановления информационных сигналов согласно фиг. 5;
фиг. 8 показывает схематический вид, показывающий сценарии переключения частоты дискретизации, возникающие в кодере и декодере информационных сигналов по фиг. 6a и 6b в соответствии с вариантом осуществления.
Чтобы обуславливать варианты осуществления настоящего изобретения, дополнительно описанные ниже, предварительно поясняются варианты осуществления, в которых могут быть использованы варианты осуществления настоящей заявки и которые проясняют намерение и преимущества вариантов осуществления настоящей заявки, подробнее изложенных ниже.
Фиг. 1a и 1b показывают, например, пару из кодера и декодера, в которой преимущественно могут быть использованы варианты осуществления поясненные далее. Фиг. 1a показывает кодер, в то время как фиг. 1b показывает декодер. Кодер 10 информационных сигналов по фиг. 1a содержит вход 12, на который поступает информационный сигнал, модуль 14 повторной дискретизации и базовый кодер 16, при этом модуль 14 повторной дискретизации и базовый кодер 16 последовательно соединяются между входом 12 и выходом 18 кодера 10. На выходе 18 кодер 10 выводит поток данных, представляющий информационный сигнал входа 12. Аналогично, декодер, показанный на фиг. 1b с условным обозначением 20, содержит базовый декодер 22 и модуль 24 повторной дискретизации, которые последовательно соединяются между входом 26 и выходом 28 декодера 20 способом, показанным на фиг. 1b.
Если доступная скорость передачи битов для передачи потока данных, выводимого на выходе 18, на вход 26 декодера 20 является высокой, с точки зрения эффективности кодирования может быть предпочтительным представлять информационный сигнал 12 в потоке данных на высокой частоте дискретизации, тем самым покрывая широкую полосу спектра информационного сигнала. Иными словами, показатель эффективности кодирования, такой как показатель отношения скорости передачи к искажениям, может раскрывать, что эффективность кодирования является более высокой, если базовый кодер 16 сжимает входной сигнал 12 на более высокой частоте дискретизации по сравнению со сжатием версии с более низкой частотой дискретизации информационного сигнала 12. С другой стороны, на более низких доступных скоростях передачи битов может возникать такая ситуация, что показатель эффективности кодирования является более высоким при кодировании информационного сигнала 12 на более низкой частоте дискретизации. В этом отношении следует отметить, что искажение может измеряться психоакустически обусловленным способом, т.е. с более интенсивным учетом искажений в перцепционно более релевантных частотных областях, чем в перцепционно менее релевантных частотных областях, т.е. в частотных областях, в которых человеческое ухо является, например, менее чувствительным. В общем, области низких частот зачастую являются более релевантными, чем области верхних частот, и соответственно кодирование на более низкой частоте дискретизации исключает из кодирования частотные компоненты сигнала на входе 12, находящиеся выше частоты Найквиста, но, с другой стороны, экономия по скорости передачи битов, возникающая в результате этого, может, в восприятии отношения скорости передачи к искажениям, приводить к тому, что такое кодирование на более низкой частоте дискретизации должно предпочитаться по сравнению с кодированием на более высокой частоте дискретизации. Аналогичные несоответствия в значимости искажений между частями нижних и верхних частот также существуют в других информационных сигналах, к примеру измерительных сигналах и т.п.
Соответственно, модуль 14 повторной дискретизации служит для изменения частоты дискретизации, на которой дискретизируется информационный сигнал 12. Посредством надлежащего управления частотой дискретизации в зависимости от внешних условий передачи, к примеру, заданных, в числе прочего, посредством доступной скорости передачи битов между выходом 18 и входом 26, кодер 10 имеет возможность достигать повышенной эффективности кодирования, несмотря на изменение во времени внешних условий передачи. Декодер 20, в свою очередь, содержит базовый декодер 22, который распаковывает поток данных, при этом модуль 24 повторной дискретизации проверяет то, чтобы восстановленный информационный сигнал, выводимый на выходе 28, снова имел постоянную частоту дискретизации.
