Комбинации, включающие белки cry34ab/35ab и cry6aa, для предотвращения развития устойчивости у кукурузных корневых жуков (diabrotica spp. )

Иллюстрации

Показать все

Изобретение относится к области биохимии, в частности к трансгенному растению, которое имеет устойчивость к кукурузному корневому жуку (Diabrotica spp.), содержащему ДНК, кодирующую белок Cry34Ab, ДНК, кодирующую белок Cry35Ab, и ДНК, кодирующую белок Cry6Aa, его семени и клетке, а также к способу замедления развития устойчивости к белкам Cry34Ab, Cry35Ab и Cry6Aa у кукурузного корневого жука с его использованием. Также раскрыто множество растений на поле, содержащее множество вышеуказанных трансгенных растений и растения, не содержащие белки Bacillus thuringiensis (Bt) (non-Bt растения), и смесь семян, содержащая семена от non-Bt растений и множество вышеуказанных семян. Изобретение также относится к способу борьбы с кукурузным корневым жуком приведением в контакт указанного насекомого с белком Cry34Ab, белком Cry35Ab и белком Cry6Aa. Изобретение позволяет эффективно бороться c кукурузным корневым жуком. 7 н. и 14 з.п. ф-лы, 2 ил., 1 табл., 12 пр.

Реферат

Предпосылки изобретения

Люди выращивают кукурузу для применения в пищу и в качестве источника энергии. Кукуруза представляет собой важную сельскохозяйственную культуру. Она является важным источником пищи, пищевых продуктов и корма для животных во многих регионах мира. Насекомые употребляют в пищу и повреждают растения и, таким образом, подрывают эти усилия людей. Ежегодно миллиарды долларов тратятся для борьбы с насекомыми-вредителями и еще миллиарды теряются вследствие причиняемого ими ущерба.

Вред, наносимый насекомыми-вредителями, является основным фактором потери урожаев кукурузы во всем мире, несмотря на использование защитных мер, таких как химические пестициды. В связи с этим, в сельскохозяйственные культуры, такие как кукуруза, методами генной инженерии были введены гены устойчивости к насекомым для борьбы с ущербом, наносимым насекомыми, и для снижения потребности в традиционных химических пестицидах.

Ежегодно, более 10 миллионов акров (более 4050000 га) кукурузных полей в США заражаются комплексом видов кукурузного корневого жука. Комплекс видов кукурузного корневого жука включает северного кукурузного корневого жука (Diabrotica barberi), южного кукурузного корневого жука (D. undecimpunctata howardi) и западного кукурузного корневого жука (D. virgifera virgifera). (Другие виды включают Diabrotica virgifera zeae (Мексиканский кукурузный корневой жук), Diabrotica balteata (Бразильский кукурузный корневой жук), и комплекс Бразильского кукурузного корневого жука (Diabrotica viridula и Diabrotica speciosa.)

Обитающие в почве личинки этих видов Diabrotica питаются корнями растений кукурузы, вызывая полегание. Полегание, в конечном счете, снижает урожайность и часто приводит к гибели растения. Употребляя в пищу пестичные столбики кукурузы, взрослые жуки уменьшают опыление и, поэтому, пагубно воздействуют на урожай зерна кукурузного растения. Кроме того, взрослые особи и личинки рода Diabrotica атакуют тыквенные культуры (огурцы, дыни, тыквы и т.д.) и многие овощные и полевые культуры в промышленном растениеводстве, а также такие, которые выращиваются в приусадебных огородах.

Синтетические органические химические инсектициды были первоочередными инструментами, используемыми для борьбы с насекомыми-вредителями, но биологические инсектициды, такие как инсектицидные белки, полученные из Bacillus thuringiensis (Bt), играли важную роль в некоторых регионах. Способность получения устойчивых к насекомым растений посредством трансформации генами инсектицидного белка Bt радикально изменила современное сельское хозяйство и повысила значение и ценность инсктицидных белков и их генов.

Инсектицидные кристаллические белки из некоторых штаммов Bacillus thuringiensis (B.t.) хорошо известны в данной области техники. См., например, Hofte et al, Microbial Reviews, Vol. 53, No. 2, pp. 242-255 (1989). Эти белки обычно продуцируются бактериями в виде протоксинов с молекулярной массой приблизительно 130 кДа, которые затем расщепляются протеазами в средней кишке насекомых после попадания в пищеварительную систему насекомого для продукции корового токсина с молекулярной массой приблизительно 60 кДа. Эти белки известны как кристаллические белки, потому что в некоторых штаммах B.t. могут наблюдаться отчетливые кристаллические включения со спорами. Эти кристаллические включения часто составлены из нескольких различных белков.

