Устройство и способ быстрой зарядки аккумуляторных батарей

Иллюстрации

Показать все

Изобретение относится к устройствам зарядки аккумуляторных батарей. Технический результат - увеличение срока службы батарей. Предложены устройство и способы сверхбыстрой зарядки одной или нескольких аккумуляторных батарей, в т.ч., например, ионно-литиевых. Определяют зарядный ток путем оптимизации модели, основанной на функциях набора переменных внутреннего состояния аккумуляторной батареи, и набора параметров модели или непараметрических данных, характеризующих аккумуляторную батарею. Определяют переменные текущего внутреннего состояния, а на аккумуляторную батарею подают оптимизированный зарядный ток, который зависит от ряда ограничений, характерных для конкретной батареи. Рекурсивно обновляют переменные внутреннего состояния аккумуляторной батареи на основе ее характеристик в процессе зарядки, а также характеристик батарей одного класса, хранящихся в базе данных или полученных по сети. 3 н. и 35 з.п. ф-лы, 14 ил.

Реферат

[0001] Настоящая заявка испрашивает приоритет по предварительной патентной заявке США №61/405,829, поданной 22 октября 2010 г. и включенной в настоящую заявку посредством ссылки.

Область техники

[0002] Настоящее изобретение относится к зарядке гальванических элементов и, в частности, к устройствам и способам зарядки ионно-литиевых аккумуляторных батарей.

Уровень техники

[0003] Определения: Под используемым в контексте настоящего описания и любых пунктов прилагаемой формулы изобретения термином "аккумуляторная батарея" следует понимать, если в контексте не оговорено иное, один или несколько химических аккумуляторов энергии (либо гальванических элементов), обеспечивающих создание электрического потенциала. Термином "Вторичная аккумуляторная батарея" может быть обозначена аккумуляторная батарея, заряжаемая или перезаряжаемая при приложении электрического тока.

[0004] Процесс зарядки аккумуляторной батареи включает в себя подачу тока к батарее с возможностью накапливания заряда, и, следовательно, накапливания энергии. Этот процесс необходимо тщательно контролировать. Как правило, чрезмерно высокие значения скорости зарядки или зарядного напряжения постоянно ухудшают рабочие характеристики аккумуляторной батареи и, в конечном счете, могут привести к полному отказу либо даже к отказу с катастрофическими последствиями, например, перфорации корпуса, взрыву или утечке коррозионно-активных химических веществ.

[0005] Процесс зарядки последовательно соединенных гальванических элементов требует особой осторожности. Перезарядка таких аккумуляторных батарей может привести к повреждению гальванического элемента, вызванному реверсивным режимом заряда при полном разряжении. Некоторые зарядные устройства выполнены с возможностью перезарядки таких аккумуляторных батарей и осуществляют, как правило, контроль уровня напряжения на отдельных элементах. Для одинаковой зарядки отдельных элементов могут быть использованы специальные способы.

[0006] Обычный способ зарядки аккумуляторных батарей состоит из двух или четырех отдельных этапов, в зависимости от типа батареи, см., например, Application note 680, Maxim Integrated Products, Inc, размещенное на сайте ttp://www.maxim-ic.com/app-notes/index.mvp/id/680 (2002). Первый этап, используемый, главным образом, для никель-кадмиевых аккумуляторных батарей, обладающих значительными эффектами памяти, включает в себя полное разряжение батареи. Второй этап, именуемый "основным зарядом" или этапом "быстрой зарядки и ее окончания", включает в себя подачу постоянного тока до достижения некоторого критерия, например, достижения постоянного напряжения или снижения тока. Если С - емкость аккумуляторной батареи в ампер-часах, единице измерения электрического заряда (часто обозначаемой как Q), то ток, выраженный в амперах, может быть выбран в виде коэффициента (или множителя) С. Например, быстрая зарядка Ni-MH аккумуляторной батареи, емкостью 1,2 ампер-часа, при постоянном токе 2,4А или 2*С, может обеспечить его перезарядку за полчаса, при условии отсутствия потерь, что на практике, обычно, не имеет места. При наличии литиево-ионного электрохимического элемента, зарядное устройство ограничивает и ток, и зарядное напряжение, как правило, с точностью до 0,75% (30 мВ для отдельного элемента с напряжением 4 В). Зарядка может быть окончена либо при установлении снижения тока ниже некоторого определенного значения, либо, исходя из заданного времени, прошедшего с момента достижения напряжением своего максимального значения.

