Кузов транспортного средства

Иллюстрации

Показать все

Группа изобретений относится к области транспортного машиностроения. По первому варианту кузов транспортного средства содержит продольный и поперечный элементы. Поперечный элемент имеет поверхность перемычки, которая конфигурирует верхнюю поверхность, реберную часть и поверхность вертикальной стенки. Поперечный элемент имеет фланец, сформированный на продольном конце непрерывно вокруг поверхности перемычки, реберной части и поверхности вертикальной стенки. Фланец имеет ширину фланца, в центре в направлении периметра своей изогнутой части, не меньшую, чем минимальная ширина фланца в области, исключающей центр в направлении периметра изогнутой части. Поперечный элемент имеет прочность на растяжение 440 МПа или более. По второму варианту кузов транспортного средства содержит переднюю панель пола, боковую продольную балку и поперечную траверсу пола. Передняя панель пола имеет туннельную часть с вертикальной стенкой и имеет фланцевые части на обоих поперечных краях. Боковая продольная балка соединена посредством фланцевой части с передней панелью пола. Достигается повышение жесткости конструкции. 2 н. и 17 з.п. ф-лы, 44 ил., 1 табл.

Реферат

Область техники

Настоящее изобретение относится к кузову транспортного средства, который имеет продольный элемент, расположенный так, что он ориентирован в продольном направлении кузова транспортного средства, и поперечный элемент, расположенный так, что он ориентирован в поперечном направлении кузова транспортного средства.

Уровень техники

Кузов транспортного средства, состоящий из кузова блочной конструкции (несущий кузов), конфигурируется с помощью, в качестве основных «скелетных» компонентов, длинных продольных элементов, таких как боковая продольная балка, продольный брус крыши, передний пол, имеющий туннельную часть пола, и боковой элемент, которые располагаются так, что они ориентированы в продольном направлении кузова транспортного средства; и длинные поперечные элементы, такие как поперечная траверса пола и поперечная траверса крыши, которые располагаются так, что они ориентированы в поперечном направлении кузова транспортного средства. Продольный элемент и поперечный элемент, как правило, соединяются друг с другом через фланцы, сформированные на продольных (осевых) концах поперечного элемента, для того, чтобы обеспечивать жесткость кузова транспортного средства и переносить нагрузку.

К поперечному элементу прикладывается нагрузка в осевом его направлении, вызванная деформацией формы поперечного сечения продольного элемента, а также скручивающий крутящий момент, вызванный смещением продольного элемента. Поэтому требуется поперечный элемент для того, чтобы пресекать деформацию, возможно вызываемую нагрузкой, приложенной в осевом направлении, и чтобы иметь высокую жесткость на скручивание, которая влияет на устойчивость движения транспортных средств.

Чтобы минимизировать величину деформации поперечного элемента, необходимо эффективно прикладывать осевую нагрузку к поперечному сечению поперечного элемента и оптимизировать форму поперечного сечения и условия соединения поперечного элемента.

Также, в целях повышения жесткости на скручивание поперечного элемента опять же необходимо оптимизировать форму поперечного сечения и условия соединения поперечного элемента аналогично описанному выше.

С целью пресечения деформации поперечного элемента под осевой нагрузкой предпочтительно обеспечивать большую площадь поперечного сечения поперечного элемента и соединять поперечные элементы с продольным элементом в точках на фланце настолько близко, насколько возможно, к поперечному профилю. С другой стороны, с целью улучшения жесткости на скручивание поперечного элемента опять же предпочтительно обеспечивать большую площадь поперечного сечения поперечного элемента. Однако в отличие от вышеописанных условий для пресечения деформации предпочтительно соединять поперечный элемент с продольным элементом в точках на фланце настолько удаленно, насколько возможно, от поперечного профиля. Короче говоря, в то время как обеспечивается большая площадь поперечного сечения поперечного элемента, геометрия фланца поперечного элемента и точки соединения обязательно оптимизируются, принимая во внимание пресечение деформации и улучшение в жесткости на скручивание поперечного элемента.

В настоящее время фланец, который формируется на продольном конце поперечного элемента и служит в качестве соединительной части между поперечным элементом и продольным элементом, выпрессовывается посредством прессования в пресс-форме в результате объемной деформации. Соответственно, все попытки формирования фланца вдоль реберной части поперечного элемента будут неизбежно приводить в результате к концентрации объемной деформации локально на крае фланца. Как следствие, в процессе штампования фланец будет иногда раскалываться на своем крае, хотя он задуман достаточно длинным по ширине.

