Хинолилпирролпиримидильное конденсированное соединение или его соль
Иллюстрации
Показать всеНастоящее изобретение относится к новому соединению формулы (I) или его фармацевтически приемлемой соли, которые обладают ингибирующей активностью в отношении EGFR и действует как ингибитор роста клеток. Соединения могут использоваться для получения фармацевтической композиции, полезной для профилактики и/или лечения рака, основанной на ингибирующем эффекте соединения в отношении EGFR. В формуле (I):
m равно 1 или 2; n равно 1 или 2; группа R1 представляет собой атом водорода или C1-C4-алкильную группу; и группы R2, R3 и R4 могут быть одинаковыми или различными, и каждая из них представляет собой атом водорода, атом галогена или группу, представленную формулой (а) , где группы R5 и R6 могут быть одинаковыми или различными, и каждая из них представляет собой С1-С4-алкильную группу. 6 н. и 4 з.п. ф-лы, 2 табл., 25 пр.
Реферат
Область техники
Перекрестная ссылка на родственные заявки
Настоящая заявка испрашивает приоритет японской патентной заявки №2012-037565 (полное раскрытие которой включено в настоящее описании посредством ссылки), поданной 23 февраля 2012 года.
Настоящее изобретение относится к хинолилпирролпиримидильным конденсированным соединениям, обладающим ингибирующим действием в отношении рецептора эпидермального фактора роста (EGFR), и к фармацевтическим композициям, содержащим их в качестве активного ингредиента.
Уровень техники
EGFR является рецепторным типом тирозинкиназы, проявляющим свою физиологическую функцию в нормальной ткани, когда он связан с эпидермальным фактором роста (EGF), который является лигандом, и способствует росту ткани, ингибированию апоптоза в эпителиальных тканях и т.п. (непатентный документ (NPL) 1).
Кроме того, EGFR является одним из онкогенов, и амплификация гена EGFR и высокая экспрессия или мутация этого белка имеют место при различных типах рака, таких как рак головы и шеи, рак молочной железы, колоректальный рак, рак пищевода, рак поджелудочной железы, рак легких, рак яичников, рак почки, рак мочевого пузыря, рак кожи и опухоль мозга (непатентный документ (NPL) 2). В Японии и западных странах каждый год приблизительно от 170 до 375 на каждые 100000 человек умирают из-за рака, и рак занимает видное место в качестве причины смерти (непатентный документ (NPL) 3). Кроме того, число умерших от рака легких во всем мире достигает приблизительно 1400000 человек в год, и поскольку немелкоклеточный рак легких составляет 80% или более из числа случаев рака легких, то разработка эффективной терапии для этого случая является желательной (непатентный документ (NPL) 4).
За последние годы были определены гены, ответственные за эти виды рака, и мутация в гене EGFR также является одним из факторов, которые приводят к активной мутации белка EGFR. Активный мутированный белок EGFR имеет, например, делецию аминокислот в положениях 746-750 (EGFR (d476-750)), мутацию аминокислоты лейцин в положении 858 на аргинин (EGFR (L858R)) или подобное. Такие мутации выявлены, например, в 20-40% случаях немелкоклеточного рака легких в Японии, и в 10-15% случаях немелкоклеточного рака легких в западных странах. Поскольку немелкоклеточный рак легких при таких мутациях очень восприимчив к лечению гефитинибом (название продукта: Иресса (зарегистрированная торговая марка Iressa)) и эрлотинибом (название продукта: Тарцева (зарегистрированная торговая марка Tarceva)), которые являются химическими агентами (ингибиторами EGFR), которые ингибируют киназную активность EGFR, и эти химические агенты используются в качестве терапевтических агентов в Японии и западных странах. Тем не менее, рак приобретает устойчивость к гефитинибу и эрлотинибу через 6-12 месяцев с начала использования этих препаратов, и их терапевтический эффект становится слабым. Таким образом, эта приобретенная резистентность является серьезной проблемой при лечении немелкоклеточного рака легких с EGFR, высоковосприимчивых к мутациям. Было установлено, что приблизительно 50% случаев приобретенной устойчивости связаны с появлением устойчивых мутированных форм белка EGFR (EGFR (d476-750/T790M) или EGFR (T790M/L858R)), которые имеют вторую мутацию в гене EGFR, в результате которой аминокислота треонин в положении 790 заменяется на метионин. Поэтому важной задачей является создание терапевтического агента, который был бы эффективным против немелкоклеточного рака легких с лекарственной устойчивостью, приобретенной за счет мутированного EGFR (непатентная литература (NPL) 5).
