Лазерный гироскоп
Лазерный гироскоп содержит многоугольный оптический моноблок с оптическими каналами, зеркала полного отражения и полупрозрачное зеркало. В качестве источника оптического излучения используется полупроводниковый лазер. Оптический моноблок выполнен по форме равностороннего правильного шестиугольника, в геометрическом центре которого выполнены термоэлектрический модуль и источник излучения, находящийся в тепловом контакте с радиатором термоэлектрического модуля. Зеркала полного отражения и полупрозрачное зеркало, выполненное в виде интерференционного преобразователя в форме линзы, примыкают непосредственно к граням оптического моноблока. При этом коэффициенты линейного температурного расширения материалов зеркал полного отражения лучистой энергии и полупрозрачного зеркала равны или близки к коэффициенту линейного температурного расширения оптического моноблока, а полупрозрачное зеркало установлено в юстировочном приспособлении. Технический результат заключается в компенсации температурной погрешности, обеспечении работоспособности устройства при высоких и низких температурах. 1 з.п. ф-лы, 3 ил.
Реферат
Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем разного типа, в частности безинерциальных навигационных систем.
Известно техническое решение, разработанное американской фирмой «Honeywell» (Горенштейн И.А., Шульман И.А. Инерциальные навигационные системы. Под редакцией канд. техн. наук И.А. Горенштейна - Москва: Машиностроение, 1970, стр. 161-163), содержащее корпус, аноды, зеркала с высокой отражательной способностью, цилиндрические каналы, катод, диафрагму, полупрозрачное зеркало, призму; корпус прибора - монолитный блок из плавленого кварца в виде двенадцатиугольника с неправильными сторонами, в котором просверлены цилиндрические каналы; оси этих каналов лежат в одной плоскости и образуют равносторонний треугольник, в вершинах которого расположены зеркала.
Недостатки аналога: корпус выполнен в виде двенадцатиугольника с неправильными сторонами, поэтому возникает существенная температурная погрешность из-за неравномерного нагрева от источника излучения, заключающаяся в неравномерном изменении длин и диаметра оптических каналов, в связи с чем происходит изгиб и деформация канала. Таким образом, в аналоге отсутствует возможность компенсации температурной погрешности и работоспособности устройства при высоких и низких температурах окружающей среды.
Наиболее близкой к заявляемому устройству является моноблочная конструкция лазерного гироскопа (Патент РФ на изобретение №2507482, G01С 19/66, опубл. 20.02.2014), содержащая многоугольный оптический моноблок со сформированными оптическими каналами, зеркала полного отражения лучистой энергии и полупрозрачное зеркало, причем в качестве источника оптического излучения используется полупроводниковый лазер, снабженный внешним оптическим резонатором в виде усеченной призмы, углы при основании которой составляют (40-60)°, толщина которой равна толщине оптического моноблока, а поверхность покрыта светоотражающим покрытием, причем параллельно его основанию симметрично на боковых гранях сформированы два оптически прозрачных отверстия на уровне, совпадающем с уровнем оптических каналов моноблока, и реализующих в резонаторе излучателя продольный оптический канал, по геометрии и положению совпадающий с основным цилиндрическим каналом моноблока, а для сопряжения источника излучения в оптическом моноблоке сформировано посадочное место, геометрия которого совпадает с геометрией оптического резонатора излучателя так, что сформированный оптический канал является продолжением оптического канала моноблока, замыкая кольцевую оптическую схему моноблока.
Недостатки прототипа: корпус гироскопа выполнен в виде треугольника, источник излучения расположен вдоль одной его стороны, поэтому возникает существенная температурная погрешность при перепаде температур окружающей среды, что ведет к неравномерному изменению длин и формы оптических каналов, при работе будет иметь место изгиб и деформация оптических каналов, т.е. в прототипе отсутствует возможность компенсации температурной погрешности и не обеспечивается необходимая работоспособность при высоких и низких температурах окружающей среды.
Технический результат заявляемого изобретения - обеспечение компенсации температурной погрешности и, как следствие, обеспечение работоспособности устройства при высоких и низких температурах окружающей среды.