Поэтому традиционной практикой было предоставление прорези около реберной части поперечного элемента вместо предоставления фланца. Альтернативно, даже если фланец формируется вдоль реберной части поперечного элемента, фланец минимизирован по ширине в своем фрагменте, соответствующем центру в направлении периметра реберной части. Как следствие, поперечный элемент не имеет точки соединения, в типичном варианте посредством точечной сварки, на своем фланце, особенно во фрагменте, соответствующем реберной части. Это было одной из причин, препятствующих пресечению деформации и улучшению в жесткости на скручивание поперечного элемента.

Конкретное пояснение будет предоставлено ниже, со ссылкой на случай, когда продольный элемент конфигурируется посредством боковых продольных балок и туннельной части передней панели пола и поперечный элемент конфигурируется посредством поперечной траверсы пола. Пол кузова транспортного средства (просто называемый "полом" далее в данном документе) не только, прежде всего, принимает участие в обеспечении необходимых уровней жесткости на скручивание и жесткости на изгиб кузова транспортного средства во время движения, но также принимает участие в передаче нагрузки удара в случае автомобильной катастрофы и в значительной степени влияет на вес кузова транспортного средства. Поэтому требуется, чтобы пол удовлетворял противоречивым требованиям, касающимся высокой жесткости и легкого веса. Общая структура, используемая полом, такая, что она имеет переднюю панель пола; и поперечная траверса пола, которая соединяется с верхней поверхностью (поверхностью, обращенной в салон) передней панели пола и соединяет туннельную часть, которая формируется так, чтобы выступать вокруг центра по ширине передней панели пола, и внутренние панели боковой продольной балки, которые точечно привариваются к обоим поперечным кромкам передней панели пола. Посредством точечной сварки поперечной траверсы пола с передней панелью пола туннельной частью и с внутренними панелями боковой продольной балки структура пола будет улучшена по жесткости и по характеристике передачи нагрузки под нагрузкой удара.

В традиционном процессе точечной сварки поперечной траверсы пола соответственно с верхней поверхностью передней панели пола, внешними поверхностями внутренних панелей боковой продольной балки и с поверхностью вертикальной стенки туннельной части передней панели пола было общепринятым подходом использовать наружный фланец, сформированный как полоса сварки, на обоих продольных концах поперечной траверсы пола.

Поперечная траверса пола является структурным компонентом, который принимает участие в улучшении жесткости кузова транспортного средства и амортизации нагрузки удара в случае бокового удара. В последние годы, с точки зрения уменьшения веса и улучшения безопасности при столкновении, более тонкая и более крепкая высокопрочная сталь, например высокопрочная сталь (HTSS), имеющая прочность на растяжение 390 МПа или более, используется в качестве материала для поперечной траверсы пола.

Высокопрочная сталь, однако, страдает от низкой свободы выбора проектных решений поперечной траверсы пола вследствие своей плохой формуемости.

Более конкретно, для случая, когда поперечная траверса пола состоит из высокопрочной стали 390 МПа или выше, фланец, который формируется на конце поперечной траверсы пола, чтобы служить в качестве соединительной части с внутренними панелями боковой продольной балки или с туннельной частью, будет повреждаться от серьезного удлинения при фланцевании на краю изогнутой части, и может разрываться в процессе штампования вследствие плохой формуемости поперечной траверсы пола. Поперечная траверса пола, следовательно, должна компенсировать нехватку формуемости в типичном варианте посредством предоставления прорези, вместо предоставления фланца, около реберной части, при этом приходится мириться с ухудшением жесткости на скручивание и характеристики переноса нагрузки. Прорезь, однако, затрагивала ухудшение различных характеристик поперечной траверсы пола, включающих в себя характеристику столкновения, имеющую отношение к осевому смятию, и жесткость на скручивание.

Принимая во внимание этот вид технологии, Патентный документ 1 раскрывает структуру пола, направленную на пресечение деформации внутреннего пространства транспортного средства в случае столкновения, посредством предоставления средства для уменьшения силы деформации удара, такого как прорезь на конце поперечной траверсы пола.

Патентный документ 2 раскрывает структуру пола, в которой поперечная траверса пола соединяется с боковой продольной балкой посредством соединения поперечной траверсы пола с усилением боковой продольной балки.

Патентный документ 3 раскрывает структуру пола повышенной жесткости посредством сваривания поперечной траверсы пола и боковой продольной балки посредством точечной сварки верхней части внутренней панели боковой продольной балки и фланца поперечной траверсы пола.

Патентный документ 4 раскрывает структуру пола, в которой поперечная траверса пола и боковая продольная балка соединяются посредством сгибания края внутренней панели боковой продольной балки, который должен быть соединен с поперечной траверсой пола.