С другой стороны, сообщалось, что аномалии кожи и расстройства желудочно-кишечного тракта являются обычными побочными эффектами при применении ингибиторов EGFR, таких как гефитиниб и эрлотиниб, которые в настоящее время используются в качестве терапевтических агентов в клинической практике, и при применении ингибиторов EGFR, таких как BIBW2992 и т.п., которые проходят клинические испытания. Широко распространено мнение, что эти побочные эффекты ингибиторов EGFR вызваны ингибированием активности не только мутированного EGFR, экспрессируемого при немелкоклеточном раке легких, но и ингибированием активности EGFR дикого типа (EGFR (WT)) экспрессируемого в коже или в желудочно-кишечном тракте (непатентный документ (NPL) 1). С точки зрения уменьшения побочных эффектов, считается предпочтительным иметь слабую ингибирующую активность в отношении EGFR (WT) нормальных тканей.
Таким образом, существует ожидание возможности подавления роста клеток немелкоклеточного рака легких, имеющих лекарственную устойчивость мутированного EGFR, при введении химического агента, имеющего слабую ингибирующую активность в отношении EGFR дикого типа, по сравнению с ингибирующей активностью против мутированного EGFR с лекарственной устойчивостью, в котором аминокислота в положении 790 мутирована в метионин, при вводимой дозе, когда побочный эффект в отношении кожи или желудочно-кишечного тракта в выраженной степени не возникает. Это прогнозируется как вклад в лечение рака, в продление жизни и в улучшение качества жизни больных. Кроме того, если такое химическое вещество будет обладать слабой ингибирующей активностью в отношении EGFR дикого типа, но будет иметь сильную ингибирующую активность не только против мутированного EGFR с лекарственной устойчивостью, но и против высокочувствительных мутированных EGFR, таких как EGFR (d476-750) и EGFR (L858R) и т.п., которые очень восприимчивы к действию гефитиниба и эрлотиниба. Ожидается возможность подавления роста клеток немелкоклеточного рака легких, экспрессирующих высокочувствительные мутированные формы EGFR или мутированные формы EGFR с лекарственной устойчивостью на вводимые дозы, где побочный эффект в отношении кожи или желудочно-кишечного тракта сильно не проявляется, или можно ожидать уменьшение частоты случаев лекарственной устойчивости мутированного EGFR, которая возникает как приобретенная устойчивость клеток в случае немелкоклеточного рака легких, где такие клетки экспрессируют высокочувствительные мутированные формы EGFR. Это предполагает существенный вклад в лечение рака, продление жизни и улучшение качества жизни больных. Кроме того, поскольку экспрессия высокочувствительных мутированных форм EGFR и мутированных форм EGFR с лекарственной устойчивостью может наблюдаться в рамках реальной терапии, и использоваться в качестве индекса для группировки при выборе пациентов, этот факт может быть в значительной степени полезен с этической точки зрения.
Известно соединение, имеющее структуру, аналогичную структуре соединения по настоящему изобретению, а именно, производное N-(3-(4-амино-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-5-ил)фенил)бензамида, (патентный документ (PTL) 1). Хотя патентный документ 1 описывает использование амидного соединения для лечения заболеваний, опосредованных киназой B-RAF, этот документ не раскрывает специфические тесты и результаты, на основании которых можно подтвердить наличие активности по ингибированию киназы, и, следовательно, такая активность не была подтверждена.
Список цитированных документов
Патентный документ:
PTL 1: описание публикации международной заявки WO 2006/102079.
Непатентные документы:
NPL 1: Nature Rev. Cancer, vol.6, pp. 803-811 (2006).
NPL 2: J. Clin. Oncol., vol.19, 32s-40s (2001).
NPL 3: Ministry of Internal Affairs and Communications Statistics Bureau homepage/statistical data/world statistics “World Statistics 2011” Chapter 14: People′s Life and Social Security, 14-1 Death Rates by Causes Death.
NPL 4: Lung Cancer, vol.69, pp. 1-12 (2010).
NPL 5: Nature Rev. Cancer, vol.10, pp. 760-774 (2010).
Сущность изобретения
Техническая проблема, решаемая изобретением
Как описано выше, ингибиторы EGFR, несмотря на ожидаемую эффективность в терапии рака, в настоящее время клинически не являются достаточно эффективными.
Таким образом, целью настоящего изобретения является создание нового соединения или его соли, которое в высокой степени ингибирует EGFR. Еще одной задачей настоящего изобретения является предоставление: нового соединения, которое ингибирует EGFR (d476-750), EGFR (L858R), EGFR (d476-750/T790M) и EGFR (T790M/L858R), но не ингибирует EGFR (WT); или его соль.