Тем не менее, проблемы в результате возникают каждый раз, когда представление преобразования с перекрытием используется в паре кодера/декодера по фиг. 1a и 1b. Представление преобразования с перекрытием, заключающее в себе наложение спектров в перекрывающихся областях повторных преобразований, образует эффективное средство для кодирования, но вследствие обязательного подавления наложения спектров во времени возникают проблемы, если частота дискретизации изменяется. См. подробности, например, на фиг. 2a и 2b. Фиг. 2a и 2b показывают возможные реализации для базового кодера 16 и базового декодера 22 при условии, что оба имеют тип кодирования с преобразованием. Соответственно, базовый кодер 16 содержит преобразователь 30, после которого следует модуль 32 сжатия, а базовый декодер, показанный на фиг. 2b, содержит модуль 34 распаковки, после которого, в свою очередь, следует повторный преобразователь 36. Фиг. 2a и 2b не должны интерпретироваться таким образом, что другие модули не могут присутствовать в базовом кодере 16 и базовом декодере 22. Например, фильтр может предшествовать преобразователю 30, так что второй должен преобразовывать повторно дискретизированный информационный сигнал, полученный посредством модуля 14 повторной дискретизации, не непосредственно, а в предварительно фильтрованной форме. Аналогично, фильтр, имеющий обратную передаточную функцию, может следовать после повторного преобразователя 36, так что сигнал повторного преобразования может обратно фильтроваться после этого.
Модуль 32 сжатия должен сжимать результирующее представление преобразования с перекрытием, выводимое посредством преобразователя 30, к примеру, посредством использования кодирования без потерь, к примеру энтропийного кодирования, включающего в себя такие примеры, как кодирование методом Хаффмана или арифметическое кодирование, и модуль 34 распаковки может выполнять обратный процесс, т.е. распаковку, посредством, например, энтропийного декодирования, к примеру декодирования методом Хаффмана или арифметического декодирования, чтобы получать представление преобразования с перекрытием, которое затем подается в повторный преобразователь 36.
В окружении кодирования с преобразованием, показанном на фиг. 2a и 2b, проблемы возникают каждый раз, когда модуль 14 повторной дискретизации изменяет частоту дискретизации. Проблема является менее серьезной на стороне кодирования, поскольку информационный сигнал 12 присутствует в любом случае и соответственно в преобразователь 30 могут предоставляться непрерывно дискретизированные области для отдельных преобразований с использованием обработанной методом окна версии соответствующих областей даже для случаев изменения частоты дискретизации.
Возможный вариант осуществления для реализации преобразователя 30 соответственно описан далее относительно фиг. 6. В общем, в преобразователь 30 может предоставляться обработанная методом окна версия предшествующей области информационного сигнала на текущей частоте дискретизации, при этом затем в преобразователь 30 подается, посредством модуля 14 повторной дискретизации, следующая частично перекрывающаяся область информационного сигнала, преобразование обработанной методом окна версии которой затем формируется посредством преобразователя 30. Дополнительные проблемы не возникают, поскольку обязательное подавление наложения спектров во времени должно осуществляться в повторном преобразователе 36, а не в преобразователе 30. В повторном преобразователе 36, тем не менее, изменение частоты дискретизации вызывает проблему в том, что повторный преобразователь 36 не имеет возможности выполнять подавление наложения спектров во времени, поскольку повторные преобразования вышеуказанных непосредственно следующих областей связаны с различными частотами дискретизации. Варианты осуществления, подробнее описанные ниже, преодолевают эти проблемы. Повторный преобразователь 36, согласно этим вариантам осуществления, может заменяться посредством модуля восстановления информационных сигналов, дополнительно описанного ниже.