[0007] Третий этап, этап, этап "дозарядки", включает в себя подачу слабого тока, обеспечивающего полный заряд аккумуляторных батарей. Этот этап может быть завершен по достижении напряжением своего максимального значения, либо через некоторое заданное время дозарядки, либо при определенной температуре аккумуляторной батареи.

[0008] Четвертый этап или этап "капельной подзарядки" обычно может быть использован для аккумуляторных батареи (химических) всех типов, за исключением ионно-литиевых. Задача этой "капельной подзарядки" состоит в компенсировании стандартной внутренней утечки аккумуляторной батареи и потери заряда с течением времени. На этом этапе могут быть поданы либо малый ток (обычный диапазон от C/16 до C/50), либо импульсы с малым коэффициентом заполнения, при котором средний ток имеет малую величину (например, C/512).

[0009] Недостатки известных протоколов зарядки аккумуляторных батарей состоят в их медленности, кроме того, они могут привести к неоправданному сокращению сроков службы батарей. Такие известные протоколы не обладают способностью учитывать различия между аккумуляторными батареями, даже среди батарей одной производственной партии.

Краткое изложение примеров осуществления изобретения

[0010] В соответствии с примерами осуществления настоящего изобретения, предложено устройство для зарядки аккумуляторных батарей. Устройство содержит средства сопряжения для электрического соединения с аккумуляторной батареей и схему для одновременного измерения ее напряжения и тока. Кроме того, устройство имеет базу данных для накопления данных о параметрах аккумуляторных батарей и процессор для рекурсивного обновления данных, характеризующих модель аккумуляторной батареи, на основе совместно измеренных значений тока и напряжения батареи, а также накопленных данных о параметрах, полученных из базы данных. И, наконец, устройство содержит источник тока (по настоящему изобретению) для подачи регулируемого процессором заряжающего тока.

[0011] В других примерах осуществления изобретения, процессор может быть выполнен с возможностью обновления динамического представления динамики элемента аккумуляторной батареи, на основе, по меньшей мере частично, идентификации системы, или идентификации нелинейной системы.

[0012] В дополнительных примерах осуществления изобретения, схема для одновременного измерения напряжения и тока аккумуляторной батареи имеет четырехпортовую конфигурацию, а средство сопряжения для электрического соединения с аккумуляторной батареей может быть соединено с электродами сравнения аккумуляторной батареи. Процессор может иметь вход для приема сигнала от датчика, чувствительного к характеристике аккумуляторной батареи. Устройство может также иметь терморегулятор для регулирования температуры аккумуляторной батареи.

[0013] В соответствии с другими примерами осуществления настоящего изобретения, предложен способ зарядки аккумуляторных батарей. Согласно предложенному способу выполняют следующие этапы:

a) выполняют динамическое представление динамики элемента аккумуляторной батареи;

b) определяют профиль зарядки аккумуляторной батареи на основе динамического представления; и

c) подают на аккумуляторную батарею оптимизированный зарядный ток, на основе по меньшей мере, частично, профиля зарядки, и отслеживаемого полного заряда, запасенного в аккумуляторной батарее.

[0014] В дальнейших примерах осуществления изобретения, этап подачи оптимизированного тока может зависеть от ряда ограничений, характерных для конкретной аккумуляторной батареи, которые, в свою очередь, могут быть получены, на основе повторяющейся последовательности циклов зарядки-разрядки. Профилем зарядки, в частности, может служить профиль зарядного тока.

[0015] Согласно способу дополнительно могут отслеживать температуру аккумуляторной батареи, а подача оптимизированного зарядного тока на аккумуляторную батарею, по меньшей мере частично, основана на отслеживаемой температуре аккумуляторной батареи. Подача оптимизированного тока может быть, по меньшей мере частично основана, на отслеживании переменных текущего состояния аккумуляторной батареи. Отслеживание полного заряда может включать в себя определение по меньшей мере одной переменной текущего внутреннего состояния аккумуляторной батареи в процессе ее зарядки, либо определение, по меньшей мере, одной переменной текущего внутреннего состояния аккумуляторной батареи в процессе ее разряда.