Решение проблемы
Авторы настоящего изобретения провели тщательное исследование для достижения описанной выше цели. В результате они обнаружили, что группа хинолилпирролпиримидильных конденсированных соединений по настоящему изобретению обладает превосходной ингибирующей активностью в отношении EGFR и эти соединения обладают ингибирующей активностью в отношении роста раковых клеток, и они полезны в качестве лекарственного средства для лечения рака. За счет этого открытия авторы выполнили настоящее изобретение.
Таким образом, настоящее изобретение включает следующее.
Пункт 1. Соединение, представленное формулой (I), или его соль:
,
где m равно 1 или 2;
n равно 1 или 2;
группа R1 представляет собой атом водорода или C1-C4-алкильную группу; и
группы R2, R3 и R4 могут быть одинаковыми или различными, и каждая из них представляет собой атом водорода, атом галогена, C1-C4-алкильную группу, или группу, представленную формулой (а):
,
где группы R5 и R6 могут быть одинаковыми или различными, и каждая из них представляет собой атом водорода или C1-C4-алкильную группу, или группы R5 и R6 могут образовывать гетероциклоалкильную группу, имеющую 4-6-членное кольцо вместе с атомом азота, связанным с ними.
Пункт 2. Соединение или его соль по п. 1, в котором
m равно 1 или 2;
n равно 1 или 2;
группа R1 представляет собой атом водорода или C1-C4-алкильную группу; и
группы R2, R3 и R4 могут быть одинаковыми или различными, и каждая из них представляет собой атом водорода, атом галогена, C1-C4-алкильную группу, или группу, представленную формулой (а):
,
где группы R5 и R6 могут быть одинаковыми или различными, и каждая из них представляет собой атом водорода или C1-C4-алкильную группу.
Пункт 3. Соединение или его соль по пункту 1 или 2, в котором
m равно 1 или 2;
n равно 1 или 2;
группа R1 представляет собой атом водорода или метильную группу; и
группы R2, R3 и R4 могут быть одинаковыми или различными, и каждая из них представляет собой атом водорода, атом хлора или диметиламинометильную группу.
Пункт 4. Соединение или его соль по любому из пунктов 1-3, в котором значения m и n представляют собой (m,n)=(1,1), (1,2) или (2,1).
Пункт 5. Соединение или его соль по любому из пунктов 1-4, где соединение выбрано из следующей группы соединений:
(R)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)акриламид,
(S)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9- тетрагидропиримидо[5,4-b]индолизин-8-ил)акриламид,
N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)-N-метилакриламид,
(Е)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)-4-(диметиламино)-2-бутенамид,
(S,E)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)-3-хлоракриламид,
(S,Z)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)-3-хлоракриламид,
(S)-N-(4-амино-5-(хинолин-3-ил)-7,8,9,10-тетрагидро-6H-пиримидо[5′,4′:4,5] пирроло[1,2-а]азепин-8-ил)акриламид,
(S)-N-(4-амино-5-(хинолин-3-ил)-7,8,9,10-тетрагидро-6H-пиримидо[5′,4′:4,5] пирроло[1,2-а]азепин-9-ил)акриламид,
(R)-N-(4-амино-5-(хинолин-3-ил)-7,8,9,10-тетрагидро-6H-пиримидо[5′,4′:4,5]пирроло[1,2-а]азепин-9-ил)акриламид.
Пункт 6. Ингибитор EGFR, содержащий в качестве активного ингредиента соединение или его соль по любому из пунктов 1-5.
Пункт 7. Фармацевтическая композиция, содержащая соединение или его соль по любому из пунктов 1-5.
Пункт 8. Противоопухолевое средство, содержащее в качестве активного ингредиента соединение или его соль по любому из пунктов 1-5.
Пункт 9. Способ лечения или профилактики рака, включающий стадию введения млекопитающему соединения или его соли по любому из пунктов 1-5 в дозе, эффективной для лечения или профилактики рака.
Пункт 10. Применение соединения или его соли по любому из пунктов 1-5 для изготовления противоопухолевого средства.
Пункт 11. Соединение или его соль по любому из пунктов 1-5 для применения при лечении или профилактике рака.
Настоящее изобретение также относится к способу получения промежуточных синтетических соединений для получения из них соединений по настоящему изобретению, указанных ниже.
Пункт 12 Способ получения соединения, представленного формулой (VIII), или его соли, где способ включает стадии:
[I] взаимодействия органического борана с соединением, представленным формулой (VII), или его солью:
,
где группа P1 представляет собой защитную группу для гидроксильной группы, n равно 1 или 2, и m1 равно 0 или 1; и
[II] внутримолекулярной циклизации продукта реакции со стадии [I] с использованием палладиевого (0) катализатора в присутствии гидроксида щелочного металла, с получением соединения:
,
где m равно 1 или 2, и P1 и n имеют значения, описанные выше.
