Детектор мононаправленного нейтронного излучения

Иллюстрации

Показать все

Изобретение относится к области радиационных измерений и может быть использовано для регистрации плотности потока мононаправленного нейтронного излучения при работе на ядерно-физических установках различного типа и назначения. Детектор мононаправленного нейтронного излучения содержит изготовленные из материалов с близкими эффективными атомными номерами корпус, металлический коллектор, водородосодержащую и не содержащую водород диэлектрические пластины, при этом коллектор выполнен в виде двух пластин, которые разделены электростатическим экраном толщиной, равной пробегу образуемых гамма-излучением вторичных электронов, и подключены через схему вычитания к электроизмерительному прибору, причем между каждой из пластин коллектора и корпусом расположены диэлектрические пластины из водородосодержащего материала, а между пластинами коллектора и электростатическим экраном расположены диэлектрические пластины из материала, не содержащего водород. Технический результат - снижение чувствительности детектора мононаправленного нейтронного излучения к сопутствующему гамма-излучению при работе в полях смешанного гамма-нейтронного излучения. 2 ил.

Реферат

Изобретение относится к области радиационных измерений и может быть использовано для регистрации плотности потока мононаправленного нейтронного излучения при работе на ядерно-физических установках различного типа и назначения.

Известны устройства для регистрации нейтронного излучения, основанные на эффекте переноса заряда, которые именуются как «зарядовые детекторы» нейтронов (З.А. Альбиков, A.M. Веретенников, А.В. Козлов. Детекторы импульсного ионизирующего излучения, М.: Атомиздат, 1978 г.). Различают два типа зарядовых детекторов. К первому типу относятся детекторы прямой зарядки, выполненные в виде эмиттера и коллектора, разделенных тонким диэлектрическим слоем. Эмиттер изготавливается из материала, в котором при облучении нейтронами образуются радиоактивные изотопы, распадающиеся с выходом заряженных частиц. Заряженные частицы (продукты распада) проходят через диэлектрический слой и собираются коллектором. В электрической цепи протекает ток, который характеризует плотность потока первичного нейтронного излучения. Если период полураспада радиоактивного изотопа много меньше длительности импульса нейтронного излучения, то амплитуда тока коллектора пропорциональна плотности потока нейтронов. Указанная функциональная зависимость используется для определения формы импульса воздействующего нейтронного излучения. Недостатком данного типа детекторов является сравнительно низкое временное разрешение (более сотых долей секунды), что обусловлено периодом полураспада образующихся в эмиттере радиоактивных изотопов. Поэтому на многих ядерно-энергетических установках при длительностях импульса нейтронного излучения менее миллисекунды (например, импульсные установки термоядерного синтеза, импульсные ядерные реакторы и др.) детекторы этого типа используются в основном для измерения флюенса нейтронов.

Известен детектор радиоактивных излучений, который основан на переносе заряда вторичных высокоэнергетических электронов (Г.Ф. Иоилев, В.А. Сафонов. Детекторы с диэлектрическим рассеивателем / Приборы и техника эксперимента, т.14, вып.5, с. 210, 1969). Детектор состоит из корпуса и сигнального электрода, которые разделены двумя одинаковыми диэлектрическими слоями. Перенос заряда в детекторе осуществляется вторичными высокоэнергетическими электронами, которые образуются за счет комптоновского и фотоэффектов при взаимодействии гамма-излучения с материалах конструкции детектора. Детектор обладает высоким временным разрешением, которое определяется электрической схемой подключения детектора к электроизмерительному прибору.

Известно защищенное авторским свидетельством изобретение-прототип № 713293 Al G01T 3/00 1978 год «Детектор мононаправленного нейтронного излучения» (М.В. Яковлев, И.С. Терешкин, Г.В. Кулаков, Н.А. Комаров), который основан на измерении тока протонов отдачи, образующихся в результате упругого рассеяния нейтронов на ядрах атомов водорода в облучаемом материале-рассеивателе. Конструкция детектора показана на фигуре 1. Прибор содержит металлический корпус (1), внутри которого расположена пластина-рассеиватель (2) из водородосодержащего материала, например, полиэтилена. За рассеивателем расположены металлическая пластина-коллектор (3) и электроизолирующая пластина (4) из материала, не содержащего водород. Коллектор подключен к электроизмерительному прибору. Толщина полиэтиленовой пластины-рассеивателя выбирается много меньше свободного пробега первичных нейтронов, но значительно больше пробега вторичных протонов отдачи в данном материале. Корпус и коллектор выполнены из низкоатомного металла алюминия, чтобы в смешанных полях гамма-нейтронного излучения внутри детектора не нарушались условия гамма-электронного равновесия. Коллектор имеет толщину, достаточную для поглощения протонов отдачи, движущихся со стороны пластины-рассеивателя.