Технический результат достигается тем, что лазерный гироскоп содержит многоугольный оптический моноблок со сформированными оптическими каналами, зеркала полного отражения лучистой энергии и полупрозрачное зеркало, причем в качестве источника оптического излучения используется полупроводниковый лазер, снабженный внешним оптическим резонатором в виде усеченной призмы, углы при основании которой составляют (40-60)°, толщина которой равна толщине оптического моноблока, а поверхность покрыта светоотражающим покрытием, причем параллельно его основанию симметрично на боковых гранях сформированы два оптически прозрачных отверстия на уровне, совпадающем с уровнем оптических каналов моноблока, и реализующих в резонаторе излучателя продольный оптический канал, по геометрии и положению совпадающий с основным цилиндрическим каналом моноблока, а для сопряжения источника излучения в оптическом моноблоке сформировано посадочное место, геометрия которого совпадает с геометрией оптического резонатора излучателя так, что сформированный оптический канал является продолжением оптического канала моноблока, замыкая кольцевую оптическую схему моноблока, причем оптический моноблок выполнен по форме равностороннего правильного шестиугольника, в геометрическом центре которого выполнены термоэлектрический модуль и источник излучения, находящийся в тепловом контакте с радиатором термоэлектрического модуля, зеркала полного отражения лучистой энергии и полупрозрачное зеркало, выполненное в виде интерференционного преобразователя в форме линзы, примыкают непосредственно к граням оптического моноблока и фиксируются механически в его углублениях, при этом коэффициенты линейного температурного расширения материалов зеркал полного отражения лучистой энергии и полупрозрачного зеркала равны или близки к коэффициенту линейного температурного расширения оптического моноблока, при этом полупрозрачное зеркало установлено в юстировочном приспособлении. При этом термоэлектрический модуль снабжен по меньшей мере одним элементом Пельтье, который находится в тепловом контакте с радиатором.
Существенными отличительными признаками заявляемого технического решения являются следующие признаки:
- оптический моноблок выполнен по форме равностороннего правильного шестиугольника;
- в геометрическом центре оптического моноблока выполнены термоэлектрический модуль и источник излучения, находящийся в тепловом контакте с радиатором термоэлектрического модуля;
- зеркала полного отражения лучистой энергии и полупрозрачное зеркало, выполненное в виде интерференционного преобразователя в форме линзы, примыкают непосредственно к граням оптического моноблока и фиксируются механически в его углублениях;
- коэффициенты линейного температурного расширения материалов зеркал полного отражения лучистой энергии и полупрозрачного зеркала равны или близки к коэффициенту линейного температурного расширения оптического моноблока;
- полупрозрачное зеркало установлено в юстировочном приспособлении.
Указанная совокупность отличительных признаков, наряду с известными из уровня техники признаками, позволяет предложенному устройству обеспечивать компенсацию температурной погрешности и повышать работоспособность устройства при высоких и низких температурах окружающей среды.
В отличие от прототипа, где оптический моноблок выполнен в виде треугольника, в предложенном техническом решении оптический моноблок выполнен в виде равностороннего правильного шестиугольника, что способствует равномерному изменению длин и формы оптических каналов в оптическом моноблоке и исключает изгиб и деформацию оптических каналов при высоких и низких температурах окружающей среды, что ведет к обеспечению компенсации температурной погрешности и, как следствие, работоспособности устройства при высоких и низких температурах окружающей среды.
В отличие от прототипа, где посадочное место источника излучения расположено в периферии оптического моноблока, в предложенном техническом решении расположение в геометрическом центре источника излучения, находящегося в тепловом контакте с радиатором термоэлектрического модуля, исключает точечные или локальные тепловые воздействия на оптический моноблок и обеспечивает равномерное линейное температурное расширение от центра к периферии по всему объему оптического моноблока, а также исключает изгиб и деформацию каналов оптического моноблока, зеркал и интерференционного преобразователя, обеспечивая компенсацию температурной погрешности и, как следствие, работоспособность устройства при высоких и низких температурах окружающей среды.
В отличие от прототипа, где зеркала полного отражения лучистой энергии и полупрозрачное зеркало установлены методом молекулярной адгезии, в предложенном техническом решении зеркала полного отражения лучистой энергии и полупрозрачное зеркало в виде интерференционного преобразователя в форме линзы примыкают непосредственно к граням шестиугольного оптического моноблока и фиксируются механически в расположенных в гранях оптического моноблока углублениях посредством прижимных элементов, имеющие резиновые прокладки, что исключает повреждение зеркал при перепадах температур окружающей среды.