Пункт 13. Способ получения соединения формулы (XX) или его соли:
,
где группа R1 представляет собой атом водорода или C1-C4-алкильную группу, группа P2 представляет собой защитную группу аминогруппы, m равно 1 или 2, n равно 1 или 2,
где способ включает стадии:
[I] взаимодействия органического борана с соединением формулы (XIX) или его солью:
,
где R1, Р2 и n имеют значения, как описано выше, и m1 равно 0 или 1; и
[II] внутримолекулярной циклизации продукта реакции со стадии [I] с использованием палладиевого (0) катализатора в присутствии гидроксида щелочного металла.
Полезные эффекты изобретения
В соответствии с настоящим изобретением предоставляется новое соединение, представленное формулой (I), описанной выше, или его соль, которые полезны в качестве ингибитора EGFR.
Ясно, что соединение по настоящему изобретению или его соль обладает превосходной ингибирующей активностью в отношении EGFR и эффектом подавления роста в отношении клеточных линий рака. Кроме того, соединение или его соль имеет преимущество в том, что оно вызывает небольшие побочные эффекты, поскольку оно обладает превосходной селективностью в отношении EGFR. Следовательно, соединение или его соль по настоящему изобретению является полезным в качестве средства для лечения и/или профилактики рака.
Описание вариантов выполнения изобретения
Соединение формулы (I) по настоящему изобретению представляет собой хинолилпирролпиримидильное конденсированное соединение, которое включает структуру хинолина и структуру α,β-ненасыщенного амида, и, таким образом, оно является новым соединением, которое нигде не раскрыто в любом из вышеуказанных документов уровня техники и т.п.
В частности, соединение конкретно раскрытое в PTL 1 представляет собой производное N-(3-(4-амино-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-5-ил)фенил)бензамида. Соединение по настоящему изобретению отличается от соединения, описанного в PTL 1, тем, что соединение по настоящему изобретению включает структуру хинолина и структуру α,β-ненасыщенного амида.
В настоящем описании, термин ″C1-C4 алкил″ относится к линейной или разветвленной алкильной группе, имеющей от 1 до 4 атомов углерода. Конкретные примеры такой группы включают метил, этил, н-пропил, изопропил, н-бутил, изобутил, втор-бутил, трет-бутил и тому подобное.
В данном описании примеры ″галогена″ включают хлор, бром, фтор и йод.
В данном описании термин ″4-6-членный гетероциклоалкил″ относится к 4-6-членной циклоалкильной группе, имеющей от 1 до 2 атомов азота в кольце. Конкретные примеры такой группы включают азетидинил, пирролидинил, пиперидил, имидазолидинил и тому подобное.
Значения m и n в формуле (I) предпочтительно представляют собой (m,n)=(1,1), (1,2) или (2,1).
Группа R1 в формуле (I) предпочтительно представляет собой водород или метил.
Группы R2, R3 и R4 в формуле (I) могут быть одинаковыми или различными, и каждая из них предпочтительно представляет собой водород, галоген, C1-C4-алкил, или группу, представленную приведенной выше формулой (а). Когда по меньшей мере одна из групп R2, R3 и R4 в формуле (I) представляет собой группу, представленную формулой (а), каждая группа R5 и R6 предпочтительно представляет собой C1-C4-алкил, и более предпочтительно, когда обе группы R5 и R6 представляют собой метил.
Группа R2 в формуле (I) более предпочтительно представляет собой водород.
Группа R3 в формуле (I) более предпочтительно представляет собой водород, хлор или диметиламинометил.
Группа R4 в формуле (I) более предпочтительно представляет собой водород или хлор.
В настоящем изобретении соединение формулы (I), где m равно 1 или 2; n равно 1 или 2; группа R1 представляет собой водород или метил; группы R2, R3 и R4 могут быть одинаковыми или различными и они представляют собой водород, хлор или диметиламинометил; или его соль, является предпочтительным.
Когда m равно 1 и n равно 1, то соединение формулы (I), где группа R1 представляет собой водород или метил; группа R2 представляет собой водород; одна из групп R3 и R4 представляет собой водород, хлор или диметиламинометил, а другая группа представляет собой водород; или его соль, является предпочтительным.
Когда m=1 и n=2 или m=2 и n=1, то соединение формулы (I), где все группы R1, R2, R3 и R4 представляют собой водород; или его соль, является предпочтительной.