[0016] В соответствии с другими примерами осуществления изобретения динамическое представление динамики элемента аккумуляторной батареи может быть выполнено посредством идентификации нелинейных систем. Оно может включать в себя также набор переменных внутреннего состояния, и/или набор параметров модели. Кроме того, оно может включать непараметрические данные, характеризующие модель, по меньшей мере частично.

[0017] Определения профиля зарядки аккумуляторной батареи может быть выполнено во время разряда аккумуляторной батареи, и/или ее зарядки.

[0018] При использовании набора параметров модели, он может включать в себя параметры, полученные из базы данных и, в частности, из базы данных, обновленной в процессе зарядки аккумуляторной батареи. Динамическое представление динамики элемента аккумуляторной батареи может включать набор переменных внутреннего состояния, характерных для одного конкретного элемента или набор параметров модели, характерных для ряда элементов. Динамическое представление может быть также обусловлено, по меньшей мере частично, циклами зарядки/разрядки нескольких сетевых зарядных устройств.

[0019] В соответствии с другими примерами осуществления настоящего изобретения, предложена сеть для получения эмпирических данных модели аккумуляторной батареи. Сеть имеет несколько зарядных систем, каждая из которых содержит процессор и источник питания для подачи тока на отдельную аккумуляторную батарею. Сеть имеет также сервер для получения данных от каждого процессора и возврата обновленных данных о динамическом представлении динамики элемента для объединения с каждой зарядной системой.

[0020] В других примерах осуществления изобретения, процессор по меньшей мере одного зарядного устройства выполнен с возможностью обновления динамического представления динамики элемента аккумуляторной батареи на основе, по меньшей мере частично, идентификации систем или идентификации нелинейной системы.

Краткое описание чертежей

[0021] Изложенные выше отличительные признаки изобретения станут очевидными из приведенного далее подробного описания со ссылкой на прилагаемые чертежи, на которых:

[0022] На фиг.1A показана минимальная принципиальная электрическая схема простой модели аккумуляторной батареи, а на Фиг.1B показана модель батареи Тевенина, причем обе модели известны из уровня техники.

[0023] На фиг.2 показана модель ионно-литиевой аккумуляторной батареи, предложенная Национальной лабораторией энергии.

[0024] На фиг.3 показана принципиальная схема, отображающая модель, посредством которой параметры схемы могут быть получены с использованием четырехпроводной конфигурации, в соответствии с примером осуществления настоящего изобретения.

[0025] На фиг.4 показан график идеальной зарядной кривой, построенной на основе простой эвристической процедуры, используемой в схеме, изображенной на Фиг.3.

[0026] На фиг.5A показана блок-схема, характеризующая способ зарядки аккумуляторной батареи, обеспечивающий решение задачи зарядки в соответствии с примером осуществления настоящего изобретения.

[0027] На фиг.5B показана типовая схема для определения уровня заряда аккумуляторной батареи и осуществления ее быстрой зарядки в соответствии с примером осуществления настоящего изобретения;

[0028] На фиг.6 показано сравнение скоростей зарядки аккумуляторной батареи согласно примеру осуществления изобретения настоящего изобретения со скоростями, обусловленными процедурами, определенными изготовителем.

[0029] На фиг.7 показано сравнение срока службы аккумуляторной батареи по настоящему изобретению со сроками службы, обусловленными процедурами, определенными изготовителем.

[0030] На фиг.8 показана блок-схема, характеризующая способ определения параметров аккумуляторной батареи и параметров модели, сопоставленной этой батарее, в соответствии с примером осуществления настоящего изобретения.

[0031] На фиг.9 показано несколько зарядных устройств, объединенных в группу, с возможностью обобщения данных для упрощения оптимизации параметров зарядки, в соответствии с примерами осуществления настоящего изобретения.

[0032] Фиг.10 демонстрирует начало возникновения токовой неустойчивости, возникающей вследствие небольшого изменения параметра модели.

[0033] Фиг.11 демонстрирует начало возникновения соответствующей неустойчивости выходного и внутреннего напряжений.