Тем не менее, в окружении, описанном относительно фиг. 1a и 1b, проблемы возникают не только в случае базового кодера 16 и базового декодера 22, имеющих тип кодирования с преобразованием. Наоборот, проблемы также могут возникать в случае использования гребенок фильтров на основе преобразования с перекрытием для формирования модулей 14 и 24 повторной дискретизации, соответственно. См. подробности, например, на фиг. 3a и 3b. Фиг. 3a и 3b показывают один конкретный вариант осуществления для реализации модулей 14 и 24 повторной дискретизации. В соответствии с вариантом осуществления по фиг. 3a и 3b оба модуля повторной дискретизации реализуются посредством использования конкатенации гребенок 38 и 40 фильтров анализа, после которых соответственно следуют гребенки 42 и 44 фильтров синтеза соответственно. Как проиллюстрировано на фиг. 3a и 3b, гребенки 38-44 фильтров анализа и синтеза могут быть реализованы как QMF-гребенки фильтров, т.е. гребенки фильтров на основе MDCT с использованием QMF для разбиения заранее информационного сигнала и повторного объединения сигнала снова. QMF может быть реализован аналогично QMF, используемому в SBR-части MPEG HE-AAC или AAC-ELD, означающему многоканальную модулированную гребенку фильтров с перекрытием в 10 блоков, где 10 является просто примером. Таким образом, представление преобразования с перекрытием формируется посредством гребенок 38 и 40 фильтров анализа, и повторно дискретизированный сигнал восстанавливается из этого представления преобразования с перекрытием в случае гребенок 42 и 44 фильтров синтеза. Чтобы в результате обеспечивать изменение частоты дискретизации, гребенка 42 фильтров синтеза и гребенка 40 фильтров анализа могут быть реализованы, чтобы работать при изменяющейся длине преобразования, при этом, тем не менее, скорость гребенки фильтров или QMF, т.е. скорость, на которой последовательные преобразования формируются посредством гребенок 38 и 40 фильтров анализа соответственно, с одной стороны, и повторно преобразуются посредством гребенок 42 и 44 фильтров синтеза соответственно, с другой стороны, является постоянной и идентичной для всех компонентов 38-44. Изменение длины преобразования, тем не менее, приводит к изменению частоты дискретизации. Рассмотрим, например, пару из гребенки 38 фильтров анализа и гребенки 42 фильтров синтеза. Предположим, что гребенка 38 фильтров анализа работает с использованием постоянной длины преобразования и постоянной скорости гребенки фильтров или преобразования. В этом случае представление преобразования с перекрытием входного сигнала, выводимого посредством гребенки 38 фильтров анализа, содержит для каждой из последовательных перекрывающихся областей входного сигнала, имеющих постоянную примерную длину, преобразование обработанной методом окна версии соответствующей области, причем преобразования также имеют постоянную длину. Другими словами, гребенка 38 фильтров анализа должна перенаправлять в гребенку 42 фильтров синтеза спектрограмму постоянного частотно-временного разрешения. Длина преобразования гребенки фильтров синтеза, тем не менее, должна изменяться. Рассмотрим, например, случай понижающей дискретизации от первой частоты понижающей дискретизации между входной частотой дискретизации на входе гребенки 38 фильтров анализа и частотой дискретизации сигнала, выводимого на выходе гребенки 42 фильтров синтеза, ко второй частоте понижающей дискретизации. При условии, что первая частота понижающей дискретизации является допустимой, представление преобразования с перекрытием или спектрограмма, выводимая посредством гребенки 38 фильтров анализа, затем должна быть частично использована просто для того, чтобы подавать при повторных преобразованиях в гребенке 42 фильтров синтеза. Повторное преобразование гребенки 42 фильтров синтеза должно применяться просто к части нижних частот последовательных преобразований в спектрограмме гребенки 38 фильтров анализа. Вследствие меньшей длины преобразования, используемой в повторном преобразовании гребенки 42 фильтров синтеза, число выборок в повторных преобразованиях гребенки 42 фильтров синтеза также должно быть меньше по сравнению с числом выборок, подвергаемых, в кластерах перекрывающихся временных частей, преобразованиям в гребенке 38 фильтров, тем самым приводя к более низкой частоте дискретизации по сравнению с исходной частотой дискретизации информационного сигнала, поступающего на вход гребенки 38 фильтров анализа. Проблемы не должны возникать при условии, что частота понижающей дискретизации остается идентичной, поскольку по-прежнему для гребенки 42 фильтров синтеза не представляет проблемы выполнять подавление наложения спектров во времени на перекрытии между последовательными повторными преобразованиями и последовательными перекрывающимися областями выходного сигнала на выходе гребенки фильтров 42.