Конкретные примеры предпочтительных соединений по настоящему изобретению включают следующие соединения:
(R)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)акриламид;
(S)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)акриламид;
N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)-N-метилакриламид;
(Е)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо [5,4-b]индолизин-8-ил)-4-(диметиламино)-2-бутенамид;
(S,E)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)-3-хлоракриламид;
(S,Z)-N-(4-амино-5-(хинолин-3-ил)-6,7,8,9-тетрагидропиримидо[5,4-b]индолизин-8-ил)-3-хлоракриламид;
(S)-N-(4-амино-5-(хинолин-3-ил)-7,8,9,10-тетрагидро-6H-пиримидо[5′,4′:4,5] пирроло[1,2-а]азепин-8-ил)акриламид;
(S)-N-(4-амино-5-(хинолин-3-ил)-7,8,9,10-тетрагидро-6H-пиримидо[5′,4′:4,5] пирроло[1,2-а]азепин-9-ил)акриламид; и
(R)-N-(4-амино-5-(хинолин-3-ил)-7,8,9,10-тетрагидро-6H-пиримидо[5′,4′:4,5]пирроло[1,2-а]азепин-9-ил)акриламид.
Соединения, которые обладают высокой ингибирующей активностью против ферментативной активности EGFR (T790M/L858R), являются предпочтительными, и соединения с ингибирующей активностью, равной 2 нМ или менее, являются более предпочтительными. Соединения, которые обладают высокой ингибирующей активностью против ферментативной активности EGFR (d476-750/T790M), являются предпочтительными, и соединения с ингибирующей активностью, равной 2 нМ или менее, являются более предпочтительными.
Далее будет пояснен способ получения соединения в соответствии с настоящим изобретением.
Соединение (I) по настоящему изобретению может быть получено, например, следующими способами получения, или способами, описанными в примерах. Однако способ получения соединения (I) по настоящему изобретению не ограничивается этими конкретными примерами реакции.
Способ получения 1
где P1 обозначает защитную группу для гидроксильной группы, L1 и L2 обозначают уходящие группы, m1 равно 0-1, и R2, R3, R4, m и n определены выше.
(Стадия а)
На этой стадии соединения формул (II) и (III) взаимодействуют в присутствии основания с получением соединения формулы (IV).
Примеры уходящей группы, представленной группой L1 в соединении формулы (II), включают атом брома или йода. Соединение формулы (II) может быть коммерчески доступным продуктом, или может быть получено известным способом. Примеры защитной группы для гидроксильной группы, представленной как P1 в формуле (III), включают трет-бутилдиметилсилил, трет-бутилдифенилсилил, триэтилсилил и тому подобное. Примеры уходящих групп, представленных как L2, включают бром, йод, сложный эфир метансульфоновой кислоты, сложный эфир п-толуолсульфоновой кислоты и тому подобное. Соединение формулы (III) может быть коммерчески доступным продуктом, или может быть получено известным способом. Соединение формулы (III) может быть использовано в количестве от 1 до 10 молей, предпочтительно от 1 до 5 моль, из расчета на один моль соединения формулы (II).
Примеры используемых оснований включают неорганические основания, такие как гидрокарбонат натрия, карбонат натрия, карбонат калия, карбонат цезия, гидроксид цезия, гидрид натрия и гидрид калия; органические амины, такие как триметиламин, триэтиламин, трипропиламин, диизопропилэтиламин, N-метилморфолин, пиридин, 4-(N,N-диметиламино)пиридин, лутидин и коллидин. Такое основание может быть использовано в количестве от 1 до 100 молей, предпочтительно от 1 до 10 молей, из расчета на один моль соединения формулы (II).
Примеры используемых растворителей включают N,N-диметилформамид, N,N-диметилацетамид, диметилсульфоксид, тетрагидрофуран, 1,4-диоксан, N-метилпирролидин-2-он, ацетонитрил и тому подобное. Такие растворители могут быть использованы по-отдельности или в виде смеси. Время реакции составляет от 0,1 до 100 часов, предпочтительно от 0,5 до 24 часов. Реакция протекает при температуре от 0°C до температуры кипения растворителя, предпочтительно от 0 до 100°С.
Полученное таким образом соединение формулы (IV) может быть использовано на следующей стадии реакции после или без выделения или очистки, которые выполняются с использованием известных средств и способов для разделения и очистки, такими как концентрирование, концентрирование в вакууме, кристаллизация, экстракция растворителем, повторное осаждение и хроматография.
(Стадия b)
На этой стадии соединение формулы (IV) подвергают взаимодействию с аммиаком или его солью, с получением соединения формулы (V).
Количество аммиака или его соли, используемого на этой стадии, как правило, составляет от эквимолярного до избыточного молярного количества на моль соединения формулы (IV).