[0034] На фиг.12 показана упрощенная схема, используемая в соответствии с примером осуществления настоящего изобретения, для приложения к аккумуляторной батарее возмущающей нагрузки с возможностью проведения измерений во время разрядки аккумуляторной батареи или в состоянии покоя.

[0035] На фиг.13 показана упрощенная схема, используемая в соответствии с примером осуществления настоящего изобретения, для приложения к аккумуляторной батарее возмущающей нагрузки с возможностью проведения измерений во время зарядки или разрядки аккумуляторной батареи, либо в состоянии покоя.

[0036] На фиг.14 показана блок-схема, характеризующая способ возмущения состояния аккумуляторной батареи в течение ее зарядки или разрядки, обеспечивающий решение задачи зарядки в соответствии с примером осуществления настоящего изобретения.

Подробное описание конкретных примеров осуществления изобретения

[0037] Определения. Под используемым в контексте настоящего описания и любых пунктов прилагаемой формулы изобретения термином "источник тока" обычно следует понимать источник питания, поставляющий электроны элементу системы, использование которого не ограничено лишь подачей регулируемого тока, однако, этим термином может быть также обозначен и источник, создающий на элементе заданные значения потенциала, и обеспечивающий подачу тока, необходимого для поддержания заданного потенциала (т.е. "источник напряжения"). Точно так же подача "зарядного тока", как процесс, включает в себя приложение зарядного напряжения.

[0038] Если в контексте не оговорено иное, под термином «динамическое представление» следует понимать модель меняющихся во времени характеристик системы, как параметрических, так и непараметрических, к которым может быть специально отнесена независимая переменная величина времени.

[0039] Хотя термин "динамическое представление" относится к модели системы, термин "динамика элемента аккумуляторной батареи" должен обозначать фактическое электрохимическое поведение аккумуляторной батареи как функции времени при всем разнообразии условий аккумуляторной батареи.

[0040] "Профиль зарядки" представляет собой функцию, выражающую напряжение или ток, или оба этих параметра, в виде функции по меньшей мере времени (а, возможно, и других параметров, например, нагрузки, температуры или начального значения уровня заряженности).

[0041] Используемый в настоящем описании и в любых прилагаемых пунктах формулы изобретения термин "оптимизированный», относится к траектории в пространстве заданных параметров аккумуляторной батареи, максимизирующих любую вспомогательную функцию относительно любой, заданной конструктором нормы, и учитывающих такие факторы как длительность зарядки, срок службы аккумуляторной батареи и т.д., используемые в качестве примера и без ограничения.

[0042] Применительно к описываемым примерам осуществления настоящего изобретения, термин "аккумуляторная батарея", главным образом, может быть использован в отношении одноячеечных батарей. Однако следует понимать, что способы быстрой зарядки согласно примерам осуществления настоящего изобретения, могут быть также предпочтительно использованы для заряда аккумуляторных батарей, содержащих последовательно соединенные элементы, и даже более сложных систем аккумуляторных батарей.

[0043] Кроме того, следует понимать, что примеры осуществления настоящего изобретения, могут быть также использованы в электродах сравнения, или дополнительных электродах, относительно которых может быть измерен потенциал другого электрода. Использование таких электродов сравнения в аккумуляторных батареях рассматривается, например, в опубликованной заявке США 2009/0104510. Использование электродов сравнения, или дополнительных электродов, позволяет упростить способы быстрой зарядки, рассмотренные в настоящем описании, посредством более тщательного контроля внутреннего состояния электрохимических реакций внутри аккумуляторной батареи. Аналогично, внутри элементов или в сочетании с ними могут быть размещены дополнительные датчики, например, датчик температуры, pH сенсор и т.д.