В отличие от прототипа, где коэффициенты линейного температурного расширения материалов зеркал полного отражения, интерференционного преобразователя не равны коэффициенту линейного температурного расширения моноблока, в предложенном техническом решении коэффициенты линейного температурного расширения материалов зеркала полного отражения лучистой энергии и полупрозрачного зеркала равны или близки к коэффициенту линейного температурного расширения оптического моноблока, что исключает неравномерное изменении длин и формы (деформацию) элементов устройства, что очень критично для оптического устройства при перепадах температур окружающей среды.
В отличие от прототипа в предложенном техническом решении полупрозрачное зеркало, выполненное в виде интерференционного преобразователя, установлено в юстировочном приспособлении, что обеспечивает оптическую настройку полупрозрачного зеркала относительно оптических каналов.
Сущность заявляемого изобретения, его реализуемость и возможность промышленного применения поясняются чертежами, где:
на Фиг. 1 изображено продольное сечение лазерного гироскопа;
на Фиг. 2 изображен вид на лазерный гироскоп со стороны юстировочного механизма;
на Фиг. 3 изображен лазерный гироскоп в изометрии.
на Фиг. 1-3 имеются следующие позиции:
1 - оптический моноблок;
2 - оптические каналы;
3 - зеркало полного отражения лучистой энергии;
4 - полупрозрачное зеркало;
5 - источник оптического излучения;
6 - оптический резонатор;
7 - светоотражающее покрытие;
8 - отверстие;
9 - оптический канал резонатора;
10 - термоэлектрический модуль;
10-1 - радиатор;
10-2 - элемент Пельте;
11 - геометрический центр оптического моноблока;
12 - правильный шестиугольник;
13 - грань шестиугольного оптического моноблока;
14 - крепежной элемент;
15 - втулка;
16 - прижимные элементы с резиновыми прокладками;
17 - периферия оптического моноблока;
18 - юстировочное приспособление;
19 - чашеобразный фиксатор;
20 - держатель;
21 - винт регулирующий;
22 - пружина;
23 - направляющая;
24 - гайка фиксирующая;
25 - винт фиксирующий.
Лазерный гироскоп содержит многоугольный оптический моноблок 1 (Фиг. 1-3) со сформированными в нем оптическими каналами 2 (Фиг. 1), а также зеркала 3 полного отражения лучистой энергии и полупрозрачное зеркало 4. В качестве источника оптического излучения 5 в конструкцию включен полупроводниковый лазер, для обеспечения одномодового режима излучения которого имеется внешний оптический резонатор 6, имеющий форму усеченной призмы. Углы при основании усеченной призмы составляют 40-60°, толщина усеченной призмы равна толщине оптического моноблока 1, поверхность усеченной призмы покрыта светоотражающим покрытием 7, в котором выполнены отверстия 8, параллельные основанию усеченной призмы, расположенные симметрично на ее боковых гранях на уровне, совпадающем с уровнем расположения оптических каналов 2 оптического моноблока 1, и реализующие в резонаторе 6 излучателя 5 продольной оптический канал 9, по геометрии и положению совпадающий с основным оптическим каналом 2 (выполненным в виде цилиндра) оптического моноблока 1. Для сопряжения источника излучения 5 с термоэлектрическим модулем 10 (Фиг. 3) в оптическом моноблоке 1 сформировано посадочное место в геометрическом центре 11 оптического моноблока 1. Геометрия посадочного места термоэлектрического модуля 10 совпадает с геометрией оптического резонатора 6 (фиг. 1) излучателя 5 так, что сформированный оптический канал 9 является продолжением оптического канала 2 оптического моноблока 1, замыкая таким образом кольцевую оптическую схему оптического моноблока 1. Источник излучения 5 и термоэлектрический модуль 10 (Фиг. З), состоящий из радиатора 10-1 и, например, одного элемента Пельтье 10-2, расположены в геометрическом центре 11 (Фиг. 1) оптического моноблока 1. Источник излучения 5 находится в тепловом контакте с радиатором 10-1 (Фиг. 3), а радиатор 10-1 находится в тепловом контакте по меньшей мере с одним элементом Пельтье 10-2. Оптический моноблок 1 (Фиг. 1) имеет форму равностороннего правильного шестиугольника 12 (Фиг. 1, 3). Зеркала 3 (Фиг. 1) полного отражения лучистой энергии и полупрозрачное зеркало 4 в виде интерференционного преобразователя примыкают непосредственно к граням 13 (Фиг. 3) шестиугольного 12 (Фиг. 1, 3) оптического моноблока 1 (Фиг. 1) и фиксируются крепежными элементами 14 (Фиг. 2, 3) при помощи втулок 15 (Фиг. 1), расположенных в углублениях торцевой 13 (Фиг. 3) части оптического моноблока 1 (Фиг. 1), а также прижимными элементами 16 (Фиг. 1, 3) с резиновыми прокладками.