Для реакции может быть использован любой растворитель, который не оказывает вредного влияния на реакцию. Примеры используемых растворителей для реакции включают воду, метанол, этанол, изопропанол, трет-бутиловый спирт, тетрагидрофуран, 1,2-диметоксиэтан, 1,4-диоксан, N,N-диметилформамид, N-метилпирролидин-2-он, диметилсульфоксид и смеси этих растворителей.
Реакция протекает обычно при температуре от 0 до 200°C и, предпочтительно от комнатной температуры до 150°С. Время реакции обычно составляет от 5 минут до 7 дней, и предпочтительно от 30 минут до 24 часов.
Полученное таким образом соединение формулы (V) может быть использовано на следующей стадии реакции после или без выделения или очистки, которые выполняются с использованием известных средств и способов для разделения и очистки, такими как концентрирование, концентрирование в вакууме, кристаллизация, экстракция растворителем, повторное осаждение и хроматография.
(Стадия с)
На этой стадии соединение формулы (V) подвергают реакции сочетания с 3-хинолинбороновой кислотой или со сложным эфиром 3-хинолинбороновой кислоты, с получением соединения формулы (VI).
Эта стадия может быть выполнена в соответствии с любым общеизвестным способом (например, см. Chemical Reviews, Vol. 95, p.2457, 1995). В частности, эта стадия может быть осуществлена в присутствии катализатора на основе переходного металла и в присутствии основания в растворителе, не оказывающем вредного влияния на реакцию.
Количество используемой 3-хинолинбороновой кислоты или сложного эфира 3-хинолинбороновой кислоты может составлять от 1 до 10 молей, предпочтительно от 1 до 3 молей, из расчета на один моль соединения формулы (V).
Примеры катализаторов на основе переходного металла включают палладиевые катализаторы (например, ацетат палладия, хлорид палладия, тетракистрифенилфосфинпалладий, дихлорид 1,1′-бис(дифенилфосфино)ферроцен-палладия(II), и трис(дибензилиденацетон)палладий (0)), никелевые катализаторы (например, хлорид никеля) и тому подобное. Если необходимо, может быть добавлен лиганд (например, трифенилфосфин, три-трет-бутилфосфин или 2-дициклогексилфосфино-2′,4′,6′-триизопропилбифенил), и в качестве сокатализатора может быть использован оксид металла (например, оксид меди или оксид серебра). Количество используемого катализатора на основе переходного металла может варьироваться в зависимости от типа катализатора. Катализатор на основе переходного металла обычно используют в количестве от 0,0001 до 1 моля, предпочтительно от 0,01 до 0,5 моля, из расчета на один моль соединения формулы (V). Количество используемого лиганда составляет, как правило, от 0,0001 до 4 молей, предпочтительно от 0,01 до 2 молей, из расчета на один моль соединения формулы (V). Количество используемого сокатализатора составляет, как правило, от 0,0001 до 4 молей, предпочтительно от 0,01 до 2 молей, из расчета на один моль соединения формулы (V).
Примеры используемых оснований включают органические амины (например, триметиламин, триэтиламин, диизопропилэтиламин, N-метилморфолин, 1,8-диазабицикло[5,4,0]ундец-7-ен, пиридин и N,N-диметиланилин), соли щелочных металлов (например, гидрокарбонат натрия, гидрокарбонат калия, карбонат натрия, карбонат калия, карбонат цезия, фосфат натрия, фосфат калия, гидроксид натрия и гидроксид калия), гидриды металлов (например, гидрид калия и гидрид натрия), алкоксиды щелочных металлов (например, метоксид натрия, этоксид натрия, трет-бутоксид натрия и трет-бутоксид калия), дисилазиды щелочных металлов (например, дисилазид лития, дисилазид натрия и дисилазид калия) и тому подобное. Среди них предпочтительными являются соли щелочных металлов, такие как гидрокарбонат натрия, карбонат калия, карбонат цезия, фосфат натрия и фосфат калия; алкоксиды щелочных металлов, такие как трет-бутоксид натрия и трет-бутоксид калия; и органические амины, такие как триэтиламин и диизопропилэтиламин. Количество используемого основания составляет, как правило, от 0,1 до 10 молей, предпочтительно от 1 до 5 молей, из расчета на один моль соединения формулы (V).