[0044] Для проектирования схемы зарядки или разрядки аккумуляторной батареи, батарея зачастую может быть смоделирована с целью ее представления в числовом виде. Различные модели включают модели на основе схем, состоящих из элементарных электрических элементов (например, комплексные RLC-цепи) или, большей частью, цепей с использованием SPICE (программ моделирования интегральных схем), либо на основе нелинейного моделирования, аналогичного SPICE; на основе электрохимических моделей, и, наконец, модели черного ящика или специальные модели в параметрической или непараметрической форме. В соответствии с примерами осуществления. настоящего изобретения, моделирование аккумуляторной батареи может быть выполнено в параметрической или непараметрической форме. Например, моделью аккумуляторной батареи может служить реакция системы на импульс тока в некоторый момент времени, таким образом, частью модели может служить непрерывная функция времени. Затем непрерывная функция может быть преобразована в цифровую форму, как обычно и должно быть в контроллерах на основе микропроцессоров с использованием дискретных систем. Кроме того, для уплотнения данных и уменьшения уровня шума аналитические функции могут быть согласованы с наборами данных, например, функциями или операторами. Например, функция реакции на импульсное возмущение может быть функцией второго порядка и может быть представлена только тремя незаданными параметрами.

[0045] Примером схемы, которая может быть использована для моделирования заряда аккумуляторной батареи, согласно новому протоколу зарядки, рассматриваемому в настоящем изобретении, может служить схема, раскрытая в документе Speltino, et al., Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter, Proceedings of the 2009 European Control Conference (2009), включенного в настоящую заявку посредством ссылки.

[0046] В простейшей модели аккумуляторная батарея может быть представлена в виде источника постоянного напряжения. Обычно как минимум эквивалентное последовательно включенное сопротивление Resr, может быть подсоединено к идеальному элементу для моделирования его внутреннего сопротивления и падения напряжения в зависимости от тока, как показано на простой модели аккумуляторной батареи, изображенной на Фиг.1A. При подаче внешним контуром тока Iout выходное напряжение Vout может быть уменьшено относительно напряжения Vocv разомкнутой цепи, за счет падения напряжения на Resr. В реальных условиях напряжение разомкнутой цепи есть нелинейная функция уровня заряженности SOC или разряженности, температуры и изменения во времени. В модели Тевенина (Фиг.1B) последовательно резистору Resr1 может быть включена цепь, состоящая из параллельно соединенных конденсатора Coc и резистора Resr2, моделирующая избыточную зарядку.

[0047] На Фиг.2 показана известная модель литий-ионной батареи Национальной лаборатории энергетики ("модель NREL"), раскрытая в Johnson et al., http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/evs17poster.pdf. Аккумуляторная батарея, обозначенная цифрой 20, в соответствии с моделью NREL содержит температурно-зависимую цепь, состоящую из двух моделей конденсаторов, причем конденсатор Cb непосредственно зависит от уровня заряженности (SOC), а напряжение VCb на Cb является напряжением разомкнутой цепи (OCV). Изменения в этой модели могут включать изменения Re, Rc или Rt в зависимости от уровня заряженности. Модель позволяет определить выходное напряжение Vo как функцию тока Is.

[0048] Более сложные модели отображают распределенную пространственную природу аккумуляторных батарей, а также электрохимические, термические и диффузионные процессы, происходящие во время зарядки и разрядки. Одна такая модель, разработанная Кимом и Смитом в NREL, раскрыта в http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/43166.pdf (2008). Для более детального понимания батарей и, в конечном счете, усовершенствования их конструкции, могут быть созданы модели аккумуляторных батарей с использованием методов конечных элементов.

Идентификация системы и оценка параметров

[0049] К широкому классу моделей, посредством которых процессы зарядки и разрядки аккумуляторных батарей могут быть отражены в объеме настоящего изобретения, могут быть отнесены: линейные и нелинейные модели; модели, зависящие и не зависящие от времени; модели в форме изображений по Лапласу (в частотной области), а также представление во временной области; дискретные модели, распределенные модели и модели на основе метода конечных элементов; модели на основе метода белого ящика, модели черного ящика или специально разработанные модели, а также гибридные модели серого ящика; модели с запоминающими устройствами и без них.