Патентные документы

Патентный документ 1: Описание японского патента № 3120635;

Патентный документ 2: Описание японского патента № 2996031;

Патентный документ 3: Описание японского патента № 3125476;

Патентный документ 4: Публикация выложенной заявки на патент Японии № 02-141372.

Техническая задача

Структура пола, раскрытая в патентном документе 1, имеет риск чрезмерного проникновения в салон деформированной части, вызванного средством уменьшения деформации удара, если нагрузка от удара является большой.

Структура пола, раскрытая в патентном документе 2, имеет нежелательную вероятность усложнения геометрии внутренней панели боковой продольной балки и поперечной траверсы пола и возникновения трещины или ухудшения размерной точности в процессе штамповки, создаваемой из пластины-заготовки.

Структура пола, раскрытая в патентном документе 3, может не только усложнять геометрию внутренней панели боковой стенки и поперечной траверсы пола, но может даже лишать возможности сборки кузова транспортного средства в некоторых видах процессов сборки посредством точечной сварки, возможно приводя к необходимости в обширном изменении процесса сборки кузова транспортного средства.

Структура пола, раскрытая в патентном документе 4, неизбежно увеличивает затраты на производство вследствие усложненного процесса формирования внутренней панели боковой продольной балки.

Кроме того, хотя явно не заявлено, поперечные траверсы пола в структурах пола, раскрытых в патентных документах 1-4, зарегистрированных с 1988 по 1994 гг., являются продуктами эпохи, в которой высокопрочная сталь не использовалась так широко. С этой точки зрения все продукты рассматриваются как выполненные из листа обычной стали, имеющей прочность на растяжение примерно 300-340 МПа, вместо высокопрочной стали. Соответственно, даже с этими изобретениями не будет другого выбора, чем предоставление фланцев вокруг реберной части на обоих продольных концах поперечной траверсы пола, выполненной из высокопрочной стали, имеющей прочность на растяжение 390 МПа или более.

Следовательно, задачей настоящего изобретения является создание кузова транспортного средства, который имеет продольный элемент и поперечный элемент, соединенный посредством фланца, сформированного на его осевом конце, с продольным элементом, который сдерживается при деформации поперечного элемента и имеет улучшенную жесткость на скручивание.

Более конкретно, настоящее изобретение направлено на создание кузова транспортного средства, имеющего, например, переднюю панель пола и поперечную траверсу пола, которая соединяется с верхней поверхностью передней панели пола и соединяет туннельную часть передней панели пола и боковую продольную балку, присоединенную к передней панели пола, имеющего все характеристики высокой жесткости, хорошей характеристики передачи нагрузки и легковесности.

Решение задачи

Настоящее изобретение приводится ниже.

[1] Кузов транспортного средства, который включает в себя продольный элемент, расположенный так, что он ориентирован в продольном направлении кузова транспортного средства, и поперечный элемент, расположенный так, что он ориентирован в поперечном направлении кузова транспортного средства,

поперечный элемент имеет, по меньшей мере, поверхность перемычки, которая конфигурирует верхнюю поверхность, реберную часть, примыкающую к поверхности перемычки, и поверхность вертикальной стенки, примыкающую к реберной части,

поперечный элемент имеет фланец, сформированный на продольном конце непрерывно вокруг, по меньшей мере, поверхности перемычки, реберной части и поверхности вертикальной стенки, и соединяется через фланец с продольным элементом,

фланец имеет ширину lfc фланца, в центре в направлении периметра изогнутой своей части, не меньшую, чем минимальная ширина lfs фланца в области, исключающей центр в направлении периметра изогнутой части, и

поперечный элемент имеет прочность на растяжение 440 МПа или более.

[2] Кузов транспортного средства параграфа [1], в котором поперечный элемент является сформованным в пресс-форме телом, имеющим желобообразную форму поперечного сечения.

[3] Кузов транспортного средства из параграфа [1], в котором реберная часть имеет радиус кривизны R 8 мм или более, и радиус кривизны R (мм) и высота H (мм) формы поперечного сечения поперечного элемента удовлетворяют следующему выражению (1): 0,06≤R/H≤0,25.

[4] Кузов транспортного средства из параграфа [1], в котором ширина lfc фланца в центре в направлении периметра изогнутой части и минимальная ширина lfs фланца в области, исключающей центр в направлении периметра изогнутой части, удовлетворяют следующему уравнению (2): lfc/lfs≥1,05.

[5] Кузов транспортного средства из параграфа [1], в котором угол, сформированный между поверхностью перемычки и поверхностью вертикальной стенки, равен 80° или более и 100° или меньше.