Зеркала 3 полного отражения лучистой энергии выполнены, например, из материала марки К8 по ГОСТ 3514-94. Полупрозрачное зеркало 4 выполнено, например, из материала К8 по ГОСТ 3514-94. Коэффициенты линейного температурного расширения материалов зеркал 3 (Фиг. 1) полного отражения лучистой энергии и полупрозрачного зеркала 4, которое примыкает к торцу 13 (Фиг. 3) оптического моноблока 1 (Фиг. 1), равны или близки к коэффициенту линейного температурного расширения оптического моноблока 1, выполненного, например, из стекла органического марки СО-120-К по ГОСТ 10667-90. Расположение источника излучения 5 в геометрическом центре 11 обеспечивает равномерное линейное температурное расширение от центра 11 к периферии 17 по всему объему оптического моноблока 1, что исключает изгиб и деформацию оптических каналов 2 оптического моноблока 1, зеркал 3 полного отражения лучистой энергии и полупрозрачного зеркала 4. Полупрозрачное зеркало 4, выполненное в виде интерференционного преобразователя - линзы, на одной поверхности которой нанесено полупрозрачное покрытие, установлено в юстировочном приспособлении 18 (Фиг. 1, 2, 3). Юстировочное приспособление 18 состоит из чашеобразного фиксатора 19 (Фиг. 2), где зафиксирован интерференционный преобразователь 4 (Фиг. 1) при помощи склеивания, например, с использованием клея марки ВК-9 или марки ВК-53М. Чашеобразный фиксатор 19 (Фиг. 2) находится внутри держателя 20 (Фиг. 2, 3). Держатель 20 зафиксирован с торцевой 13 (Фиг. 1, 3) стороны шестиугольного оптического моноблока 1 (Фиг. 1). Фиксатор 19 (Фиг. 2) может перемещаться в двух взаимно перпендикулярных направлениях посредством регулирующих винтов 21 (Фиг. 2, 3) и пружин 22, расположенных на направляющих 23. Регулирующие винты 21 снабжены фиксирующими гайками 24. Оптический контур после юстировки крепится с помощью фиксирующих винтов 25 к держателю 20.
Коэффициент линейного температурного расширения материала оптического моноблока - (60-110)×10-6 1/К.
Коэффициент линейного температурного расширения материала зеркал - 73×10-6 1/К.
Устройство лазерного гироскопа работает следующим образом. В лазерном гироскопе по оптическим каналам 2 оптического моноблока создаются встречные волны лазерного (когерентного) излучения, которые генерируются источником 5 оптического излучения (полупроводниковым лазером), находящимся в геометрическом центре оптического моноблока 1. Для обеспечения одномодового режима излучения источник 5 оптического излучения снабжен оптическим резонатором 6 в виде усеченной призмы. При этом возникшее в устройстве лазерного гироскопа кольцевое движение оптических волн достигается за счет наличия зеркал 3 полного (100%) отражения лучистой энергии и зеркала 4 (полупрозрачного) с коэффициентом пропускания не более 10%. Световой поток источника лазерного излучения 5 преобразуется оптическим резонатором 6 в два противоположно направленных световых потока, покидающих объем резонатора через отверстия 8 в светоотражающем покрытии 7. Световые потоки попадают на зеркала 3 полного отражения лучистой энергии, которые закреплены на гранях 13 оптического моноблока 1 крепежными элементами 14. Зеркала 3 фиксируются прижимными элементами 16 (с резиновыми прокладками) к грани 13 с помощью втулок 15. Световые потоки, выходя из резонатора 6, попадают в оптические каналы 2, совершив обход по оптическим каналам и отражаясь последовательно от зеркала 3, полупрозрачного зеркала 4, попадают в отверстия 8 резонатора 6 и распространяются внутри резонатора 6, формируя продольный оптический канал 9 по типу призмы Дове. В результате сложения оптических волн образуется стоячая волна, которая обладает свойством неподвижности в инерциальном пространстве по отношению к вращательному движению оптического моноблока 1, выполненного по форме равностороннего правильного шестиугольника 12. Наблюдая за положением (перемещением) стоячей волны относительно оптического моноблока 1, можно судить об угловом положении и угловой скорости лазерного гироскопа, т.