Одной группой генов, которые использовались для получения трансгенных, устойчивых к насекомым культур, являются дельта-эндотоксины из Bacillus thuringiensis (B.t.). Дельта-эндотоксины были успешно экспрессированы в таких сельскохозяйственных культурах как хлопок, картофель, рис, подсолнечник, а также кукуруза, и, как оказалось, обеспечивают превосходный контроль над насекомыми-вредителями. (Perlak, F.J et al. (1990) Bio/Technology 8, 939-943; Perlak, F.J. et al. (1993) Plant Mol. Biol. 22: 313-321; Fujimoto H. et al. (1993) Bio/Technology 11: 1151-1155; Tu et al. (2000) Nature Biotechnology 18: 1101-1104; PCT публикация международной патентной заявки WO 01/13731; и Bing J W et al. (2000) Efficacy of Cry IF Transgenic Maize, 14th Biennial International Plant Resistance to Insects Workshop, Fort Collins, Colo.).

Несколько белков Bt использовались для создания устойчивых к насекомым трансгенных растений, которые были успешно зарегистрированы и в настоящее время запущены в серийное производство. Они включают Cry1Ab, Cry1Ac, Cry1F, Cry1A.105, Cry2Ab, Cry3Aa, Cry3Bb и Cry34/35Ab в кукурузе, Cry1Ac и Cry2Ab в хлопке и Cry3A в картофеле.

Выпускаемые в промышленном масштабе продукты, экспрессирующие эти белки, экспрессируют один белок, за исключением случаев, где желателен комбинированный инсектицидный спектр из 2 белков (например, Cry1Ab и Cry3Bb в кукурузе, комбинированные для обеспечения устойчивости к чешуекрылым вредителям и блошке длинноусой, соответственно), или где независимое действие белков делает их полезными в качестве инструмента для задержки развития устойчивости у популяций восприимчивых насекомых (например, Cry1Ac и Cry2Ab в хлопке, комбинированные для обеспечения управления устойчивостью в отношении табачной совки).

Некоторые из качеств устойчивых к насекомым трансгенных растений, которые привели к быстрому и широко распространенному принятию этой технологии, также вызывают озабоченность, что у популяций вредителей разовьется устойчивость к инсектицидным белкам, продуцируемым этими растениями. Было предложено несколько стратегий для сохранения полезности признаков устойчивости к насекомым на основе Bt, которые включают размещение белков в высокой дозе в комбинации с резерватом, чередование с различными токсинами или совместное размещение с ними (McGaughey et al. (1998), "B.t. Resistance Management," Nature Biotechnol. 16: 144-146).

Белки, выбранные для использования в пакете Управления устойчивости к насекомым (IRM) должны быть активными с тем, чтобы устойчивость, развившаяся к одному белку, не придавала устойчивость ко второму белку (т.е. перекрестная устойчивость к белкам отсутствует). Если, например, популяция вредителей, выбранная для устойчивости к «белку A», чувствительна к «белку B», то можно сделать вывод, что нет перекрестной устойчивости, и что комбинация белка A и белка B будет эффективной в задержке устойчивости к одному белку A.

В отсутствие устойчивых к насекомым популяций, оценки могут осуществляться на основании других характеристик, считающихся связанными с потенциалом перекрестной устойчивости. При идентификации инсектицидных белков с вероятностью отсутствия проявления перекрестной устойчивости было предложено использование рецепторно опосредованного связывания (van Mellaert et al. 1999). Ключевым прогностическим показателем отсутствия перекрестной устойчивости, присущим такому подходу, является то, что инсектицидные белки не конкурируют за рецепторы у чувствительного вида насекомых.

В случае, когда токсины Bt конкурируют за один и тот же рецептор, то если этот рецептор мутирует в этом насекомом, так что один из токсинов больше не связывается с этим рецептором и, таким образом, больше не является инсектицидным против насекомого, то в этом случае насекомое будет также устойчиво ко второму токсину (который конкурентно связан с тем же рецептором). То есть, насекомое считается перекрестно устойчивым к обоим токсинам Bt. Однако если два токсина связываются с двумя различными рецепторами, то это может быть показателем того, что насекомое не будет одновременно устойчивым к этим двум токсинам.

Относительно более новая система инсектицидного белка была выявлена у Bacillus thuringiensis, как описано в международном патенте WO 97/40162. Эта система содержит два белка - один массой приблизительно 14-15 кДа, и другой массой приблизительно 44-45 кДа. См. также патенты США 6083499 и 6127180. Теперь эти белки были отнесены к их собственному классу и, соответственно, получили обозначение Cry соответственно Cry34 и Cry35. См. Crickmore et al. сайт интернета (biols.susx.ac.uk/home/Neil_Crickmore/Bt/). В настоящее время обнаружены многие другие родственные белки этого типа системы. См., например, патент США 6372480; международные патенты WO 01/14417 и WO 00/66742. Были также описаны оптимизированные для растений гены, которые кодируют такие белки, где гены созданы методами генной инженерии для использования кодонов для оптимизированной экспрессии у растений. См., например, патент США 6218188.