[0050] Непосредственно после выбора модели может быть выполнен следующий этап определения числовых значений неизвестных коэффициентов, параметров, кривых, и операторов (действительных функций векторного пространства, например, рассмотренных ниже функций, разложенных методом ряда Вольтерра) с использованием эвристического метода или более формальных методов, известных как методы идентификации системы. Существует множество способов получения числовых значений, аналогичных используемым в параметрической модели, или функций, используемых в непараметрических моделях. Как будет видно из нижеизложенного, все эти способы подпадают под объем настоящего изобретения. Параметрические и непараметрические модели не могут быть отнесены исключительно к дизъюнктным классам, поскольку функции могут быть также аппроксимированы посредством приближения кривых к статическим параметрическим функциям. В распоряжении инженера или ученого имеется целый ряд способов подгонки моделей к данным, позволяющим определить числовые значения составляющих, параметров и функций; тестирования моделей, оценивания порядка и сложности; определения и оценки погрешностей. К источникам таких методов могут быть отнесены следующие документы:

- Eykhoff, System Identification: Parameter and State Estimation, Wiley & Sons, (1974);

- Goodwin et al., Dynamic System Identification: Experiment Design and Data Analysis. Academic Press (1977);

- Graupe, Identification of Systems, (2nd ed., Krieger Publ. Co. (1976);

- Ljung, System Identification - Theory for the User, 2nd ed, PTR Prentice Hall, (1999).

[0051] В большинстве случаев, до использования способа идентификации системы могут быть сделаны предварительные упрощения или допущения в отношении модели и моделируемой системы. Например, использование линейной модели с нелинейной системой возможно, как правило, посредством линеаризации относительно рабочей точки, в которой амплитуды входного и выходного сигналов ограничены нахождением в пределах заданного диапазона.

[0052] Любая стационарная нелинейная динамическая система с конечной памятью может быть с произвольной точностью представлена рядом Вольтерра конечного порядка, имеющим вид

y ( t ) = k 0 + ∑ n = 1 ∞ 1 n ! ∫ − ∞ ∞ k n ( s 1 , s 2 , … , s n ) x ( t − s 1 ) x ( t − s 1 ) … x ( t − s n ) d s 1 d s 2 … d s n .

Основными компонентами ряда Вольтерра обычно могут служить операторы, отображающие вектора в параметрическом пространстве на нижележащем поле, как правило, скалярная величина, например, напряжение или ток. Наиболее близким к ряду Вольтерра является ряд Винера. Члены ряда Винера могут быть ортогонализированы при исключительно случайном белом шуме на входе, и, следовательно, могут быть более легко идентифицированы с помощью, например, методов взаимной корреляции.

[0053] Коренберг (см. Parallel Cascade Identification and Kernel Estimation for Nonlinear Systems, Annals of Biomedical Engineering, vol. 19, pp 429-55 (1990)) развил вышеизложенную теорему Фреше, доказав, что любая дискретная система с конечной памятью, которая может быть представлена конечным рядом Вольтерра, может быть также представлена конечным рядом параллельных каскадов линейных динамических систем, что, в свою очередь, может привести к статической нелинейности (система Винера или нелинейная (LN) система). Системы Винера являются примером класса моделей, известных как каскадные или блочные системы, к которым также могут быть отнесены модели Гаммерштейна, содержащие нелинейность, за которой следует линейная система (NL), а также каскадные системы, содержащие линейную систему, за которой следует нелинейность и другая линейная система (LNL). Коренберг и Хантер разработали эффективные способы идентификации систем Винера (LN) и Гаммерштейна (NL), описание которых приведено в Hunter et al., The Identification of nonlinear Biological Systems: Wiener and Hammerstein Cascade Models, Biological Cybernetics, vol. 55 pp.135-44 (1986). Они также разработали практические и эффективные способы идентификации системы Винера с параллельными каскадами. В соответствии с другими примерами осуществления изобретения, возможно также использование общих моделей с линейными системами с параллельными каскадами, за которыми следует статическая нелинейность и другая линейная система (LNL), см. например Korenberg et al., The Identification of Nonlinear Biological Systems: LNL Cascade Models, Biological Cybernetics, vol.55, pp.125-34, (1986). Фактически доказано, что каждая дискретно-непрерывная система времени с конечной памятью может быть равномерно аппроксимирована с помощью конечной суммы систем LNL.

[0054] Дополнительное разъяснение использования идентификации нелинейных систем, в частности, применительно к кернфункциям Винера и Вольтерра, может быть найдено в следующих документах:

- Korenberg, et al., Exact Orthogonal Kernel Estimation From, Finite Data Records: Extending Wiener's Identification Of Nonlinear Systems, Annals of Biomedical Engineering, vol.16, pp.201-14 (1988);

- Korenberg, et al., The Identification of Nonlinear Biological Systems: Wiener Kernel Approaches, Annals of Biomedical Engineering, vol.18, pp.629-54 (1990);

- Korenberg, et al., The Identification of Nonlinear Biological Systems: Volterra Kernel Approaches, Annals of Biomedical Engineering, vol.24, pp.250-68 (1996).