Проблема возникает каждый раз, когда происходит изменение частоты понижающей дискретизации, такое как изменение с первой частоты понижающей дискретизации на вторую большую частоту понижающей дискретизации. В этом случае длина преобразования, используемая в повторном преобразовании гребенки 42 фильтров синтеза, должна быть дополнительно уменьшена, тем самым приводя к еще более низкой частоте дискретизации для соответствующих последующих областей после момента времени изменения частоты дискретизации. С другой стороны, проблемы возникают для гребенки 42 фильтров синтеза, поскольку подавление наложения спектров во времени между повторным преобразованием относительно области, непосредственно предшествующей моменту времени изменения частоты дискретизации, и повторным преобразованием относительно области повторно дискретизированного сигнала, непосредственно следующей после момента времени изменения частоты дискретизации, нарушает подавление наложения спектров во времени между рассматриваемыми повторными преобразованиями. Соответственно, несильно помогает то, что аналогичные проблемы не возникают на стороне декодирования, на которой гребенка 40 фильтров анализа с изменяющейся длиной преобразования предшествует гребенке 44 фильтров синтеза с постоянной длиной преобразования. Здесь, гребенка 44 фильтров синтеза применяется к спектрограмме с постоянной скоростью QMF/преобразования, но с различным частотным разрешением, т.е. к последовательным преобразованиям, перенаправляемым из гребенки 40 фильтров анализа в гребенку 44 фильтров синтеза на постоянной скорости, но с различной или изменяющейся во времени длиной преобразования, чтобы сохранять часть нижних частот всей длины преобразования гребенки 44 фильтров синтеза с дополнением части верхних частот всей длины преобразования нулями. Подавление наложения спектров во времени между последовательными повторными преобразованиями, выводимыми посредством гребенки 44 фильтров синтеза, не является проблематичным, поскольку частота дискретизации восстановленного сигнала, выводимого на выходе гребенки 44 фильтров синтеза, имеет постоянную частоту дискретизации.
Таким образом, снова существует проблема в попытке реализовывать изменение/адаптацию частоты дискретизации, представленная выше относительно фиг. 1a и 1b, но эти проблемы могут преодолеваться посредством реализации гребенки 42 обратных или фильтров синтеза по фиг. 3a в соответствии с некоторыми поясненными далее вариантами осуществления для модуля восстановления информационных сигналов.
Вышеуказанные идеи относительно адаптации/изменения частоты дискретизации даже более интересны при рассмотрении принципов кодирования, согласно которым часть верхних частот информационного сигнала, который должен быть кодирован, кодируется параметрическим способом, например, посредством использования дублирования полос спектра (SBR), тогда как его часть нижних частот кодируется с использованием кодирования с преобразованием и/или прогнозирующего кодирования и т.п. См. подробности, например, на фиг. 4a и 4b, показывающих пару кодера информационных сигналов и декодера информационных сигналов. На стороне кодирования базовый кодер 16 следует после модуля повторной дискретизации, осуществленного так, как показано на фиг. 3a, т.е. как конкатенация гребенки 38 фильтров анализа и гребенки 42 фильтров синтеза с изменяющейся длиной преобразования. Как отмечено выше, чтобы достигать изменяющейся во времени частоты понижающей дискретизации между входом гребенки 38 фильтров анализа и выходом гребенки 42 фильтров синтеза, гребенка 42 фильтров синтеза применяет свое повторное преобразование к подчасти спектра с постоянным диапазоном, т.е. преобразования с постоянной длиной и постоянной скоростью преобразования 46, выводимые посредством гребенки 38 фильтров анализа, подчасти которой имеют изменяющуюся во времени длину для длины преобразования гребенки 42 фильтров синтеза. Изменение во времени проиллюстрировано посредством двунаправленной стрелки 48. Хотя часть 50 нижних частот, повторно дискретизированная посредством конкатенации гребенки 38 фильтров анализа и гребенки 42 фильтров синтеза, кодируется посредством базового кодера 16, остаток, т.е. часть 52 верхних частот, составляющая оставшуюся частотную часть спектра 46, может подвергаться параметрическому кодированию по огибающей в параметрическом кодере 54 по огибающей. Базовый поток 56 данных тем самым сопровождается посредством потока 58 данных параметрического кодирования, выводимого посредством параметрического кодера 54 по огибающей. На стороне декодирования декодер аналогично содержит базовый декодер 22, после которого следует модуль повторной дискретизации, реализованный так, как показано на фиг. 3b, т.е. содержит гребенку 40 фильтров анализа, после которой следует гребенка 44 фильтров синтеза, при этом гребенка 40 фильтров анализа имеет изменяющуюся во времени длину преобразования, синхронизированную с изменением во времени длины преобразования гребенки 42 фильтров синтеза на стороне кодирования. Хотя базовый декодер 22 принимает базовый поток 56 данных, чтобы декодировать его, параметрический декодер 60 по огибающей предоставляется, чтобы принимать параметрический поток 58 данных и извлекать из него часть 52' верхних частот, дополняющую часть 50 нижних частот с изменяющейся длиной преобразования, а именно с длиной, синхронизированной с изменением во времени длины преобразования, используемой посредством гребенки 42 фильтров синтеза на стороне кодирования, и синхронизированной с изменением частоты дискретизации, выводимой посредством базового декодера 22.