[6] Кузов транспортного средства из параграфа [1], в котором изогнутая часть имеет соединительную часть, которая должна быть соединена с продольным элементом.

[7] Кузов транспортного средства из параграфа [6], в котором соединительная часть попадает в диапазон, проецируемый на фланце, диапазон определяется, когда рассматривается в поперечном сечении поперечного элемента вокруг фланца, посредством линии нормали, наклоненной на заданный угол от линии нормали на поверхности перемычки поблизости от границы между поверхностью перемычки и реберной частью, и посредством линии нормали, наклоненной на заданный угол от линии нормали на поверхности вертикальной стенки около границы между поверхностью вертикальной стенки и реберной частью.

[8] Кузов транспортного средства из параграфа [6], в котором соединительная часть является точечно сваренной частью.

[9] Кузов транспортного средства из параграфа [1], в котором фланец не имеет минимальной толщины во фрагменте изогнутой части, который соответствует центру в направлении периметра реберной части.

[10] Кузов транспортного средства, который включает в себя:

переднюю панель пола, которая имеет туннельную часть с вертикальной стенкой близко к центру поперечного направления и имеет фланцевые части на обоих поперечных краях;

боковую продольную балку, соединенную посредством фланцевой части с передней панелью пола; и

поперечную траверсу пола, которая имеет, по меньшей мере, поверхность перемычки, которая формирует верхнюю поверхность, реберную часть, примыкающую к поверхности перемычки, и поверхность вертикальной стенки, примыкающую к реберной части, и соединяется с верхней поверхностью передней панели пола,

поперечная траверса пола имеет фланцы, сформированные на обоих продольных концах непрерывно вокруг, по меньшей мере, поверхности перемычки, реберной части и поверхности вертикальной стенки, и соединяется через фланцы с вертикальной стенкой и с боковой продольной балкой,

фланец имеет ширину lfc фланца, в центре в направлении периметра изогнутой своей части, не меньшую, чем минимальная ширина lfs фланца в области, исключающей центр в направлении периметра изогнутой части, и

поперечная траверса пола имеет прочность на растяжение 440 МПа или более.

[11] Кузов транспортного средства из параграфа [10], в котором поперечная траверса пола является сформованным в пресс-форме телом, имеющим желобообразную форму поперечного сечения.

[12] Кузов транспортного средства из параграфа [10], в котором реберная часть имеет радиус кривизны R в 8 мм или более, и радиус кривизны R (мм) и высота H (мм) формы поперечного сечения поперечной траверсы пола удовлетворяют следующему выражению (1): 0,06≤R/H≤0,25.

[13] Кузов транспортного средства из параграфа [10], в котором ширина lfc фланца в центре в направлении периметра изогнутой части и минимальная ширина lfs фланца в области, исключающей центр в направлении периметра изогнутой части, удовлетворяют следующему уравнению (2): lfc/lfs≥1,05.

[14] Кузов транспортного средства из параграфа [10], в котором угол, сформированный между поверхностью перемычки и поверхностью вертикальной стенки равен 80° или более и 100° или меньше.

[15] Кузов транспортного средства из параграфа [10], в котором изогнутая часть имеет соединительную часть, которая должна быть соединена с вертикальной стенкой или боковой продольной балкой.

[16] Кузов транспортного средства из параграфа [15], в котором соединительная часть попадает в диапазон, проецируемый на фланце, диапазон определяется, когда рассматривается в поперечном сечении поперечной траверсы около фланца, посредством линии нормали, наклоненной на заданный угол от линии нормали на поверхности перемычки поблизости от границы между поверхностью перемычки и реберной частью, и посредством линии нормали, наклоненной на заданный угол от линии нормали на поверхности вертикальной стенки около границы между поверхностью вертикальной стенки и реберной частью.

[17] Кузов транспортного средства из параграфа [15], в котором соединительная часть является точечно сваренной частью.

[18] Кузов транспортного средства из параграфа [10], в котором фланец не имеет минимальной толщины в фрагменте изогнутой части, который соответствует центру в направлении периметра реберной части.

Преимущества изобретения

Согласно настоящему изобретению успешно реализован кузов транспортного средства, который имеет продольный элемент и поперечный элемент, соединенный посредством фланца, сформированного на его осевом конце, с продольным элементом, который пресекает деформацию поперечного элемента и имеет улучшенную жесткость на скручивание.