[0055] Пример идентификации зарядного устройства аккумуляторной батареи в виде модели Винера, содержащей каскадный динамический линейный элемент и статическую нелинейность, приведен в документе Milocco et al., State of Charge Estimation in Ni-MH Rechargeable Batteries, J. Power Sources, vol.194, pp.558-67 (2009). В соответствии с примерами осуществления настоящего изобретения, до разработки способа зарядки могут быть использованы нелинейные методы, аналогичные рассмотренным выше, которые также могут использоваться во время зарядки аккумуляторной батареи для оценки параметров модели.

[0056] В соответствии с примерами осуществления настоящего изобретения, оценка модели или оптимизация ее параметров могут быть выполнены во время зарядки разряженной аккумуляторной батареи, или когда она не используется. Для этого, специальная схема может быть разработана и встроена в устройство, в котором используется аккумуляторная батарея, или в корпус самой батареи. На Фиг.12 показана упрощенная схема, которая может быть использована в любом из этих случаев и в которой полевой транзистор (FET) или другое соответствующее коммутационное устройство может быть использовано с шунтирующим резистором (Rshunt) с возможностью потребления тока элемента батареи, при этом могут быть измерены напряжение элемента и ток через шунт (Ishunt). Регулирование напряжения затвора может быть выполнено с помощью микропроцессора для создания сигнала очень высокой частоты с частотно-импульсной модуляцией (PFM), или сигнала широтно-импульсной модуляцией (PWM) или импульсной модуляцей любого типа, обеспечивающих квазинепрерывное изменение тока и напряжения с заданными спектрами возбуждения, либо дискретные изменения тока могут быть использованы для создания квазислучайной псевдодвоичной последовательности (PRBS), которая подходит для идентификации системы. Следует понимать, что "очень высокая частота" служит признаком предпочтительного примера осуществления изобретения, однако, не ограничивая, при этом, объем настоящего изобретения.

[0057] Схема, изображенная на Фиг.12, демонстрирует недостатки, например, вероятность разряжения элемента, выполнимость его проверки на основе только разрядного тока, несмотря на возможную необходимость проверки с использованием как зарядного, так и разрядного токов. Для устранения этих недостатков могут быть использованы активные цепи, позволяющие уменьшить потери аккумуляторной батареи при образовании токов намагничивания обеих полярностей (зарядного и разрядного). На Фиг.13 показана упрощенная схема такой цепи. На Фиг.13 показано использование двух коммутационных устройств, T1 и T2, например, полевых транзисторов с низкими потерями. Транзистор Т1 и катушка индуктивности L1 могут быть использованы для потребления энергии от элемента "B1" и передачи ее на конденсатор C1. Если значение напряжения на конденсаторе C1 превышает на несколько вольт значение напряжения элемента, транзистор T2 и катушка индуктивности L1 используются для накачки тока обратно в сторону аккумуляторной батареи. В течение этого процесса, микропроцессором может быть выполнено измерение напряжения Vemf и тока IB элемента для идентификации системы. Ток аккумуляторной батареи IB может быть измерен соответствующим датчиком тока, например, низкоомным низкоиндуктивным токочувствительным резистором или датчиком с эффектом Холла. При выполнении измерения без помощи коммутационного устройства, например, реле S1, напряжение на конденсаторе C1 может быть поддержано на уровне напряжения элемента. В нормальном состоянии реле замкнуто, и может быть разомкнуто перед началом экспериментов по идентификации системы.