Может быть использован любой растворитель, не оказывающий вредного влияния на реакцию. Примеры используемых растворителей включают углеводороды (например, бензол, толуол и ксилол), галогенированные углеводороды (например, хлороформ и 1,2-дихлорэтан), нитрилы (например, ацетонитрил), простые эфиры (например, 1,2-диметоксиэтан, тетрагидрофуран, и 1,4-диоксан), спирты (например, метанол и этанол), апротонные полярные растворители (например, N,N-диметилформамид, диметилсульфоксид и гексаметилфосфориламид), вода и смеси этих растворителей. Время реакции составляет от 0,1 до 100 часов, предпочтительно от 0,5 до 24 часов. Реакция протекает при температуре от 0°C до температуры кипения растворителя, предпочтительно от 20 до 150°С.
Полученное таким образом соединение формулы (VI) может быть использовано на следующей стадии реакции после или без выделения или очистки, которые выполняются с использованием известных средств и способов для разделения и очистки, такими как концентрирование, концентрирование в вакууме, кристаллизация, экстракция растворителем, повторное осаждение и хроматография.
(Стадия d)
На этой стадии соединение (VI) подвергают бромированию с помощью N-бромсукцинимида, что приводит к получению соединения (VII).
Галогенирование может быть осуществлено способом, описанным в WO 2006/102079, или с помощью аналогичного метода.
Количество используемого на этой стадии N-бромсукцинимида составляет от 0,5 до 2,0 молей, предпочтительно от 0,9 до 1,2 молей, из расчета на один моль соединения формулы (VI).
В этой реакции может быть использован любой растворитель, который не оказывает вредного влияния на реакцию. Например, предпочтительно могут быть использованы тетрагидрофуран, 1,4-диоксан, N,N-диметилформамид, N-метилпирролидин-2-он или смеси этих растворителей.
Реакция протекает обычно при температуре от -20 до +50°С, предпочтительно от 0°C до комнатной температуры. Время реакции обычно составляет от 1 минуты до 2 дней, и предпочтительно от 5 минут до 12 часов.
Полученное таким образом соединение формулы (VII) может быть использовано на следующей стадии реакции после или без выделения или очистки, которые выполняются с использованием известных средств и способов для разделения и очистки, такими как концентрирование, концентрирование в вакууме, кристаллизация, экстракция растворителем, повторное осаждение и хроматография.
(Стадия е)
На этой стадии происходит взаимодействие органического борана и соединения формулы (VII) с получением в реакционной системе промежуточного алкилборанового соединения, и затем промежуточное соединение превращают в соединение формулы (VIII) в присутствии основания и катализатора на основе переходного металла.
Эта стадия может быть выполнена любым общеизвестным способом (см., например, WO 2006/102079).
Примеры органических боранов включают 9-BBN (9-борабицикло[3.3.1]нонан), димер 9-BBN (димер 9-борабицикло[3.3.1]нонана), дисиамилборан (бис(1,2-диметилпропил)боран), гексилборан ((1,1,2-триметилпропил)боран) и тому подобное. Органический боран предпочтительно представляет собой 9-BBN (9-борабицикло[3.3.1]нонан) или димер 9-BBN (димер 9-борабицикло [3.3.1]нонана), особенно предпочтителен 9-BBN (9-борабицикло[3.3.1]нонан). Количество используемого органического борана особенно не ограничено, если оно обеспечивает получение алкилборанового промежуточного соединения. Органический боран можно использовать в количестве от 1 до 20 молей на моль соединения формулы (VII). С точки зрения облегчения протекания реакции, количество органического борана предпочтительно составляет от 6 до 10 молей.
В качестве катализатора на основе переходного металла могут быть использованы, например, катализатор на основе двухвалентного палладия (например, ацетат палладия, хлорид палладия, и дихлорид 1,1′-бис(дифенилфосфино)ферроцен-палладия (II)). Если необходимо, может быть использован лиганд (например, трифенилфосфин и три-трет-бутилфосфин). Количество используемого катализатора на основе переходного металла может варьироваться в зависимости от типа катализатора. Катализатор на основе переходного металла обычно используют в количестве от 0,0001 до 1 моль, предпочтительно от 0,01 до 0,5 моль, из расчета на один моль соединения формулы (VII). Лиганд обычно используют в количестве от 0,0001 до 4 молей, предпочтительно от 0,01 до 2 молей, из расчета на один моль соединения формулы (VII).
Альтернативно, может быть использован, например, катализатор на основе палладия с нулевой валентностью. Примеры катализаторов на основе палладия с нулевой валентностью включают тетракистрифенилфосфинпалладий (0), трис(дибензилиденацетон)палладий (0), палладий (0) на угле и тому подобное. Тетракистрифенилфосфинпалладий (0) или трис(дибензилиденацетон)палладий (0) являются более предпочтительными, и тетракистрифенилфосфинпалладий (0) является особенно предпочтительным. Количество используемого катализатора на основе палладия с нулевой валентностью, особенно не ограничено, если оно обеспечивает внутримолекулярную циклизацию, и это количество может варьировать в зависимости от типа катализатора. Катализатор на основе палладия с нулевой валентностью может быть использован в количестве от 0,0001 до 1 моля, предпочтительно от 0,01 до 0,5 моля, из расчета на один моль соединения формулы (VII).
