Система сбора неочищенного газа

Иллюстрации

Показать все

Изобретение относится к системе и способу сбора неочищенного газа из алюминиевых электролизеров. Система содержит отводные каналы, каждый из которых проточно соединен с соответствующим алюминиевым электролизером из упомянутых алюминиевых электролизеров и выполнен с возможностью транспортирования неочищенного газа от впуска соответствующего отводного канала на электролизере к выпуску соответствующего отводного канала, и первый общий сборный канал, проточно соединенный с упомянутыми отводными каналами на выпусках соответствующих отводных каналов, причем первый общий сборный канал выполнен с возможностью транспортирования неочищенного газа от выпусков отводных каналов к газоочистной установке, первый и второй теплообменники, размещенные в первом и втором отводных каналах, причем первый теплообменник выполнен с возможностью создания гидравлического сопротивления, которое превышает гидравлическое сопротивление второго теплообменника, и передачи тепла от первого отводимого потока неочищенного газа теплопередающей среде в первом теплообменнике, а второй отводной канал соединен с упомянутым общим сборным каналом выше по потоку первого отводного канала относительно потока неочищенного газа в сборном канале. Обеспечивается уменьшение необходимости в регулировании объемных потоков в соответствующих отводных каналах с помощью демпферов и снижение мощности, требуемой для транспортировки неочищенного газа через систему. 3 н. и 9 з.п. ф-лы, 4 ил.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к системе сбора неочищенного газа для собирания неочищенного газа из множества алюминиевых электролизеров. Множество отводных каналов приспособлено канализировать неочищенный газ из соответствующего алюминиевого электролизера. Общий сборный канал канализирует неочищенный газ из множества отводных каналов к газоочистной установке.

Настоящее изобретение также относится к способу уравновешивания потока неочищенного газа в системе сбора неочищенного газа и к применению множества комбинированных теплопередающих и создающих гидравлическое сопротивление элементов для уравновешивания множества отводимых потоков неочищенного газа в системе сбора неочищенного газа.

УРОВЕНЬ ТЕХНИКИ

Алюминий можно производить посредством электролитических реакций в электролизерах, используя процесс Холла-Эру. В данном процессе образуется неочищенный газ в виде горячего нагруженного частицами неочищенного газа, который очищают в газоочистной установке перед выпуском в атмосферу. Обычно для канализирования горячего нагруженного частицами неочищенного газа из электролизеров к газоочистной установке используют систему каналов (газоходов).

Типичная газоочистная установка может включают скруббер сухой очистки и пылеулавливающий фильтр, например тканевый фильтр, который может относиться к типу рукавных фильтров. Рассмотрение таких систем заключается в том, что в связи с системами очистки неочищенного газа часто необходимы потребляющие энергию вентиляторы для того, чтобы активно протягивать неочищенный газ через газоочистную установку. Это так, поскольку собирающие неочищенный газ каналы и установка для очистки неочищенного газа могут привносить гидравлическое сопротивление в системы сбора и очистки дымовых газов.