В случае кодера по фиг. 4a преимущественно, если гребенка 38 фильтров анализа присутствует в любом случае, так что формирование модуля повторной дискретизации требует просто добавления гребенки 42 фильтров синтеза. Посредством переключения частоты дискретизации можно адаптировать отношение LF-части спектра 46, которая подвергается более точному базовому кодированию по сравнению с HF-частью, которая подвергается просто параметрическому кодированию по огибающей. В частности, отношение может управляться эффективным способом в зависимости от внешних условий, таких как доступная полоса пропускания передачи для передачи полного потока данных и т.п. Изменение во времени, управляемое на стороне кодирования, легко сигнализировать на сторону декодирования, например, через соответствующие вспомогательные информационные данные.
Таким образом, относительно фиг. 1a-4b показано, что должно быть предпочтительным, если для использования доступен принцип, который фактически предоставляет изменение частоты дискретизации, несмотря на использование представлений преобразования с перекрытием, требующих подавления наложения спектров во времени. Фиг. 5 показывает вариант осуществления модуля восстановления информационных сигналов, который должен, в случае применения для реализации гребенки 42 фильтров синтеза или повторного преобразователя 36 на фиг. 2b, преодолевать вышеприведенные проблемы и достигать преимуществ пользования преимуществами такого изменения частоты дискретизации, как указано выше.
Модуль восстановления информационных сигналов, показанный на фиг. 5, содержит повторный преобразователь 70, модуль 72 повторной дискретизации и модуль 74 комбинирования, которые последовательно соединяются в порядке их упоминания между входом 76 и выходом 78 модуля 80 восстановления информационных сигналов.
Модуль восстановления информационных сигналов, показанный на фиг. 5, служит для восстановления, с использованием подавления наложения спектров, информационного сигнала из представления преобразования с перекрытием информационного сигнала, поступающего на вход 76. Иными словами, модуль восстановления информационных сигналов служит для вывода на выходе 78 информационного сигнала с изменяющейся во времени частотой дискретизации с использованием представления преобразования с перекрытием этого информационного сигнала, поступающего на вход 76. Представление преобразования с перекрытием информационного сигнала содержит, для каждой из последовательных перекрывающихся временных областей (или временных интервалов) информационного сигнала, преобразование обработанной методом окна версии соответствующей области. Как подробнее указано ниже, модуль 80 восстановления информационных сигналов сконфигурирован с возможностью восстанавливать информационный сигнал на частоте дискретизации, которая изменяется на границе 82 между предшествующей областью 84 и последующей областью 86 информационного сигнала 90.
Чтобы пояснять функциональность отдельных модулей 70-74 модуля 80 восстановления информационных сигналов, предварительно предполагается, что представление преобразования с перекрытием информационного сигнала, поступающего на вход 76, имеет постоянное частотно-временное разрешение, т.е. разрешение, постоянное во времени и частоте. Ниже поясняется другой сценарий.