Точный тип действия системы Cry34/35 еще предстоит определить, но полагают, что она образует поры в мембранах клеток кишечника насекомых. См. Moellenbeck et al, Nature Biotechnology, vol. 19, p. 668 (July 2001); Masson et al., Biochemistry, 43 (12349-12357) (2004). Точный механизм действия остается неясным, несмотря на трехмерные атомарные координаты и структуры кристаллов, известные для белка Cry34 и Cry35. См. патенты США 7524810 и 7309785. Например, неясно, один или оба из этих белков связываются с конкретным видом рецептора, такого как щелочная фосфатаза или аминопептидаза.

Кроме того, ввиду того, что существуют различные механизмы, посредством которых у насекомого может развиться устойчивость к белку Cry (такие как измененным гликозилированием рецептора [см. Jurat-Fuentes et al. (2002) 68 AEM 5711-5717], удалением рецепторного белка [см. Lee et al. (1995) 61 AEM 3836-3842], мутированием рецептора или другими механизмами [см. Heckel et al., J. Inv. Pathol. 95 (2007) 192-197]), было невозможно заведомо прогнозировать, будет ли существовать перекрестная устойчивость между Cry34/35 и другими Cry-белками. Lefko et al. обсуждают сложный феномен устойчивости у корневого жука. J. Appl. Entomol. 132 (2008) 189-204.

Прогнозирование конкурентного связывания для системы Cry34/35 также дополнительно осложняется тем, что два белка вовлечены в бинарную систему Cry34/35. Кроме того, неясно, связываются ли и насколько эффективно связываются эти белки с кишечником/клетками кишечника, и взаимодействуют ли они и как взаимодействуют или связываются друг с другом.

Другие варианты для борьбы с жесткокрылыми насекомыми включают токсины Cry3Bb, Cry3C, Cry6B, ET29, ET33 с ET34, TIC407, TIC435, TIC417, TIC901, TIC1201, ET29 с TIC810, ET70, ET76 с ET80, TIC851 и другие. Были также предложены подходы РНКi (интерференции РНК). См. например, Baum et al., Nature Biotechnology, vol. 25, no. 11 (Nov. 2007) pp. 1322-1326.

Meihls et al. предлагают использование резервных культур для управления устойчивостью к кукурузному корневому жуку. PNAS (2008) vol. 105, no. 49, 19177-19182.

Краткое описание сущности изобретения

Настоящее изобретение относится частично к Cry34Ab/35Ab в комбинации с Cry6Aa. Настоящее изобретение относится частично к удивительному открытию, что Cry34Ab/Cry35Ab и Cry6Aa могут использоваться для предотвращения развития устойчивости (к любой системе инсектицидного белка отдельно) у популяции кукурузного корневого жука (Diabrotica spp.). Как будет понятно специалисту в данной области после ознакомления с благоприятными аспектами раскрытого в настоящем описании изобретения, растения, продуцирующие эти инсектицидные Cry-белки, могут использоваться для уменьшения опасений того, что может развиться популяция кукурузного корневого жука, которая может быть устойчивой к любой из этих систем инсектицидного белка отдельно.

Настоящее изобретение частично подтверждается обнаружением того, что компоненты этих систем Cry-белка не конкурируют друг с другом за связывание с рецепторами кишечника кукурузного корневого жука.

Настоящее изобретение также частично относится к тройным пакетам или «пирамидам» из трех (или более) систем токсинов, причем парой оснований являются Cry34Ab/Cry35Ab и Cry6Aa. Таким образом, растения (и посевная площадь, засаженная такими растениями), которые продуцируют эти две системы инсектицидных белков, включены в объем настоящего изобретения.

Краткое описание фигур

Фиг.1. Связывание 125I-Cry35Ab1 (A) и 125I-Cry6Aa1 (B) как функция внесенных меченных радиоактивным изотопом Cry-токсинов в BBMV (мембранных пузырьках щеточной каемки), полученных из личинок западных кукурузных корневых жуков. Специфическое связывание=общее связывание-неспецифическое связывание, «усы»=SEM (стандартная ошибка средней).

Фиг.2. Связывание 125I-Cry35Ab1 с BBMV, полученными из личинок западного кукурузного корневого жука при различных концентрациях немеченого конкурента (log0,1=-1,0, log10=1,0, log100=2,0, log1000=3,0).