Еще одно соображение заключается в том, что системам обработки неочищенного газа может потребоваться предварительное охлаждение неочищенного газа перед его поступлением в систему очистки неочищенного газа. Данное требование может быть продиктовано, например, температурной чувствительностью какого-либо установленного ниже по потоку оборудования или температурной зависимостью эффективности очистки газоочистной установки. Известно охлаждение горячего неочищенного газа, образуемого алюминиевыми электролизерами, путем подмешивания холодного окружающего воздуха в каналы неочищенного газа выше по потоку относительно газоочистной установки. Смешивание газа и воздуха является относительно простым, но при высоких температурах газа объем окружающего воздуха, требуемый для обеспечения адекватного охлаждения, становится существенным, поэтому увеличивается объем охлажденного неочищенного газа. Таким образом, поскольку объем неочищенного газа увеличился, также должно происходить соответствующее увеличение размера газоочистной установки, расположенных ниже по потоку вентиляторов, которые втягивают газ через газоочистную установку, и потребление энергии заводом. Потребление энергии заводом по производству алюминия может быть значительным, и желательно найти те области, где можно сократить потребление энергии.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Согласно аспектам, описанным и проиллюстрированным здесь, вышеуказанные недостатки и проблемы уровня техники по меньшей мере частично преодолеваются или устраняются предложенной системой сбора неочищенного газа для собирания неочищенного газа из множества алюминиевых электролизеров. Данная система сбора неочищенного газа содержит множество отводных каналов, причем каждый отводной канал проточно соединен с соответствующим алюминиевым электролизером из множества алюминиевых электролизеров, каждый из отводных каналов приспособлен канализировать неочищенный газ от впуска соответствующего отводного канала на электролизере до выпуска соответствующего отводного канала; и первый общий сборный канал, проточно соединенный с множеством отводных каналов на выпусках соответствующих отводных каналов, причем первый общий сборный канал приспособлен канализировать неочищенный газ в том же общем направлении потока, что и направление потока неочищенного газа в направлении потока сборного канала, из выпусков отводных каналов к газоочистной установке. Выпуск отводного канала у первого отводного канала из упомянутого множества отводных каналов расположен ниже по потоку относительно выпуска отводного канала у второго отводного канала из множества отводных каналов при наблюдении в направлении потока неочищенного газа в сборном канале. Первый отводной канал снабжен первым комбинированным теплопередающим и создающим гидравлическое сопротивление элементом, приспособленным создавать в сочетании с первым отводным каналом первое суммарное гидравлическое сопротивление от впуска отводного канала до выпуска отводного канала у первого отводного канала и передавать тепло от первого отводимого потока неочищенного газа теплопередающей среде. Первое суммарное гидравлическое сопротивление больше, чем второе суммарное гидравлическое сопротивление второго отводного канала от впуска отводного канала до выпуска отводного канала у второго отводного канала.

Система сбора неочищенного газа позволяет отрегулировать конкретный отводной канал среди множества отводных каналов на конкретное гидравлическое сопротивление. Поскольку первый отводной канал и второй отводной канал проточно соединены с одним и тем же общим сборным каналом, оказывается возможным уравновешивать объемы потоков неочищенного газа из первого и второго отводных каналов регулировкой гидравлического сопротивления посредством комбинированного теплопередающего и создающего гидравлическое сопротивление элемента для первого отводного канала. Кроме того, первый комбинированный теплопередающий и создающий гидравлическое сопротивление элемент может быть приспособлен охлаждать горячий неочищенный газ, образующийся в том электролизере, который снабжен первым отводным каналом. Таким образом, первый комбинированный теплопередающий и создающий гидравлическое сопротивление элемент полезным образом увеличивает гидравлическое сопротивление первого отводного канала и уменьшает потребность в бесполезном в противном случае гидравлическом сопротивлении, привносимом, например, регулировочным демпфером канала, чтобы компенсировать перепад давления вдоль сборного канала. Другими словами, система сбора неочищенного газа не только охлаждает неочищенный газ, но и уменьшает потребность в регулировочных демпферах каналов, что, в свою очередь, уменьшает суммарное потребление энергии системой сбора неочищенного газа.

Кроме того, наличие комбинированного теплопередающего и создающего гидравлическое сопротивление элемента на отводном канале может позволить сделать теплопередающий и создающий гидравлическое сопротивление элемент достаточно малым и, следовательно, включить в существующую конструкцию электролизера, что уменьшает затраты. Кроме того, наличие комбинированного теплопередающего и создающего гидравлическое сопротивление элемента на одном конкретном отводном канале может повлиять только на конкретный электролизер, с которым проточно соединен данный отводной канал. Таким образом, только на этот конкретный электролизер могут повлиять случайные неисправности или работы по обслуживанию, и, следовательно, требуется уделять меньше внимания возможностям доступа и резерва. Аналогичным образом, конструкцию комбинированного теплопередающего и создающего гидравлическое сопротивление элемента можно оптимизировать с учетом эффективного теплопереноса, а не с учетом исключения проблем образования отложений.

В одном варианте реализации второй отводной канал снабжен вторым комбинированным теплопередающим и создающим гидравлическое сопротивление элементом, приспособленным создавать в сочетании со вторым отводным каналом второе суммарное гидравлическое сопротивление от впуска отводного канала до выпуска отводного канала у второго отводного канала, а также передавать тепло от второго отводимого потока неочищенного газа теплопередающей среде. Преимущество данного варианта реализации заключается в том, что второй отводимый поток тоже охлаждается перед канализированием в газоочистную установку. Даже несмотря на то, что каждый из отдельных комбинированных теплопередающих и создающих гидравлическое сопротивление элементов создает перепад давления в соответствующем отводном канале, суммарный перепад давления в системе может быть снижен по сравнению с наличием одного теплообменника в главном канале.