Согласно настоящему изобретению также успешно реализован кузов транспортного средства, имеющий, например, переднюю панель пола и поперечную траверсу пола, которая соединяется с верхней поверхностью передней панели пола, и соединяет туннельную часть передней панели пола и боковую продольную балку, соединенную с передней панелью пола, оптимизированный по геометрии поперечной траверсы пола, форме и условиям соединения между поперечной траверсой пола и боковой продольной балкой или туннельной частью, и, таким образом, имеющий все характеристики высокой жесткости, хорошей характеристики передачи нагрузки и легковесности.

Краткое описание чертежей

Фиг. 1A - вид в перспективе, частично иллюстрирующий структуру пола кузова транспортного средства согласно варианту осуществления.

Фиг. 1B - чертеж, частично иллюстрирующий фланцевую часть поперечной траверсы пола варианта осуществления.

Фиг. 1C - чертеж, частично иллюстрирующий фланцевую часть традиционной поперечной траверсы пола.

Фиг. 2A - вид в поперечном разрезе, взятом по линии II-II на фиг. 1A.

Фиг. 2B - вид в поперечном разрезе, схематично иллюстрирующий примерную поперечную траверсу пола.

Фиг. 3A - чертеж, иллюстрирующий фланцевую и точечно сваренные части традиционной поперечной траверсы пола.

Фиг. 3B - чертеж, иллюстрирующий фланцевую и соединительную части традиционной поперечной траверсы пола.

Фиг. 3C - чертеж, иллюстрирующий фланцевую и соединительную части поперечной траверсы пола варианта осуществления.

Фиг. 3D - чертеж, иллюстрирующий фланцевую и точечно сваренные части поперечной траверсы пола варианта осуществления.

Фиг. 4A - чертеж, иллюстрирующий прямые части и изогнутую часть фланца, сформированного в поперечной траверсе пола.

Фиг. 4B - чертеж, иллюстрирующий прямые части и изогнутую часть фланца, сформированного в поперечной траверсе пола.

Фиг. 5A - чертеж, схематично иллюстрирующий способ формирования поперечной траверсы пола.

Фиг. 5B - чертеж, схематично иллюстрирующий способ формирования поперечной траверсы пола.

Фиг. 6A - чертеж для пояснения формы традиционной заготовки.

Фиг. 6B - чертеж для пояснения формы заготовки с распределенным механическим напряжением.

Фиг. 7 - график, иллюстрирующий примерное соотношение между позицией в изогнутой части фланца и механическим напряжением.

Фиг. 8A - чертеж, схематично иллюстрирующий аналитическую модель поперечной траверсы пола.

Фиг. 8B - чертеж, частично иллюстрирующий фланцевую часть аналитической модели.

Фиг. 8C - чертеж, частично иллюстрирующий фланцевую часть аналитической модели.

Фиг. 9 - график, иллюстрирующий соотношение между эффективностью поглощения энергии при смещении при столкновении в 5 мм (характеристика столкновения) и радиусом кривизны R реберной части.

Фиг. 10 - чертеж, схематично иллюстрирующий аналитическую модель поперечной траверсы пола.

Фиг. 11 - график, иллюстрирующий степень увеличения/уменьшения жесткости на скручивание, со ссылкой на жесткость на скручивание при радиусе кривизны R в 0 мм, когда измеряется для каждого коэффициента 2R относительно высоты H поперечного сечения.

Фиг. 12 - график, иллюстрирующий влияния радиуса кривизны R реберной части, оказываемые на жесткость на скручивание, в сравнении между наличием и отсутствием прорези.

Фиг. 13 - чертеж, схематично иллюстрирующий аналитическую модель поперечной траверсы пола.

Фиг. 14 - чертеж, иллюстрирующий компоновки точек точечной сварки в моделях A-G.

Фиг. 15 - график, иллюстрирующий соотношение между жесткостью на скручивание и числом и позициями точек точечной сварки, влияющих на него.

Фиг. 16 - чертеж, схематично иллюстрирующий аналитическую модель поперечной траверсы пола.

Фиг. 17A - чертеж, иллюстрирующий компоновки точек точечной сварки в моделях 1-6.

Фиг. 17B - чертеж, иллюстрирующий компоновки точек точечной сварки в моделях 1-3.

Фиг. 18 - чертеж, иллюстрирующий компоновки точек точечной сварки в моделях 2, 7, 8, 9, 10 и 16.

Фиг. 19 - чертеж, иллюстрирующий компоновки точек точечной сварки в моделях 2, 11 и 12.

Фиг. 20 - график, иллюстрирующий жесткость на скручивание моделей 1 и 3.

Фиг. 21 - график, иллюстрирующий жесткость на скручивание моделей 3 и 2.

Фиг. 22 - график, иллюстрирующий жесткость на скручивание моделей 4 и 6.