Краткое описание последовательностей

SEQ ID NO:1: Полная последовательность нативного белка Cry35Ab1

SEQ ID NO:2: Последовательность усеченного химотрипсином корового белка Cry35Ab1

SEQ ID NO:3: Полная последовательность нативного белка Cry34Ab1

SEQ ID NO:4: Полная последовательность нативного белка Cry6Aa1

Подробное описание изобретения

Последовательности белка Cry34Ab/35Ab могут быть получены, например, из изолята Bacillus thuringiensis PS149B1. Другие гены, белковые последовательности и изоляты-источники для использования в соответствии с настоящим изобретением описаны, например, Crickmore et al. на сайте интернета (lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/intro.html).

Настоящее изобретение включает использование инсектицидных белков Cry34Ab/35Ab в комбинации с токсином Cry6Aa для защиты кукурузы от повреждения и потери урожайности, вызванных поеданием популяциями кукурузного корневого жука, у которых может развиться устойчивость к любому из этих систем белков Cry по отдельности (без другого).

Таким образом, в настоящем изобретении речь идет о пакете Управления устойчивости насекомых (IRM) для предотвращения развития у кукурузного корневого жука устойчивости к Cry6Aa и/или Cry34Ab/35Ab.

Настоящее изобретение относится к композициям для борьбы с вредителями - корневыми жуками, содержащим клетки, которые продуцируют белок токсина Cry6Aa и систему токсина Cry34Ab/35Ab.

Изобретение дополнительно включает хозяина, трансформированного для продукции и белка Cry6Aa, и бинарного токсина Cry34Ab/35Ab, где указанный хозяин представляет собой микроорганизм или растительную клетку.

Дополнительно предполагается, что изобретение относится к способу борьбы с вредителями - корневыми жуками, включающему приведение в контакт указанных вредителей или среды обитания указанных вредителей с эффективным количеством композиции, которая содержит белок Cry6Aa, и дополнительно содержит бинарный токсин Cry34Ab/35Ab.

Вариант осуществления изобретения включает маис, содержащий экспрессируемый растением ген, кодирующий бинарный токсин Cry34Ab/35Ab, и экспрессируемый растением ген, кодирующий белок Cry6Aa, и семена такого растения.

Дополнительный вариант осуществления изобретения включает маис, где экспрессируемый растением ген, кодирующий бинарный токсин Cry34Ab/35Ab, и экспрессируемый растением ген, кодирующий белок Cry6Aa, были интрогрессированы в указанный маис, и семена такого растения.

Как описано в разделе «Примеры», исследования конкурентного связывания с рецепторами с использованием меченого радиоактивным изотопом корового токсинного белка Cry35Ab показывают, что коровый токсинный белок Cry6Aa не конкурирует за связывание в образцах ткани насекомых CRW (кукурузных корневых жуков), с которыми связывается Cry35Ab. См. фиг.2. Эти результаты указывают на то, что комбинация белков Cry6Aa и Cry34Ab/35Ab представляет собой эффективное средство для уменьшения развития устойчивости у популяций CRW к любой белковой системе отдельно.

Таким образом, частично на основании данных, описанных выше, и в других местах настоящего описания, белки Cry34Ab/35Ab и Cry6Aa могут быть использованы для получения комбинаций IRM для предотвращения и уменьшения развития устойчивости у CRW. Другие белки могут быть добавлены к этой комбинации, например, для расширения спектра борьбы с насекомыми. Рассматриваемая пара/комбинация также может быть использована в некоторых предпочтительных «тройных пакетах» или «пирамиде» в комбинации с еще одним белком для борьбы с корневыми жуками, таким как Cry3Ba и/или Cry3Aa. РНКi против корневых жуков представляет собой еще один вариант. См., например, Baum et al., Nature Biotechnology, vol. 25, no. 11 (Nov. 2007) pp. 1322-1326. Таким образом, рассматриваемые комбинации обеспечивают множественные типы действия против корневого жука.

В свете описания заявки USSN 61/327240 (поданной 23 апреля, 2010 г.), относящейся к комбинациям Cry34Ab/35Ab и Cry3Aa, заявки USSN 61/476005 (поданной 15 апреля, 2011 г.), относящейся к комбинации белков Cry34Ab/35Ab и Cry3Ba, и заявки USSN 61/477447 (поданной 20 апреля, 2011 г.), относящейся к комбинациям белков Cry3Aa и Cry6Aa, некоторые предпочтительные «тройные пакеты» настоящего изобретения включают белок Cry6Aa в комбинации с белками Cry34Ab/35Ab, и белками Cry3Aa и/или Cry3Ba. Трансгенные растения, включая кукурузу, содержащие ген cry6Ba, гены cry34Ab/35Ab и ген cry3Aa и/или cry3Ba, включены в объем настоящего изобретения. Таким образом, такие варианты осуществления нацелены на насекомое, по меньшей мере, тремя типами действия. Кроме того, в свете этих данных и положений, можно включить cry3Ba или cry3Aa вместо приведенного в настоящем описании в качестве примера Cry6Aa, в качестве комбинации оснований, спаривающейся с cry34A/35A.