В одном варианте реализации по меньшей мере 10% всех отводных каналов из множества отводных каналов снабжены соответствующим комбинированным теплопередающим и создающим гидравлическое сопротивление элементом. Такая конструкция обеспечивает эффективное охлаждение неочищенного газа и эффективное уравновешивание объемов потоков неочищенного газа между отводными каналами. Возможно, чтобы по меньшей мере один из отводных каналов содержал демпфер для тонкой регулировки гидравлического сопротивления соответствующему отводимому потоку неочищенного газа.

В одном варианте реализации множество отводных каналов включает 5-500 отводных каналов, проточно соединенных с первым общим сборным каналом, причем каждый отводной канал относится к конкретному электролизеру, при этом по меньшей мере 10% отводных каналов упомянутого множества отводных каналов снабжены соответствующим комбинированным теплопередающим и создающим гидравлическое сопротивление элементом, при этом соответствующее суммарное гидравлическое сопротивление каждого отводного канала, снабженного соответствующим комбинированным теплопередающим и создающим гидравлическое сопротивление элементом, приспособлено быть выше, чем суммарное гидравлическое сопротивление расположенного выше по потоку отводного канала. Используемый здесь термин «расположенный выше по потоку отводной канал» означает, что выпуск соответствующего отводного канала расположен выше по потоку относительно потока неочищенного газа в общем сборном канале. Каждый из комбинированных теплопередающих и создающих гидравлическое сопротивление элементов имеет теплопередающий элемент, приспособленный создавать в сочетании с соответствующим отводным каналом суммарное гидравлическое сопротивление, а также передавать тепло от соответствующего отводимого потока неочищенного газа теплопередающей среде.

В одном варианте реализации системы сбора неочищенного газа каждый из множества отводных каналов снабжен соответствующим комбинированным теплопередающим и создающим гидравлическое сопротивление элементом. Может оказаться преимущественным иметь комбинированные теплопередающие и создающие гидравлическое сопротивление элементы, предусмотренные на множестве отводных каналов в системе сбора неочищенного газа, поскольку отводные каналы проточно соединены с общим сборным каналом. Таким образом, может оказаться возможным сбалансировать распределение потока неочищенного газа через каждый отводной канал, имеющий такой комбинированный теплопередающий и создающий гидравлическое сопротивление элемент. Кроме того, большую часть гидравлического сопротивления в системе можно использовать полезным образом, если комбинированные теплопередающие и создающие гидравлическое сопротивление элементы предусмотрены на множестве отводных каналов.

В одном варианте реализации первое суммарное гидравлическое сопротивление на по меньшей мере 1,0% больше, чем второе суммарное гидравлическое сопротивление. Гидравлическое сопротивление у одного отводного канала определяется как перепад давления от впуска отводного канала на электролизере до выпуска отводного канала на общем сборном канале для конкретного отводимого потока. Таким образом, если сравнивать гидравлическое сопротивление у двух различных отводных каналов, снабженных двумя различными комбинированными теплопередающими и создающими гидравлическое сопротивление элементами или, если один отводной канал снабжен комбинированным теплопередающим и создающим гидравлическое сопротивление элементом, а другой отводной канал нет, для сравнения следует использовать одинаковый поток в каналах и соответствующий перепад давления от впуска соответствующего отводного канала до выпуска соответствующего отводного канала.

В одном варианте реализации второй общий сборный канал приспособлен канализировать неочищенный газ из еще одного множества электролизеров к газоочистной установке. Второй сборный канал может иметь зеркальную конфигурацию относительно первого сборного канала, имея такое же число электролизеров, отводных каналов и т.д. Возможно наличие одинаковых объемов потоков в первом и втором общих сборных каналах, чтобы получить уравновешенную систему. Потоки из первого и второго общих сборных каналов могут объединяться в общем всасывающем канале перед канализированием в газоочистное устройство. Кроме того, возможно иметь третий и четвертый общий сборный канал, проточно соединенный с одним и тем же газоочистным устройством. Одной возможной конфигурацией может быть наличие первого общего сборного канала и третьего общего сборного канала, каждый из которых связан с подсерией электролизеров, канализируя неочищенный газ в первый всасывающий канал. Аналогичным образом, второй общий сборный канал и четвертый общий сборный канал, каждый из которых связан с еще одной подсерией электролизеров, могут канализировать неочищенный газ во второй всасывающий канал. Неочищенный газ, канализируемый по первому и второму всасывающим каналам, может объединяться в общем всасывающем канале и канализироваться в газоочистное устройство. Чтобы добиться хорошего распределения неочищенного газа в системе сбора неочищенного газа, возможно наличие одинакового гидравлического сопротивления во всех четырех сборных каналах.