Фиг. 23 - график, иллюстрирующий жесткость на скручивание моделей 6 и 5.

Фиг. 24 - график, совокупно иллюстрирующий жесткость на скручивание моделей 2, 3, 7, 8, 9 и 10.

Фиг. 25 - график, совокупно иллюстрирующий поглощенную энергию моделей 2, 3, 7, 8, 9 и 10.

Фиг. 26 - график, иллюстрирующий жесткость на скручивание моделей 11, 2 и 12.

Фиг. 27 - график, иллюстрирующий поглощенную энергию моделей 11, 2 и 12.

Фиг. 28 - чертеж, иллюстрирующий компоновки точек точечной сварки в моделях 13-15.

Фиг. 29 - график, иллюстрирующий жесткость на скручивание моделей 13-15.

Фиг. 30 - чертеж, иллюстрирующий компоновки точек точечной сварки в моделях 16 и 17.

Фиг. 31 - график, иллюстрирующий жесткость на скручивание моделей 16 и 17.

Фиг. 32 - график, иллюстрирующий поглощенную энергию моделей 16 и 17.

Подробное описание вариантов осуществления

Вариант осуществления для выполнения настоящего изобретения будет пояснен ниже со ссылкой на прилагаемые чертежи. Этот вариант осуществления приводит в пример случай, когда продольный элемент конфигурируется посредством боковой продольной балки и туннельной части передней панели пола, а поперечный элемент конфигурируется посредством поперечной траверсы пола. Отметим, однако, что настоящее изобретение не ограничивается этим и также применимо к случаю, когда, например, продольный элемент конфигурируется посредством продольного бруса крыши, а поперечный элемент конфигурируется посредством поперечной траверсы крыши.

Фиг. 1A представляет собой вид в перспективе, частично иллюстрирующий структуру 1a пола кузова 1 транспортного средства согласно этому варианту осуществления. Как видно на фиг. 1A, структура 1a пола кузова 1 транспортного средства имеет переднюю панель 2 пола, боковую продольную балку 3 в качестве продольного элемента и поперечную траверсу 4 пола в качестве поперечного элемента.

Передняя панель 2 пола имеет туннельную часть 2a в качестве продольного элемента и фланцевую часть 2b. Туннельная часть 2a имеет вертикальную стенку 2c и формируется около центра, в поперечном направлении кузова транспортного средства, передней панели 2 пола, так, чтобы выдавливать желобообразную форму поперечного сечения. Внутри (под поверхностью днища) туннельной части 2a размещаются карданный вал для передачи выходной мощности двигателя к задним колесам и различные трубопроводы. Фланцевая часть 2b формируется вертикально на каждом из обоих поперечных краев передней панели 2 пола.

Общие уровни прочности и толщины передней панели 2 пола будут достаточными. Например, прочность на растяжение в типичном варианте равна 300 МПа или приблизительно этому значению, а толщина в типичном варианте равна 0,6-0,7 мм или приблизительно этому значению.

Боковая продольная балка 3 является длинным цилиндрическим телом, сконфигурированным посредством внутренней панели 3a боковой продольной балки и внешней панели 3b боковой продольной балки. Внутренняя панель 3a боковой продольной балки и внешняя панель 3b боковой продольной балки соединяются друг с другом в типичном варианте посредством точечной сварки, с помощью фланцев, соответственно сформированных на конечных частях обоих компонентов.

Внутренняя панель 3a боковой продольной балки соединяется на своей внешней поверхности с фланцевой частью 2b передней панели 2 пола, в типичном варианте посредством точечной сварки.

Общие уровни прочности и толщины внутренней панели 3a боковой продольной балки и внешней панели 3b боковой продольной балки будут достаточными. Например, прочность на растяжение в типичном варианте равна 440-980 МПа или приблизительно этому значению, а толщина в типичном варианте равна 1,0-2,0 мм или приблизительно этому значению.

Фиг. 2A представляет собой вид в поперечном разрезе, взятом по линии II-II на фиг. 1A. Как видно на фиг. 1A и 2A, поперечная траверса 4 пола является сформованным в пресс-форме телом, состоящим из высокопрочной стали, имеющей прочность на растяжение 440 МПа или более, имеет поверхность 4a перемычки в качестве верхней поверхности, реберные части 4b, 4b, примыкающие к поверхности 4a перемычки, и поверхности 4c, 4c вертикальных стенок, примыкающие к реберным частям 4b, 4b, и имеет желобообразную форму поперечного сечения, сужающуюся таким образом, чтобы задавать почти трапециевидную форму. Поперечная траверса 4 пола также имеет фланцы 4d, 4d, которые примыкают к поверхностям 4c, 4c вертикальных стенок и выступают в стороны.