Варианты размещения по настоящему изобретению включают использование белков Cry6Aa и Cry34Ab/35Ab в областях выращивания кукурузы, где Diabrotica spp. являются проблематичными. Другим вариантом размещения может быть использование одного или обоих белков Cry6Aa и Cry34Ab/35Ab в комбинации с другими признаками.

Специалисту в данной области будет понятно, что токсины Bt, даже в пределах определенного класса, такого как Cry6Aa и Cry34Ab/35Ab, могут в некоторой степени варьировать.

Гены и токсины. Термин «изолированный» относится к полинуклеотиду в не встречающемся в природных условиях конструкту или к белку в очищенном или иным образом не встречающемуся в природных условиях состоянию. Гены и токсины, используемые в соответствии с настоящим изобретением, включают не только полные описанные последовательности, но также фрагменты этих последовательностей, варианты, мутанты и слитые белки, которые сохраняют характерную пестицидную активность токсинов, конкретно проиллюстрированных в настоящем описании. Используемые в настоящем описании термины «варианты» или «изменения» генов относятся к нуклеотидным последовательностям, которые кодируют те же токсины, или которые кодируют эквивалентные токсины, обладающие пестицидной активностью. Используемый в настоящем описании термин «эквивалентные токсины» относится к токсинами, обладающим такой же или по существу такой же биологической активностью против вредителей-мишеней как заявленные токсины. Домены/субдомены этих белков могут быть обменены для получения химерных белков. См. например, патенты США 7309785 и 7524810, относящиеся к белкам Cry34/35. В патенте '785 речь также идет об усеченных белках Cry35. Усеченные токсины также проиллюстрированы в настоящем описании.

Используемый в настоящем описании термин «границы» представляет идентичность последовательностей приблизительно 95% (Cry6Aa и Cry34Ab и Cry35Ab), 78% (Cry6A и Cry34A и Cry35A) и 45% (Cry6 и Cry34 и Cry35) в соответствии с «Revision of Nomenclature for Bacillus thuringiensis Pesticidal Crystal Proteins» N. Crickmore, D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, и D.H. Dean. Microbiology и Molecular Biology Reviews (1998) Vol 62: 807-813. То же относится к Cry3 при использовании в тройных пакетах, например, в соответствии с настоящим изобретением.

Для специалиста в данной области будет очевидно, что гены, кодирующие активные токсины, могут быть идентифицированы и получены несколькими способами. Определенные гены или части генов, проиллюстрированные в настоящем описании, могут быть получены из изолятов, депонированных в депозитарии культур. Эти гены или их части или варианты, также могут быть сконструированы синтетически, например, путем использования генного синтезатора. Варианты генов могут быть легко сконструированы с использованием стандартных технологий получения точечных мутаций. Также, фрагменты этих генов могут быть получены с использованием коммерчески доступных экзонуклеаз или эндонуклеаз, в соответствии со стандартными методиками. Например, ферменты, такие как Bal31 или сайт-направленный мутагенез могут быть использованы для систематической отсечки нуклеотидов от концов этих генов. Гены, которые кодируют активные фрагменты, могут также быть получены с использованием разнообразных рестрикционных ферментов. Протеазы можно использовать для непосредственного получения активных фрагментов белковых токсинов.

Фрагменты и эквиваленты, которые сохраняют пестицидную активность проиллюстрированных токсинов, будут входить в объем настоящего изобретения. Также, ввиду избыточности генетического кода, разнообразие различных последовательностей ДНК может кодировать аминокислотные последовательности, раскрытые в настоящем описании. Специалист в данной области вполне может создать эти альтернативные последовательности ДНК, кодирующие одинаковые или по существу одинаковые токсины. Эти вариантные последовательности ДНК входят в объем настоящего изобретения. Используемая в настоящем описании ссылка на «по существу одинаковую» последовательность относится к последовательностям, которые имеют аминокислотные замещения, делеции, добавления или вставки, которые существенно не воздействуют на пестицидную активность. Фрагменты генов, кодирующих белки, которые сохраняют пестицидную активность, также включены в это определение. Фрагменты генов, кодирующих белки, которые сохраняют пестицидную активность, также включены в настоящее определение.

