Способ получения пластификаторов
Изобретение относится к способу получения пластификатора для полимерных материалов из возобновляемого сырья, такого как сложные эфиры жирных кислот. В соответствии с изобретением получение пластификатора осуществляют путем окисления алкиловых эфиров жирных кислот растительного происхождения кислородсодержащим газом в присутствии гомогенных катализаторов - сложных эфиров молибденовой кислоты и двухатомных алифатических спиртов. Процесс окисления предпочтительно проводят при 100-120°С и атмосферном давлении. Технический результат - упрощение процесса. 1 з.п. ф-лы, 2 табл., 12 пр.
Реферат
Изобретение относится к производству пластификаторов для полимерных материалов, в частности к способам получения пластификаторов из возобновляемого сырья - из сложных эфиров жирных кислот путем обработки их окислителями (пероксид водорода, надкислоты, органические гидропероксиды, кислород).
Известны способы получения пластификаторов эпоксидированием растительных масел (соевое, подсолнечное, рапсовое, льняное, оливковое, хлопковое и др.), представляющих собой сложные эфиры глицерина и жирных карбоновых кислот (в том числе ненасыщенных), а также метиловых эфиров жирных кислот растительных масел. В качестве эпоксидирующего агента используют пероксикарбоновые кислоты - надмуравьиную, надуксусную, м-хлорпероксибензойную и др., процесс проводят в периодических или полупериодических условиях при 30-90°С в присутствии гомогенного или гетерогенного катализатора или без него. В подавляющем большинстве случаев пероксикислоты получают из соответствующей карбоновой кислоты и пероксида водорода непосредственно в процессе эпоксидирования (in-situ).
В зависимости от условий процесса, типа окислителя и катализатора степень конверсии двойных связей колеблется в интервале от 68 до 100% (RU2058308; US8481622; International Conference on Chemistry and Chemical Engineering, 2010, pp.102-105; WO2014130391; US6797753; Energy Procedia, 2014, vol.54, pp.75-84; US20090005508), а выход эпокисидов достигает 90% (US8173825).
Основным недостатком данных методов является использование в качестве эпоксидирующего агента агрессивной смеси: пероксид водорода - карбоновая кислота, что требует использования аппаратуры из дорогостоящих коррозионно-стойких материалов. Другим недостатком этих методов является образование кислотных стоков, требующих дополнительных стадий их утилизации.
Известны способы получения пластификаторов из растительных масел, а также из смеси метиловых эфиров жирных кислот растительных масел путем их эпоксидирования органическими или неорганическими гидропероксидами (пероксимоносульфат калия, гидроперекись кумола, гидроперекись трет-бутила) в присутствии различных катализаторов гомогенных (комплексы Ti, Mo и др. переходных металлов), гетерогенных (оксиды Cr, Mo, W, нанесенные различные модификации оксида алюминия; титансиликаты) или без них. Процесс проводят в довольно мягких условиях при 10-100°С (EP2665714; JAOCS, vol.75, pp.601-607, 1998; Applied Catalysis A: General, v.401, pp.189-198, 2011; Chem.Commun. PP.795-796, 1997; Green Chemistry. vol.5. pp.421-424, 2003; Applied Catalysis A: General. vol.248. pp.261-268, 2003). Например, в присутствии оксида молибдена, нанесенного на различные модификации оксида алюминия при эпоксидировании гидроперекисью трет-бутила, уже после 2 часов проведения процесса степень конверсии в зависимости от типа носителя составляет 62-82% при 100%-й селективности процесса (WO2012038811).
Несмотря на высокие производительность и селективность процесса, существенным недостатком таких методов является необходимость использования в качестве эпоксидирующих агентов гидропероксидов - взрывоопасных и токсичных органических веществ.
Известны периодические и полупериодические способы получения пластификаторов из растительных масел и метиловых эфиров жирных кислот растительных масел эпоксидированием их пероксидом водорода при 30-80°С в присутствии гомогенных (пероксофосфовольфраматы, метилтриоксорений, а также вольфрамовая или молибденовая кислоты) или гетерогенных (титансиликаты, оксиды Cr, Mo, W, нанесенные на Al2O3 или SiO2) катализаторов (Green Chem, vol.6, pp.330-334, 2004; Bull.Chem.Soc.Jpn, vol.59, pp.3941-394, 1986; Microporous and Mesoporous Materials, v.164, pp.182-189, 2012; JAOCS, vol.79 №2, pp.179-181, 2002; WO2013079791). Например, в присутствии каталитической системы на основе пероксофосфовольфрамата натрия и четвертичной аммониевой соли степень конверсии соединений с двойными связями, содержащихся в рапсовом масле, свыше 96%, а селективность по эпоксидам и гидроксидам - 93,9 и 4% соответственно, достигаются в относительно в мягких условиях при 60-70°С (RU2515495).