В одном варианте реализации комбинированный теплопередающий и создающий гидравлическое сопротивление элемент включает в себя теплообменник. Теплообменник обеспечивает эффективный обмен теплом между отводимым потоком неочищенного газа и теплопередающей средой. Теплообменник может содержать камеру впуска неочищенного газа для приема отводимого потока неочищенного газа и множество взаимно параллельных охлаждающих неочищенный газ трубок, которые разнесены и через которые пропускается неочищенный газ. Такие теплообменники обеспечивают низкий уровень образования отложений и низкие потери энергии вследствие гидравлического сопротивления теплообменника. Соответственно, можно добиться низких потерь энергии, поддерживая в то же время достаточный перепад давления, чтобы уравновешивать объемы соответствующих отводимых потоков. Согласно варианту реализации каждая охлаждающая неочищенный газ трубка имеет впускную воронку охлаждающей трубки для ускорения потока неочищенного газа в охлаждающую трубку. Впускные воронки могут уменьшать образование отложений и могут быть лучше приспособлены к рассматриваемому назначению гидравлического сопротивления трубки. По меньшей мере одна из охлаждающих неочищенный газ трубок может быть закупоренной. Гидравлическое сопротивление в отводном канале, снабженном теплообменником, можно адаптировать путем закупоривания одной или более из охлаждающих неочищенный газ трубок. Таким образом, путем закупоривания различного числа трубок аналогичные теплообменники можно использовать для различных отводных каналов, чтобы осуществлять особенно тонкое регулирование различных гидравлических сопротивлений у каждого из отводных каналов. В частности, может оказаться полезным наличие аналогичных теплообменников, предусмотренных на соседних отводных каналах, и закупоривание одинакового или различного числа охлаждающих трубок на некоторых из теплообменников и, возможно, не на других. В таком случае число закупоренных охлаждающих трубок можно увеличивать в направлении вниз по потоку относительно направления потока неочищенного газа в общем сборном канале. Например, если каждый из первого и второго отводных каналов оборудован аналогичным теплообменником, имеющим множество охлаждающих неочищенный газ трубок, через которые пропускается неочищенный газ, то одну или несколько трубок теплообменника в первом отводном канале можно закупорить, в то время как второй остается незакупоренным или закупоренным в меньшей степени, чтобы добиться более высокого гидравлического сопротивления у первого отводного канала, чем у второго отводного канала.

Согласно другим аспектам, описанным здесь, вышеупомянутые недостатки и проблемы уровня техники по меньшей мере частично преодолеваются или устраняются заводом по производству алюминия, содержащим описанную выше систему сбора неочищенного газа, в которой множество отводных каналов снабжены комбинированным теплопередающим и создающим гидравлическое сопротивление элементом.

Согласно другим аспектам, описанным здесь, вышеупомянутые недостатки и проблемы уровня техники практически преодолеваются или устраняются способом уравновешивания объемов потока неочищенного газа в системе сбора неочищенного газа, используемой для собирания неочищенного газа из по меньшей мере первого и второго алюминиевого электролизера. Данный способ включает воздействие на первый отводимый поток неочищенного газа из первого электролизера первого гидравлического сопротивления, созданного первым комбинированным теплопередающим и создающим гидравлическое сопротивление элементом, перед введением первого отводимого потока в общий сборный канал на выпуске первого отводного канала; воздействие на второй отводимый поток неочищенного газа из второго электролизера второго гидравлического сопротивления перед введением второго отводимого потока в упомянутый общий сборный канал на выпуске второго отводного канала, который расположен выше по потоку относительно выпуска первого отводного канала в отношении потока неочищенного газа вдоль общего сборного канала, причем второе гидравлическое сопротивление является меньшим, чем первое гидравлическое сопротивление. Согласно одному варианту реализации второе гидравлическое сопротивление по меньшей мере частично создается вторым комбинированным теплопередающим и создающим гидравлическое сопротивление элементом.