Поперечная траверса 4 пола соединяется через фланцы 4d, 4d с верхней поверхностью 2d передней панели 2 пола, в типичном варианте посредством точечной сварки.

Поперечная траверса 4 пола дополнительно имеет фланцы 4e. Как видно на фиг. 1B, фланцы 4e формируются около обоих продольных концов поперечной траверсы 4 пола, непрерывно вдоль поверхности 4a перемычки, реберных частей 4b, 4b и поверхностей 4c, 4c вертикальных стенок. Другими словами, нет прорези 4f, которая видна на фиг. 1C, которая была необходима для традиционной поперечной траверсы 4′ пола, состоящей из высокопрочной стали, имеющей прочность на растяжение 390 МПа или более.

Поперечная траверса 4 пола предпочтительно имеет прочность на растяжение 440 МПа или более, а более предпочтительно 590 МПа или более. По выбору, поперечная траверса 4 пола может быть выполнена более тонкой, и кузов транспортного средства может быть уменьшен по весу. Поперечная траверса 4 пола предпочтительно имеет толщину 1,0-2,0 мм, например, более предпочтительно 1,6 мм или менее, а еще более предпочтительно 1,4 мм или менее.

Форма поперечного сечения поперечной траверсы 4 пола не ограничивается этим и может быть формой, которая характерно иллюстрирована на фиг. 2B, с поверхностью 4a перемычки, отклоненной от горизонтальной линии.

Угол θ, сформированный между поверхностью 4a перемычки и поверхностью 4c вертикальной стенки, предпочтительно равен 80° или более и 100° или менее.

Если угол θ меньше 80°, жесткость на скручивание и характеристика противодействия столкновению станут относительно низкими. Задание угла, сформированного между поверхностью 4a перемычки и поверхностью 4c вертикальной стенки, равным 80° или более, является одним из условий для максимизации эффекта исключения прорези и чтобы предоставлять возможность исключения прорези. Таким образом, фланцы 4e могут быть сформированы посредством штамповки на обоих продольных концах поперечной траверсы 4 пола, состоящей из высокопрочной стали, имеющей прочность на растяжение в 440 МПа или более.

С другой стороны, штамповка поперечной траверсы 4 пола становится затруднительной, если угол θ превышает 100°.

Реберная часть 4b предпочтительно имеет радиус кривизны 8 мм или более. Радиус кривизны R (мм) и высота H (мм) желобообразной формы поперечного сечения, сужающейся так, чтобы задавать почти трапециевидную форму, предпочтительно удовлетворяет соотношению 0,06≤R/H≤0,25, а более предпочтительно 0,06≤R/H≤0,185.

Причина, по которой реберная часть 4b предпочтительно имеет радиус кривизны 8 мм или более, в том, что, если радиус кривизны R реберной части 4b меньше 8 мм, фланец 4e может иметь трещину или другой дефект на своем крае в процессе штамповки. В то время как радиус кривизны реберной части, как правило, задавался равным 3-5 мм или приблизительно этому значению, фланец имел большое механическое напряжение на своем крае при радиусе кривизны в 3-5 мм или приблизительно в этом значении, так что не было другого выбора, чем предоставление прорези, вместо фланца, около реберной части.

Причина, по которой условие 0,06≤R/H≤0,25 является предпочтительным, может быть пояснена на основе результатов, иллюстрированных на графике на фиг. 11. Фиг. 11 представляет собой график, иллюстрирующий степень увеличения/уменьшения жесткости на скручивание, со ссылкой на жесткость на скручивание при радиусе кривизны R в 10 мм, когда измеряется для каждого соотношения 2R относительно высоты H поперечного сечения. Если условие 0,12≤R/H≤0,50 или 0,06≤R/H≤0,25 удовлетворяется, жесткость на скручивание может быть увеличена больше, чем ожидается от формы с радиусом кривизны R, равным 0 мм.

Удовлетворяя соотношению 0,06≤R/H≤0,25, радиус кривизны R реберной части 4b увеличивается с традиционного радиуса, тем самым, удлинение при фланцевании во время штамповки может быть смягчено, чтобы пресекать возможные возникновения деформации растяжения на краю фланца 4e. Соответственно, несомненно предотвращается появление трещины в процессе производства, посредством штамповки, поперечной траверсы 4 пола, имеющей фланцы 4e, сформированные на обоих продольных концах, и, таким образом, фланцы 4e формируются более надежным способом на обоих продольных концах поперечной траверсы 4 пола.