е., таким образом, формируется динамическая интерференционная картина. Качество интерференционной картины определяет положение полупрозрачного зеркала 4, которое определяется чашеобразным фиксатором 19 юстировочного приспособления 18. Перемещая регулирующий винт 21, расположенный в держателе 20, и преодолевая действие пружины 22, обеспечивается движение чашеобразного фиксатора 19 по направляющей 23 в выбранное положение, соответствующее контрастной картине полос. Чашеобразный фиксатор 19 фиксируется гайкой 24 и винтом 25. Перемещение полос интерференционной картины в точности повторяет движение стоячей волны. Интерференционные полосы могут быть преобразованы фотоприемным устройством (не показан) в электрические сигналы. Тепловая энергия, выделенная источником 5 оптического излучения, поступает в радиатор 10-1 термоэлектрического модуля 10, которые расположены в геометрическом центре 11. Радиатор 10-1 распределяет тепловую энергию по своему объему и рассеивает тепло в окружающую среду, что обеспечивает равномерное линейное температурное расширение оптического моноблока от центра 11 к периферии 17 и по всему объему оптического моноблока 1 в диапазоне температур от -60°C…+60°C. При работе в экстремальных условиях (например, при пожаре в отсеке) радиатор 10-1 воспринимает тепловую энергию из окружающего пространства и не может обеспечивать охлаждение оптического моноблока 1, тогда включается элемент Пельтье 10-2, установленный, как правило, в области наиболее выделяемого тепла от источника оптического излучения. В этом случае элемент Пельтье 10-2 охлаждает нагретую область и дополнительно рассеивает в окружающую среду тепло, выделяемое непосредственно им самим.
Заявленное техническое решение имеет отличия от наиболее близких аналогов, соответственно, оно удовлетворяет условию патентоспособности изобретения «новизна».
Техническое решение явным образом не следует из уровня техники. Кроме того, в процессе патентного поиска не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками заявленного технического решения.
Заявленное изобретение технически осуществимо, промышленно реализуемо на приборостроительном предприятии, проведенные испытания подтверждают достижение заявленного технического результата - обеспечение малой температурной погрешности и работоспособности при достаточно высоких и низких температурах окружающей среды. В связи с этим заявленное изобретение соответствует условию патентоспособности «промышленная применимость».
1. Лазерный гироскоп, содержащий многоугольный оптический моноблок со сформированными оптическими каналами, зеркала полного отражения лучистой энергии и полупрозрачное зеркало, причем в качестве источника оптического излучения используется полупроводниковый лазер, снабженный внешним оптическим резонатором в виде усеченной призмы, углы при основании которой составляют (40-60)°, толщина которой равна толщине оптического моноблока, а поверхность покрыта светоотражающим покрытием, причем параллельно его основанию, симметрично, на боковых гранях сформированы два отверстия на уровне, совпадающем с уровнем оптических каналов моноблока, реализующих в резонаторе излучателя продольный оптический канал, по геометрии и положению совпадающий с основным цилиндрическим каналом моноблока, а для сопряжения источника излучения в оптическом моноблоке сформировано посадочное место, геометрия которого совпадает с геометрией оптического резонатора излучателя так, что сформированный оптический канал является продолжением оптического канала моноблока, замыкая кольцевую оптическую схему моноблока, отличающийся тем, что оптический моноблок выполнен по форме равностороннего правильного шестиугольника, в геометрическом центре которого выполнены термоэлектрический модуль и источник излучения, находящийся в тепловом контакте с радиатором термоэлектрического модуля, зеркала полного отражения лучистой энергии и полупрозрачное зеркало, выполненное в виде интерференционного преобразователя в форме линзы, примыкают непосредственно к граням оптического моноблока и фиксируются механически в его углублениях, при этом коэффициенты линейного температурного расширения материалов зеркал полного отражения лучистой энергии и полупрозрачного зеркала равны или близки к коэффициенту линейного температурного расширения оптического моноблока, а полупрозрачное зеркало установлено в юстировочном приспособлении.
2. Лазерный гироскоп по п. 1, отличающийся тем, что термоэлектрический модуль снабжен по меньшей мере одним элементом Пельтье, который находится в тепловом контакте с радиатором термоэлектрического модуля.