Дополнительный способ идентификации генов, кодирующих токсины, и частей генов, используемых в соответствии с настоящим изобретением, осуществляют путем использования олигонуклеотидных зондов. Эти зонды представляют собой детектируемые нуклеотидные последовательности. Эти последовательности могут быть выявлены посредством соответствующей метки или могут быть получены эндогенно флуоресцентными, как описано в международной патентной заявке № WO 93/16094. Как хорошо известно в данной области, молекула зонда и образец нуклеиновой кислоты гибридизуются образованием прочной связи между двумя молекулами, то можно резонно предположить, что зонд и образец имеют существенную гомологию. Предпочтительно, гибридизацию проводят в жестких условиях методиками, хорошо известными в данной области, как описано, например, в публикации Keller, G.H., M.M. Manak (1987) DNA Probes, Stockton Press, New York, N.Y., pp. 169-170. Некоторые примеры солевых концентраций и температурных комбинаций следующие (в порядке увеличения жесткости условий): 2X SSPE (0,18M NaCl, 10 мМ NaHPO4, 1 мМ EDTA, pH 7,0)) или SSC (15 мМ цитрата натрия, 150 мМ хлорида натрия, pH 7,0) при комнатной температуре; 1X SSPE или SSC при 42°C; 0,1X SSPE или SSC при 65°C. Выявление зонда обеспечивает средство для определения известным образом, произошла ли гибридизация. Такой зондовый анализ обеспечивает быстрый способ идентификации кодирующих токсин генов настоящего изобретения. Нуклеотидные сегменты, которые используются в качестве зондов в соответствии с изобретением, может быть синтезированы с использованием синтезатора ДНК и стандартных методик. Эти нуклеотидные последовательности также могут быть использованы в качестве затравок ПЦР для амплификации генов по настоящему изобретению.

Вариантные токсины. В настоящем описании были специально проиллюстрированы определенные токсины по настоящему изобретению. Поскольку эти токсины просто иллюстрируют токсины по настоящему изобретению, то будет вполне очевидно, что настоящее изобретение включает вариантные или эквивалентные токсины (и нуклеотидные последовательности, кодирующие эквивалентные токсины), обладающие такой же или подобной пестицидной активностью как иллюстрируемый токсин. Эквивалентные токсины имеют гомологию аминокислот с иллюстрируемым токсином. Эта аминокислотная идентичность обычно составляет более чем 75%, или, предпочтительно, более чем 85%, предпочтительно, более чем 90%, предпочтительно, более чем 95%, предпочтительно, более чем 96%, предпочтительно, более чем 97%, предпочтительно, более чем 98%, или в некоторых вариантах осуществления предпочтительно, более чем 99%. Аминокислотная идентичность обычно самая высокая в критических областях токсина, которые отвечают за биологическую активность или участвуют в определении трехмерной конфигурации, которая, в конечном счете, ответственна за биологическую активность. В этом отношении, приемлемы и могут ожидаться некоторые аминокислотные замещения, если эти замещения происходят в областях, которые не имеют решающего значения для активности или представляют собой консервативные аминокислотные замещения, которые не воздействуют на трехмерную конфигурацию молекулы. Например, аминокислоты могут быть размещены в следующие классы: неполярные, незаряженные полярные, основные и кислотные. Консервативные замещения, посредством которых аминокислота одного класса замещается другой аминокислотой того же типа, входит в объем настоящего изобретения, пока замещение существенно не изменяет биологическую активность соединения. В таблице 1 представлен список примеров аминокислот, относящихся к каждому классу.

Таблица 1
Класс аминокислот Примеры аминокислот
Неполярные Ala, Val, Leu, Ile, Pro Met, Phe, Trp
Незаряженные полярные Gly, Ser, Thr, Cys, Tyr, Asn, Gln
Кислотные Asp, Glu
Основные Lys, Arg, His

В некоторых случаях также могут быть осуществлены неконсервативные замещения. Решающим фактором является то, что эти замещения не должны значительно снижать биологическую активность токсина.

Рекомбинантные хозяева. Гены, кодирующие токсины настоящего изобретения, могут вводиться в широкое разнообразие микробных или растительных хозяев. Экспрессия гена токсина приводит, прямо или косвенно, к внутриклеточной продукции и поддержанию пестицида. Конъюгальный перенос и рекомбинантный перенос могут быть использованы для создания штамма Bt, который экспрессирует оба токсина настоящего изобретения. Другие организмы хозяев также могут быть трансформированы одним или более генами токсина, используемыми затем для оказания синергического эффекта. С подходящими микробными хозяевами, например, Pseudomonas, микробы могут наноситься на местонахождение вредителя, где они пролиферируют и употребляются в пищу. Результатом является контроль над вредителем. Альтернативно, микроб, несущий ген токсина, может быть подвергнут обработке в условиях, которые продлевают активность токсина и стабилизируют клетку. Обработанная клетка, которая сохраняет токсическую активность, затем может вноситься в среду обитания вредителя-мишени. В объем настоящего изобретения включены нерегенерируемые/нетотипотентные растительные клетки из растения по настоящему изобретению (содержащие, по меньшей мере, один из рассматриваемых генов IRM).