Причина, по которой диапазон 0,06≤R/H≤0,185 является предпочтительным, в том, что жесткость на скручивание может быть увеличена по сравнению с традиционной обычной поперечной траверсой пола. Традиционная обычная поперечная траверса пола имеет радиус кривизны R реберной части, равный 3-5 мм или приблизительно этому значению, и высоту H поперечного сечения, равную 100 мм или приблизительно этому значению. Если диапазон 0,12≤2R/H≤0,37 или 0,06≤R/H≤0,185 удовлетворяется, жесткость на скручивание может быть увеличена по сравнению с жесткостью на скручивание поперечной траверсы пола, в типичном варианте имеющей радиус кривизны R, равный 5 мм, и высоту H поперечного сечения 100 мм (2R/H=10%).

Фланцы 4e, 4e, сформированные на поперечной траверсе 4 пола, имеют, как иллюстрировано на фиг. 1B, прямые части 4e-1, 4e-1, которые протягиваются вдоль поверхности 4a перемычки и поверхности 4c боковой стенки, и изогнутую часть 4e-2, которая протягивается вдоль реберной части 4b.

Фиг. 3A и фиг. 3B являются чертежами, иллюстрирующими фланец 4e и соединительную часть 20 традиционной поперечной траверсы 4′ пола при просмотре в осевом направлении. С другой стороны, фиг. 3C и фиг. 3D являются чертежами, иллюстрирующими фланец 4e и соединительную часть 20 поперечной траверсы 4 пола варианта осуществления.

Как видно на фиг. 1B, 3C и 3D, соединительная часть (точечно сваренная часть) 20 для соединения с вертикальной стенкой 2c или с внутренней панелью 3a боковой продольной балки спроектирована, чтобы совпадать с изогнутой частью 4e-2. В то время как по меньшей мере одна соединительная часть 20 попадает в изогнутую часть 20, как иллюстрировано на фиг. 3C, соединительная часть 20 может альтернативно попадать, как иллюстрировано на фиг. 3D, на границу между прямой частью 4e-1 и изогнутой частью 4e-2, так, чтобы лежать поперек обеих частей. Посредством соединительной части 20 поперечная траверса 4 пола соединяется с передней панелью 2 пола или боковой продольной балкой 3.

Посредством такого предоставления соединительной части 20 в изогнутой части 4e-2 фланца 4e поперечная траверса 4 пола и вертикальная стенка 2c или внутренняя панель 3a боковой продольной балки накрепко соединяются, и, таким образом, кузов 1 транспортного средства может быть улучшен по жесткости структуры пола и характеристике передачи нагрузки под нагрузкой от удара.

Кроме того, как иллюстрировано на фиг. 3C и 3D, фланец 4e имеет ширину lfc фланца в центре в направлении периметра своей изогнутой части 4e-2, которая не меньше, чем минимальная ширина lfs фланца в области, исключающей центр в направлении периметра изогнутой части 4e-2. Отметим, что в этой спецификации "центр в направлении периметра изогнутой части" не означает точную половину центрального угла α (см. фиг. 4, например) изогнутой части 4e-2, а в типичном варианте означает приблизительно диапазон α±5%, который протягивается по обеим сторонам от центра (точного центра) в направлении периметра изогнутой части 4e-2. Например, ширина lfc фланца определяется как минимальная ширина в ±5% диапазоне с обеих сторон от центра.

Как описано выше, низкая пластичность по сравнению с пластичностью листа низкопрочной стали и плохая формуемость являются проблемами высокопрочной стали, которая должна применяться к автомобильным компонентам. Для применения высокопрочной стали, следовательно, эффективным является упрощение геометрии компонентов, а особенно поиск геометрии, не имеющей фрагмента, на который оказывает влияние удлинение при фланцевании.

Упрощенная геометрия компонентов может, однако, ухудшать различные характеристики, включающие в себя вышеописанную характеристику столкновения, и жесткость на скручивание, и жесткость на изгиб кузова транспортного средства.

Как иллюстрировано на фиг. 1C и 3A, поперечная траверса 4′ пола, предназначенная для применения с высокопрочной сталью, просто обеспечивает необходимый уровень формуемости в настоящее время посредством предоставления прорези 4f во фланцах 4e, сформированных на продольных концах, с тем, чтобы задавать геометрию, не имеющую фрагмента, на который оказывает влияние удлинение при фланцевании. Поскольку этот вид прорези 4f предусматривается вдоль реберной части 4b, так что, если радиус кривизны R реберной части 4b является большим, как следствие, область прорези 4f неизбежно увеличивается. По этой причине радиус кривизны R реберной части 4b поперечной траверсы 4 пола в