Согласно вышеупомянутому допущению представление преобразования с перекрытием может рассматриваться так, как показано на 92 на фиг. 5. Как показано, представление преобразования с перекрытием содержит последовательность преобразований, которые являются последовательными во времени с определенной скоростью Δt преобразования. Каждое преобразование 94 представляет преобразование обработанной методом окна версии соответствующей временной области i информационного сигнала. В частности, поскольку частотное разрешение является постоянным во времени для представления 92, каждое преобразование 94 содержит постоянное число коэффициентов преобразования, а именно Nk. Это фактически означает, что представление 92 является спектрограммой информационного сигнала, содержащей Nk спектральных компонентов или поддиапазонов частот, которые могут строго упорядочиваться вдоль спектральной оси k, как проиллюстрировано на фиг. 5. В каждом спектральном компоненте или поддиапазоне частот коэффициенты преобразования в спектрограмме возникают на скорости Δt преобразования.
Представление 92 преобразования с перекрытием, имеющее такое постоянное частотно-временное разрешение, например, выводится посредством QMF-гребенки фильтров анализа, как показано на фиг. 3a. В этом случае каждый коэффициент преобразования должен быть комплекснозначным, т.е. каждый коэффициент преобразования должен иметь, например, вещественную и мнимую часть. Тем не менее, коэффициенты преобразования представления 92 преобразования с перекрытием не обязательно являются комплекснозначными, а также могут быть исключительно вещественнозначными, к примеру, в случае чистого MDCT. Помимо этого следует отметить, что вариант осуществления по фиг. 5 также является переносимым на другие представления преобразования с перекрытием, вызывающие наложение спектров в перекрывающихся частях временных областей, причем преобразования 94, которые последовательно размещаются в представлении 92 преобразования с перекрытием.
Повторный преобразователь 70 сконфигурирован с возможностью применять повторное преобразование для преобразований 94 с тем, чтобы получать, для каждого преобразования 94, повторное преобразование, проиллюстрированное посредством соответствующей временной огибающей 96 для последовательных временных областей 84 и 86, причем временная огибающая примерно соответствует взвешивающей функции, применяемой к вышеуказанным временным частям информационного сигнала, чтобы в результате обеспечивать последовательность преобразований 94. Что касается предшествующей временной области 84, фиг. 5 предполагает то, что повторный преобразователь 70 применяет повторное преобразование к полному преобразованию 94, ассоциированному с этой областью 84 в представлении 92 преобразования с перекрытием, так что повторное преобразование 96 для области 84 содержит, например, Nk выборок или два раза по Nk выборок (в любом случае столько выборок, сколько составляет обработанная методом окна часть, из которой получено соответствующее преобразование 94), дискретизирующих полную временную длину Δt*a временной области 84, при этом коэффициент представляет собой коэффициент, определяющий перекрытие между последовательными временными областями, в единицах которых сформированы преобразования 94 представления 92. Здесь следует отметить, что равенство (или двойственность) числа временных выборок во временной области 84 и числа коэффициентов преобразования в преобразовании 94, принадлежащих этой временной области 84, выбраны просто в качестве иллюстрации и что равенство (или двойственность) также может заменяться посредством другого постоянного отношения между обоими числами в соответствии с альтернативным вариантом осуществления, в зависимости от используемого подробного преобразования с перекрытием.
Теперь предполагается, что модуль восстановления информационных сигналов нацелен на изменение частоты дискретизации информационного сигнала между временной областью 84 и временной областью 86. Обуславливающий фактор для этого может предоставляться посредством внешнего сигнала 98. Если, например, модуль 80 восстановления информационных сигналов используется для реализации гребенки 42 фильтров синтеза по фиг. 3a и фиг. 4a соответственно, сигнал 98 может предоставляться каждый раз, когда изменение частоты дискретизации предполагает более эффективное кодирование, к примеру, в ходе изменения условий передачи потока данных.
В данном случае в качестве иллюстрации предполагается, что модуль 80 восстановления информационных сигналов нацелен на уменьшение частоты дискретизации между временными областями 84 и 86. Соответственно, повторный преобразователь 70 также применяет повторное преобразование для преобразования обработанной методом окна версии последующей области 86, с тем чтобы получать повторное преобразование 100 для последующей области 86, но на этот раз повторный преобразователь 70 использует меньшую длину преобразования для выполнения повторного преобразования. Если точнее, повторный преобразователь 70 выполняет повторное преобразование в наименьшие Nk'<Nk коэффициентов преобразования для преобразов