Трансформация растения. Предпочтительным вариантом осуществления настоящего изобретения является трансформация растений генами, кодирующими рассматриваемый инсектицидный белок или его варианты. Трансформированные растения устойчивы к атаке целевым насекомым-вредителем за счет присутствия контролирующих количеств рассматриваемого инсектицидного белка или его вариантов в клетках трансформированного растения. При включении генетического материала, который кодирует инсектицидные свойства инсектицидных токсинов B.t., в геном растения, употребляемого в пищу определенным насекомым-вредителем, взрослые особи или личинки погибнут после употребления в пищу растения. Были трансформированы многочисленные члены односемядольных и двудольных классификаций. Трансгенные агрономические культуры, а также фрукты и овощи представляют промышленный интерес. Такие культуры включают, но без ограничения, маис, рис, сою, канолу, подсолнечник, люцерну, сорго, пшеницу, хлопок, арахис, томаты, картофель и тому подобное. Существует несколько технологий введения инородного генетического материала в клетки растений и получения растений, которые стабильно поддерживают и экспрессируют введенный ген. Такие технологии включают акселерацию генетического материала, нанесенного на микрочастицы, непосредственно в клетки (патент США 4945050 и патент США 5141131). Растения могут быть трансформированы с использованием технологии Agrobacterium, см. патент США 5177010, патент США 5104310, Европейскую патентную заявку № 0131624B1, Европейскую патентную заявку № 120516, Европейскую патентную заявку № 159418B1, Европейскую патентную заявку № 176112, патент США 5149645, патент США 5469976, патент США 5464763, патент США 4940838, патент США 4693976, Европейскую патентную заявку № 116718, Европейскую патентную заявку № 290799, Европейскую патентную заявку № 320500, Европейскую патентную заявку № 604662, Европейскую патентную заявку № 627752, Европейскую патентную заявку № 0267159, Европейскую патентную заявку № 0292435, патент США 5231019, патент США 5463174, патент США 4762785, патент США 5004863 и патент США 5159135. Другая технология трансформации включает технологию WHISKERS™, см. патент США 5302523 и патент США 5464765. Технология электропорации также использовалась для трансформации растений, см. Международный патент WO 87/06614, патент США 5472869, патент США 5384253, Международный патент WO 9209696 и Международный патент WO 9321335. Все эти патенты и публикации, относящиеся к трансформации, включены в настоящее описание посредством ссылки. В дополнение к многочисленным технологиям трансформации растений, тип ткани, которая контактирует с инородными генами, также может изменяться. Такая ткань включает, но не ограничивается ими, эмбриогенную ткань, I и II типы каллюсной ткани, гипокотиль, меристему и тому подобное. Почти все растительные ткани могут быть трансформированы во время дедифференциации с использованием соответствующих технологий в пределах квалификации специалиста в данной области.

Гены, кодирующие любой из рассматриваемых токсинов, могут быть вставлены в клетки растения с использованием разнообразных технологий, которые хорошо известны в данной области, как описано выше. Например, доступно большое число векторов клонирования, содержащих маркер, который обеспечивает возможность отбора трансформированных микробных клеток, и репликационная система, функциональная у Escherichia coli, для получения и модификации инородных генов для вставки в высшие растения. Такие манипуляции могут включать, например, введение мутаций, усечений, добавлений или замещений, как желательно для предполагаемого использования. Векторы включают, например, pBR322, группу pUC, группу M13mp, pACYC184 и т.д. Соответственно, последовательность, кодирующая Cry-белок или варианты, может быть вставлена в вектор в подходящий сайт рестрикции. Полученная плазмида используется для трансформации клеток E. coli, клетки которых культивируют в подходящей питательной среде, затем собирают и лизируют с тем, чтобы были извлечены годные для обработки количества плазмиды. Анализ последовательности, анализ фрагментов рестрикции, электрофорез и другие биохимические-молекулярно-биологические способы обычно проводят в качестве способов анализа. После каждой манипуляции, используемая последовательность ДНК может быть расщеплена и соединена со следующей последовательностью ДНК. Каждая подвергнутая манипулированию последовательность ДНК может быть клонирована в ту же или другую плазмиду.

Использование содержащих T-ДНК векторов для трансформации клеток растений интенсивно исследовалось и достаточно описано в Европейском патенте EP 120516; публикациях Lee и Gelvin (2008), Fraley et al. (1986), и An et al. (1985), и достаточно общепринято в данной области.

Как только вставленная ДНК интегрируется в геном растения, она становится относительно устойчивой во всех последующих поколениях. Вектор, используемый для трансформации клетки растения, обычно содержит выбранный маркерный ген, кодирующий белок, который придает трансформированным клеткам растений устойчивость к гербициду или антибиотику, такому как, наряду с другими, биалафос, канамицин, G418, блеомицин или гигромицин. Соответственно, отдельно используемый выбранный маркерный ген должен обеспечить возможность выбора трансформированных клеток, в то время как рост клеток, которые не содержат вставленную ДНК, подавляется селекционным соединением.