При облучении детектора нейтронами со стороны пластины-рассеивателя сигнал коллектора обусловлен сбором заряда протонов отдачи, q1, а также токами смещения от объемных зарядов, q2, q3, которые образуются в объеме рассеивателя. Вблизи границы раздела с металлическим корпусом образуется область отрицательного объемного заряда, q2, счет оттока из этой области протонов отдачи. Положительный объемный заряд, образующийся в пластине-рассеивателе за счет ослабления потока нейтронов, заряд q3, имеет сравнительно малую величину, поэтому отрицательный объемный заряд приблизительно равен заряду протонов отдачи, инжектируемых в коллектор. Однако в силу выбранной геометрии детектора емкостная связь отрицательного заряда с коллектором значительно меньше, чем с корпусом, поэтому вклад отрицательного заряда в результирующий положительный сигнал детектора оказывается незначительным.

При облучении нейтронами с противоположной стороны сигнал детектора определяется отрицательным объемным зарядом, который находится вблизи коллектора в приграничной области пластины-рассеивателя. Временное разрешение детектора определяется его собственной емкостью и параметрами регистрирующего тракта и может быть доведено до единиц наносекунд.

При энергии гамма-квантов ~1,25 МэВ чувствительность детектора-прототипа к действию гамма-излучения составляет ~5%. (И.С. Терешкин, М.В. Яковлев. Детектор высокоинтенсивного нейтронного излучения, Сборник научных трудов ФГУП ЦНИИмаш «Теоретические и экспериментальные исследования вопросов общей физики» под редакцией академика РАН Н.А. Анфимова, ФГУП ЦНИИмаш, с. 122, 2003 г.

Целью предлагаемого изобретения является снижение чувствительности детектора мононаправленного нейтронного излучения к сопутствующему гамма-излучению при работе в полях смешанного гамма-нейтронного излучения.

Указанная цель достигается в заявляемом детекторе, конструкция которого представлена на фиг. 2.

Детектор содержит изготовленные из материалов с близкими эффективными атомными номерами корпус, металлический коллектор (3, 7), водородосодержащую и не содержащую водород диэлектрические пластины. Технический результат достигается тем, что коллектор детектора содержит две металлические пластины (3, 7) из алюминия, которые разделены электростатическим экраном (5) толщиной, равной пробегу образуемых гамма-излучением вторичных высокоэнергетических электронов. Пластины коллектора подключены через схему вычитания к электроизмерительному прибору. Каждая из пластин коллектора отделяется от корпуса (1) диэлектрическими пластинами из водородосодержащего материала (2, 8), а между пластинами коллектора и электростатическим экраном расположены диэлектрические пластины из материала, не содержащего водород (4, 6).

Выбранное расположение диэлектрических пластин приводит к формированию сигналов различной полярности в первой и второй пластинах коллектора при воздействии нейтронов. При этом амплитуды сигналов практически одинаковы, так как ослаблением нейтронов в материалах конструкции детектора можно пренебречь. Под действием гамма-излучения в пластинах коллектора формируются сигналы одинаковой отрицательной полярности, что происходит за счет поглощения вторичных высокоэнергетических электронов. Материалы конструкции детектора имеют близкие эффективные атомные номера, поэтому при характерных энергиях квантов ~1 МэВ внутри детектора реализуются условия, близкие к условиям гамма-электронного равновесия. При этом амплитуды сигналов от гамма-излучения в пластинах коллектора равны между собой. Таким образом, разность показаний первой и второй пластин коллектора обеспечивает условия, при которых в полях смешанного гамма-нейтронного излучения детектор мононаправленного нейтронного излучения нечувствителен к воздействию сопутствующего гамма-излучения.

Детектор мононаправленного нейтронного излучения, содержащий изготовленные из материалов с близкими эффективными атомными номерами корпус, металлический коллектор, водородосодержащую и не содержащую водород диэлектрические пластины, отличающейся тем, что коллектор выполнен в виде двух пластин, которые разделены электростатическим экраном толщиной, равной пробегу образуемых гамма-излучением вторичных электронов, и подключены через схему вычитания к электроизмерительному прибору, причем между каждой из пластин коллектора и корпусом расположены диэлектрические пластины из водородосодержащего материала, а между пластинами коллектора и электростатическим экраном расположены диэлектрические пластины из материала, не содержащего водород.