Основным недостатком таких методов является использование дорогостоящих концентрированных растворов пероксида водорода, а также низкая скорость процесса, из-за чего вышеуказанные показатели процесса (степень конверсии, выход) достигаются за 15-48 часов.
Известен способ получения пластификаторов путем обработки метилового эфира олеиновой кислоты пероксидом водорода и кислородсодержащим газом в присутствии пероксофосфовольфраматного каталитического комплекса [(C8H17)3NCH3]3[PO4[W(O)(O2)2]4] в периодическом реакторе в изотерических условиях при 40°С (Catalysis Today, v.157, pp.371-377, 2010).
При эквимолярном соотношении пероксида водорода к сырью и пропускании воздуха через реакционную смесь в течение 30 минут конверсия метилолеата составила 97,8%, а выход эпоксида - 95%. При использовании чистого кислорода уже за 10 минут проведения процесса была достигнута степень конверсии метил олеата 87%, а выход эпоксида составил 53%. Через 30 минут проведения процесса при подаче чистого кислорода конверсия и выход возрастают до 99%.
Недостатком данного способа являются сложность получения катализатора (J. Org. Chem., v.53, p.1553, 1988), который, как отмечают и сами авторы, очень трудно выделить из реакционной массы для повторного использования. Другим недостатком данного способа является необходимость использования дорогого окислителя - пероксида водорода.
Наиболее близким по технической сущности и достигаемому эффекту является способ получения пластификаторов - эпоксидированных растительных масел путем окисления растительных масел (сложных эфиров жирных кислот и глицерина) или их отходов кислородом воздуха при фотохимическом инициировании ультрафиолетовым светом в течение 6 часов при пониженной температуре 6-10°C. Процесс окисления осуществляют в тонкой пленке растительного масла при освещении люминесцентной лампой. Степень конверсии двойных связей составляет 78-92%, эпоксидное число 3,6-7,2% (RU2161172).
Недостатками данного способа являются необходимость поддержания низкой температуры в реакторе и сложность аппаратурного оформления (осуществление процесса в тонкой пленке 0,6-1,8 мм).
Задачей предлагаемого изобретения является разработка простого и эффективного способа получения пластификаторов на основе алкиловых эфиров жирных кислот растительного происхождения, использующего дешевые и доступные окислители и катализаторы.
Поставленная задача решается способом получения пластификаторов путем окисления кислородсодержащим газом алкиловых эфиров жирных кислот растительного происхождения, в котором процесс окисления осуществляют в присутствии гомогенных катализаторов - сложных эфиров молибденовой кислоты и двухатомных алифатических спиртов.
Предпочтительно в качестве катализаторов используют диэтиленгликолят и дипропиленгликолят молибдена (VI). Однако не противопоказано использование сложных эфиров молибденовой кислоты и других двухатомных спиртов, описанных, например, в патенте US3668227, в котором также описана методика получения данных соединений.
Процесс окисления может быть осуществлен как при атмосферном, так и повышенном давлении, при температурах от 90 до 130оС, при использовании в качестве окислителя воздуха или кислородсодержащего газа. При температуре ниже 90оС уменьшается скорость реакции, а при температуре выше 130оС имеет место потемнение реакционной массы, что снижает качество получаемых пластификаторов. Предпочтительно процесс проводить при атмосферном давлении и температуре 100-120оС.
Следующие примеры иллюстрируют способ получения пластификаторов и их применение.
Пример 1
В реактор колонного типа объемом 160 мл, снабженный термопарой, обратным холодильником и рубашкой для обогрева, загружают 100 мл метиловых эфиров жирных кислот оливкового масла с йодным числом 85, включают его обогрев и начинают подавать в нижнюю часть реактора воздух с расходом 40 мл/с. При достижении в реакторе температуры 90°С при интенсивном барботаже в реактор вводят катализатор - дипропиленгликолят молибдена (VI) - в количестве 0,02%масс. в расчете на молибден. Процесс проводят в течение 18 часов при атмосферном давлении. Получают смесь, содержащую продукты окисления метиловых эфиров жирных кислот оливкового масла, с йодным числом 7. Степень превращения двойных связей - 91,8%. Полученная смесь может быть использована в качестве пластификатора.
Пример 2
В реактор колонного типа (по примеру 1) загружают 100 мл метиловых эфиров жирных кислот подсолнечного масла с йодным числом 133 и начинают подавать воздух в нижнюю часть реактора с расходом 60 мл/с. При интенсивном барботаже реакционную массу нагревают до 110°С и после чего в смесь вводят катализатор - диэтиленгликолят молибдена (VI) - в количестве 0,07% масс. в расчете на молибден. Процесс проводят в течение 18 часов под давлением 0.8 ати. Получают смесь, содержащую продукты окисления метиловых эфиров жирных кислот подсолнечного масла, с йодным числом 10. Степень превращения двойных связей - 92,5%. Полученная смесь может быть использована в качестве пластификатора.