[0058] При зарядке аккумуляторной батареи, вместе с зарядным устройством 520 (Фиг.5B) могут быть использованы цепи, например, аналогичные рассмотренным выше, для приложения вместе с зарядным током малого возмущения (см. блок-схему, изображенную на Фиг.14). Кроме того, в зарядное устройство аккумуляторной батареи 520 может быть встроена логическая схема, обеспечивающая подачу в элемент заданных возмущений, как показано на Фиг.1. В этом случае, зарядное устройство рассчитывает в режиме реального времени сигнал с высокочастотным возмущением для его последовательной подачи и суммирования с сигналами зарядного напряжения или тока. Такой расчет обычно может быть выполнен в режиме реального времени, во время зарядки аккумуляторной батареи. Кроме того, зарядное устройство 920 может иметь отдельный контур (см. Фиг.13), включенный параллельно специальной зарядной цепи, в котором, однако, C1 может быть заменен другим источником напряжения V2, напряжение на котором превышает напряжение элемента Vemf, или включен параллельно этому источнику. Для простоты, и сокращения необходимой площади, катушка индуктивности L1 может быть заменена мощным резистором за счет небольшой потери энергии.

[0059] Кроме целей зарядки модель элемента может быть также использована для решения ряда других задач. Одним из важнейших оцениваемых параметров, является текущее количество энергии (в Джоулях), т.е. оставшаяся емкость аккумуляторной батареи (в Кулонах), именуемая обычно уровнем заряженности (SOC), которое может быть использовано во внешнем дисплее в абсолютном или относительном значении, и для выключения питания при достижении емкостью элемента нижнего предела, без риска для аккумуляторной батареи. Непрерывная переоценка характеристик элемента обеспечивает также точную оценку состояния элемента в момент начала нового цикла зарядки. Модель элемента, уровень заряженности (SOC), и информация о расчетном значении температуры элемента могут быть использованы также для настройки режима, в котором будет использовано устройство.

[0060] При идентификации системы непараметрические модели, как правило, могут быть сопоставлены с "представлением в виде черного ящика" системы, которое подразумевает, что сама модель не обязательно влияет на представление о системе, например, ее физику, химические режимы, электрические свойства и т.д. Модели, разработанные с априорным знанием системы, обычно представляют собой параметрические модели или модели на основе метода конечных элементов с распределенными параметрами (FEM). Тем не менее, существуют математические способы преобразования моделей из одной области в другую, т.е. преобразования непараметрической модели в параметрическую. Таким образом, например, нелинейная модель Винера, включающая в себя линейную систему, представленную в виде импульсной характеристики, за которой следует статическая нелинейность, может быть преобразована в параметрическую линейную модель (например, функцию пространства состояний или передаточную функцию), за которой следует статическая нелинейность. В этом случае, параметрическая модель хорошо поддается оценке внутренних процессов в системе. Кроме того, начальная оценка непараметрической модели с последующим ее преобразованием в параметрическую форму, зачастую является более грубым методом оценки параметров. Таким образом, наличие непараметрической модели и априорное знакомство со структурой системы обеспечивает возможность оценки состояния системы (например, уровня заряженности различных отсеков) или параметров (сопротивления, емкости и т.д.).

Формирование профиля зарядки

[0061] Для разработки алгоритма зарядки, сначала должны быть известны система физических ограничений и допусков аккумуляторной батареи. Например, превышение некоторых пределов, например, перенапряжение или превышение по току, или превышение температуры элемента могут непрерывно ухудшать характеристики аккумуляторной батареи, накладывая, таким образом, ограничения на процесс ее зарядки. Критерием выбора может служить цель получения оптимального алгоритма быстрой зарядки. В контексте настоящего описания и любых пунктов прилагаемой формулы изобретения, термином "критерий выбора" может быть обозначена действительная функция одного или нескольких параметров, которые могут быть уменьшены или увеличены посредством программы оптимизации, при наличии набора заданных ограничений.

[0062] В соответствии с примерами осуществления настоящего изобретения, в используемых моделях кроме моделирования электрических параметров, например, напряжения и тока элемента, может быть выполнено моделирование других переменных, например, температуры элемента, внутреннего давления и т.д.

[0063] В самом простом случае, критерием выбора может служить сокращение времени зарядки. Например, если аккумуляторной батарее соответствует конденсатор C с последовательно включенным резистором R, где Imax - предельный ток, a Vmax - пробивное напряжение конденсатора, то решение задачи состоит в определении I(t), позволяющем сократить время зарядки Т, выраженное интегральным уравнением:

V max = C ∫ 0 T I ( t ) d t при следующем ограничении: 0 ≤ I ( t ) ≤ I max I ( t ) ≤ I max       ( У р а в н е н и е   1 )