Если необходимо, то к катализатору на основе палладия с нулевой валентностью может быть добавлен лиганд. Примеры таких лигандов включают трифенилфосфин, 1,1′-бис(дифенилфосфино)ферроцен, три-трет-бутилфосфин, трициклогексилфосфин, 2-дициклогексилфосфино-2′,6′-диметоксибифенил, 2-дициклогексилфосфино-2′,4′,6′-триизопропилбифенил, 2-(дитретбутилфосфино)бифенил, 2-дициклогексилфосфино-2′-(N,N-диметиламино)бифенил, 4,5′-бис(дифенилфосфино)-9,9′-диметилксантин и т.п. Когда в качестве палладиевого катализатора с нулевой валентностью используется трис(дибензилиденацетон)палладий (0), в качестве лиганда может быть добавлен трифенилфосфин. Количество используемого лиганда не имеет особых ограничений, поскольку протекает внутримолекулярная реакция циклизации. Лиганд может быть использован в количестве от 0,0001 до 4 молей, предпочтительно от 0,01 до 2 молей, из расчета на один моль соединения формулы (VII).
Примеры оснований включают неорганические основания, такие как гидрокарбонат натрия, карбонат натрия, карбонат калия, карбонат цезия, и гидроксидов щелочных металлов. Гидроксиды щелочных металлов являются предпочтительными. Примеры гидроксидов щелочных металлов включают гидроксид лития, гидроксид натрия, гидроксид калия и гидроксид цезия. Гидроксид лития, гидроксид натрия, гидроксид калия или гидроксид цезия, предпочтительно используют. Гидроксид лития или натрия является особенно предпочтительным. Количество используемого основания по мере протекания реакции конкретно не ограничивается. Основание можно использовать в количестве от 1 до 100 молей, предпочтительно от 2 до 20 молей, из расчета на один моль соединения формулы (VII). Гидроксид щелочного металла может быть использован в виде водного раствора гидроксида щелочного металла.
При использовании комбинации органического борана, гидроксида щелочного металла и катализатора на основе палладия с нулевой валентностью, предпочтительно использование комбинации предпочтительного органического борана, предпочтительного гидроксида щелочного металла и предпочтительного катализатора на основе палладия с нулевой валентностью. Особенно предпочтительно использование особенно предпочтительного органического борана, особенно предпочтительного гидроксида щелочного металла и особенно предпочтительного катализатора на основе палладия с нулевой валентностью.
Может быть использован любой растворитель, не оказывающий вредного влияния на реакцию. Примеры таких растворителей включают углеводороды (например, бензол, толуол и ксилол), простые эфиры (например, 1,2-диметоксиэтан, тетрагидрофуран и 1,4-диоксан), апротонные полярные растворители (например, N,N-диметилформамид, диметилсульфоксид и гексаметилфосфориламид), воду и их смеси. Предпочтительно используют 1,2-диметоксиэтан или тетрагидрофуран. Тетрагидрофуран является особенно предпочтительным с точки зрения стабильности органического борана и получения промежуточного алкилборанового соединения. Количество используемого в реакции растворителя конкретно не ограничено. Растворитель может быть использован в количестве, которое от 1 до 300 раз больше, а предпочтительно от 10 до 96 раз больше массы соединения формулы (VII).
Время реакции получения соединения формулы (VIII) особо не ограничено. Время реакции может составлять от 0,1 до 100 часов, предпочтительно от 0,5 до 24 часов.
Температура реакции получения соединения формулы (VIII) не имеет особых ограничений. Температура реакции может составлять от -20°C до температуры кипения растворителя, предпочтительно от 0 до 150°С. В ходе внутримолекулярной реакции циклизации промежуточного алкилборана с использованием катализатора на основе палладия с нулевой валентностью и щелочного водного раствора гидроксида металла, низкая температура реакции имеет тенденцию вызывать побочные реакции, что приводит к низкому выходу. Таким образом, предпочтительная температура реакции составляет 61°С или выше.
Полученное таким образом соединение формулы (VIII) может быть использовано на следующей стадии реакции после или без выделения или очистки, которые выполняются с использованием известных средств и способов для разделения и очистки, такими как концентрирование, концентрирование в вакууме, кристаллизация, экстракция растворителем, повторное осаждение и хроматография.
Образование алкилборанового промежуточного соединения в реакционной с