Доступно большое число способов вставки ДНК в клетку растения-хозяина. Эти способы включают трансформацию T-DNA, доставленную Agrobacterium tumefaciens или Agrobacterium rhizogenes в качестве агента трансформации. Дополнительно, может быть использовано слияние протопластов растения с липосомами, содержащими подлежащую доставке ДНК, прямая инъекция ДНК, трансформация биологической баллистикой (бомбардировкой микрочастицами) или электропорация, а также другие возможные способы.

В предпочтительном варианте осуществления настоящего изобретения, растения трансформируются генами, где использование кодона кодирующей белок области было оптимизировано для растений. См., например, патент США 5380831, который включен в настоящее описание посредством ссылки. Также, преимущественно используются растения, кодирующие усеченный токсин. Усеченный токсин обычно кодирует примерно от 55% до примерно 80% токсина полной длины. Способы создания синтетических генов B.t. для использования в растениях известны в данной области (Stewart, 2007).

Независимо от методики трансформации, ген предпочтительно включают в вектор переноса гена, адаптированный для экспрессирования генов инсектицидного токсина B.t. и варианты в растительной клетке включением в вектор растительного промотора. В дополнение к растительным промоторам, в растительных клетках для экспрессирования чужеродных генов могут эффективно использоваться промоторы из разнообразных источников. Например, возможно использование промоторов бактериального происхождения, таких как промотор октопинсинтазы, промотор нопалинсинтазы и промотор маннопинсинтазы. В некоторых предпочтительных вариантах осуществления могут использоваться промоторы, не связанные с Bacillus thuringiensis. Могут использоваться промоторы, происходящие из растительных вирусов, например, промоторы 35S и 19S вируса мозаики цветной капусты, промотор из вируса мозаики жилок кассавы и тому подобное. Растительные промоторы включают, но без ограничения, малую субъединицу (ssu), промотор бета-конглицинина, промотор фазеолина, промотор ADH (алкогольдегидрогеназы), промоторы теплового шока, промотор ADF (деполимеризации актина), промотор убиквитина, промотор актина и тканеспецифические промоторы. Промоторы могут также содержать определенные энхансерные элементы последовательности, которые могут повысить эффективность транскрипции. Конкретные энхансеры включают, но без ограничения, ADH1-интрон 1 и ADH1-интрон 6. Могут использоваться конститутивные промоторы. Конститутивные промоторы направляют непрерывную генную экспрессию почти во всех типах клеток и почти в любое время (например, актина, убиквитина, CaMV 35S). Тканеспецифические промоторы ответственны за генную экспрессию в определенных типах клеток или ткани, таких как листья или семена (например, промоторы зеина, олеозина, напина, ACP (ацил белка-носителя)), и эти промоторы также могут быть использованы. Могут также использоваться промоторы, которые активны во время определенной стадии развития растений, а также активны в определенных тканях и органах растений. Примеры таких промоторов включают, но без ограничения, промоторы, которые являются специфичными для корней, специфичными для пыльцы, специфичными для зародышей, специфичными для «шелка» кукурузы, специфичными для хлопковых волокон, специфичными для эндоспермы семян, специфичными для флоэмы, и тому подобное.

В определенных условиях может быть желательным использование индуцируемого промотора. Индуцируемый промотор ответствен за экспрессию генов в ответ на специфический сигнал, такой как физический стимул (например, гены теплового шока); свет (например, RUBP карбоксилаза); гормон (например, глюкокортикоид); антибиотик (например, тетрациклин); метаболиты; и стресс (например, засуху). Могут использоваться другие желательные транскрипционные и трансляционные элементы, которые функционируют в растениях, такие как 5' нетранслированные лидерные последовательности, РНК последовательности транскрипции терминации и сигнальные последовательности добавления полиаденилата. В данной области известны многочисленные специфичные для растений векторы переноса генов.

Трансгенные культуры, содержащие признаки устойчивости к насекомым (IR), являются преобладающими в растениях кукурузы и хлопка по всей Северной Америке, и использование этих признаков распространяется по всему миру. Промышленные трансгенные культуры, комбинирующие признаки IR и устойчивость к гербицидам (HT), были разработаны множеством семенных компаний. Они включают комбинации признаков IR, приданных инсектицидными белками B.t. и признаков HT, таких как устойчивость к ингибиторам ацетолактатсинтазы (ALS), таким как сульфонилмочевины, имидазолиноны, триазолпиримидин, сульфонанилиды и тому подобное, ингибиторам глутаминсинтетазы (GS), таким как биалафос, глюфосинат и тому по