Примеры 3-6
Иллюстрируют способ получения пластификаторов при использовании в качестве сырья эфиров кислот других масел и спиртов, катализаторов и их концентрации, температуры окисления, давления. Процесс окисления проводят аналогично примеру 1. Исходное сырьё для получения пластификаторов, условия процесса их окисления и результаты приведены в таблице 1.
Таблица 1. Условия синтеза пластификаторов.
№ | Исходное сырье | Т | Р | Времяреакции | Катализатор | Скт | Расход воздуха | Х |
°С | ати | час | % масс. | мл/с | % | |||
1 | МЭЖКОМ | 90 | 0.0 | 18 | ДПГМ | 0.02 | 40 | 91,8 |
2 | МЭЖКПМ | 110 | 0.8 | 14 | ДЭГМ | 0.07 | 60 | 92,5 |
3 | МЭЖКПМ | 120 | 0.0 | 7 | ДПГМ | 0.07 | 80 | 93,1 |
4 | МЭЖКЛМ | 100 | 3.2 | 9 | ДПГМ | 0.07 | 70* | 93,3 |
5 | ЭЭЖКРМ | 130 | 0.0 | 12 | ДЭГМ | 0.05 | 80 | 92,4 |
6 | БЭЖКЛМ | 100 | 5.0 | 10 | ДПГМ | 0.06 | 50 | 92,1 |
МЭЖКОМ | - Метиловые эфиры жирных кислот оливкового масла; |
МЭЖКПМ | - Метиловые эфиры жирных кислот подсолнечного масла; |
МЭЖКЛМ | - Метиловые эфиры жирных кислот льняного масла; |
ЭЭЖКРМ | - Этиловые эфиры жирных кислот рапсового масла; |
БЭЖКЛМ | - Бутиловые эфиры жирных кислот льняного масла; |
ДЭГМ | - Диэтиленгликолят молибдена (MoO2ДЭГ2); |
ДПГМ | - Дипропиленгликолят молибдена (MoO2ПГ2); |
Т и Р | -температура и давление процесса окисления; |
Скт | - концентрация катализатора (в расчете на Mo); |
Х | - степень конверсии двойных связей; |
* | - вместо воздуха в реактор подают смесь состава, % об.: азот - 50; кислород - 50. |
Примеры 7-12
Иллюстрируют эффективность продуктов окисления, полученных в примерах 1-6, при использовании их в качестве пластификаторов поливинилхлорида (ПВХ).
В качестве критерия эффективности пластификатора использовали параметр - совместимость пластификатора с полимером (ПВХ), которая характеризуется критической температурой растворения ПВХ в пластификаторе и порогом коагуляции ПВХ из раствора в пластификаторе.
Определение критической температуры растворения ПВХ в пластификаторах проводили следующим образом. В стакан помещали 0,2 г ПВХ, 100 г пластификатора, осторожно нагревали смесь на масляной бане, тщательно перемешивая её термометром до образования прозрачного раствора, фиксировали температуру растворения: чем она ниже, тем лучше пластификатор.
Порог коагуляции ПВХ из прозрачного раствора в пластификаторе стандартной концентрации 0,2 г/100 мл при комнатной температуре определяли высаживанием нерастворителем метанолом. Чем большее количество метанола требуется для достижения порога коагуляции, тем выше совместимость пластификатора с полимером. Полученные показатели сравнивали с показателями для стандартного пластификатора диоктилфталата (ДОФ). Результаты представлены в таблице 2.
Таблица 2. Проверка совместимости пластификаторов с ПВХ (в сравнении со стандартным пластификатором - диоктилфталатом)
№ | Продукт | Критическая температура растворения ПВХ, °С | Количество высадителя-метанола, мл |
Диоктилфталат | 118 | 1,1 | |
7 | Продукты окисления метиловых эфиров жирных кислот оливкового масла | 132 | 0,7 |
8 | Продукты окисления метиловых эфиров жирных кислот подсолнечного масла | 121 | 2,2 |
9 | Продукты окисления метиловых эфиров жирных кислот подсолнечного масла | 120 | 2,3 |
10 | Продукты окисления метиловых эфиров жирных кислот льняного масла | 118 | 2,2 |
11 | Продукты окисления этиловых эфиров жирных кислот рапсового масла | 123 | 1.9 |
12 | Продукты окисления бутиловых эфиров жирных кислот льняного масла | 125 | 1.4 |
Предлагаемый способ получения пластификаторов характеризуется простотой аппаратурного оформления и использованием дешевых реагентов и катализаторов и позволяет получать пластификаторы, обладающие высокими физико-химическими характеристиками (совместимость с полимерами).
1. Способ получения пластификаторов путем окисления алкиловых эфиров жирных кислот растительного происхождения кислородсодержащим газом, отличающийся тем, что процесс окисления осуществляют в присутствии гомогенных катализаторов - сложных эфиров молибденовой кислоты и двухатомных алифатических спиртов.
2. Способ по п.1, отличающийся тем, что процесс окисления осуществляют при 100-120оС и атмосферном давлении.