Согласно другим аспектам, описанным здесь, вышеупомянутые недостатки и проблемы уровня техники практически преодолеваются или устраняются применением множества комбинированных теплопередающих и создающих гидравлическое сопротивление элементов для уравновешивания объемов множества отводимых потоков неочищенного газа в системе сбора неочищенного газа, используемой для собирания неочищенного газа из множества алюминиевых электролизеров. Между соответствующими алюминиевыми электролизерами и общим сборным каналом расположено множество отводных каналов. В результате этого объемы отдельных отводимых потоков неочищенного газа через множество отводных каналов можно более равномерно уравновешивать и/или можно расходовать меньше энергии для втягивания или продувания газа.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Перечисленные выше, а также дополнительные цели, признаки и преимущества станут более понятными посредством следующего иллюстративного и неограничительного подробного описания примерных вариантов реализации при обращении к прилагаемым чертежам, на которых аналогичные элементы имеют аналогичные численные обозначения, в том числе:

фиг. 1 представляет схематический вид сбоку в разрезе системы сбора неочищенного газа;

фиг. 2 представляет схематический вид сверху системы сбора неочищенного газа;

фиг. 3a представляет схематический вид сверху части системы сбора неочищенного газа по фиг. 2;

фиг. 3b представляет схематический вид в перспективе части системы сбора неочищенного газа по фиг. 2.

ПОДРОБНОЕ ОПИСАНИЕ ПРИМЕРНОГО ВАРИАНТА РЕАЛИЗАЦИИ

Фиг. 1 - схематическое представление на виде сбоку завода 1 по производству алюминия. Завод 1 по производству алюминия имеет электролизный цех 2 по производству алюминия, в котором может быть расположено некоторое число электролизеров для получения алюминия или алюминиевых электролизеров 4. На фиг. 1 для целей ясности и простоты проиллюстрирован только один электролизер 4, но следует понимать, что электролизный цех 2 может, как правило, содержать от 50 до 200 электролизеров 4. Электролизер 4 включает в себя некое число анодных электродов 6, как правило, от шести до тридцати анодных электродов, которые, как правило, располагаются двумя параллельными рядами, проходящими вдоль длины электролизера 4, и простираются в содержимое 7 ванны 8. Внутри ванны 8 также располагаются один или более катодных электродов 10. Процесс, происходящий в электролизере 4, может представлять собой хорошо известный процесс Холла-Эру, в котором оксид алюминия, растворенный в расплаве фторсодержащих минералов, подвергают электролизу с образованием алюминия, а значит, электролизер 4 функционирует как ячейка электролиза. Порошкообразный оксид алюминия подают в электролизер 4 из бункера 12, встроенного в надстройку 13 электролизера 4. Порошкообразный оксид алюминия подают в ванну 8 посредством по меньшей мере одного питателя 14.

В электролитическом процессе, протекающем в электролизере 4, выделяются большие количества тепла, частиц пыли и отходящих газов, в том числе, но не ограничиваясь этим, фторид водорода, диоксид серы и диоксид углерода. В данном описании термин «неочищенный газ» означает неочищенный газ от промышленного процесса, такой как горячий дымовой газ, отходящий из электролизера 4. Система 15 сбора неочищенного газа предназначена собирать и канализировать неочищенный газ из множества электролизеров 4 к газоочистной установке 26, которая очищает неочищенный газ так, чтобы его можно было безопасно выпускать в атмосферу. Отводной канал 16 проточно соединен с внутренней областью 18 колпака 19 электролизера 4. Отводной канал 16 оборудован комбинированным теплопередающим и создающим гидравлическое сопротивление элементом 17, таким как теплообменник 17', 17a-17d. Теплопередающий и создающий гидравлическое сопротивление элемент 17, или теплообменник 17', 17a-17d, а также система 15 сбора неочищенного газа будут описаны более подробно ниже со ссылкой на фиг. 2. Аналогичные отводные каналы 16 нескольких параллельных электролизеров 4 проточно соединены параллельно с одним общим сборным каналом 20a. Вентилятор 22 втягивает через всасывающий канал 24, проточно соединенный с каналом 20a, неочищенный газ из общего сборного канала 20a в газоочистную установку 26. Вентилятор 22 предпочтительно расположен ниже по потоку газа относительно газоочистной установки 26, чтобы создавать отрицательное давление в газоочистной установке 26. Однако вентилятор 22 можно, в качестве альтернативы, устанавливать также во всасывающий канал 24.

Пример подходящей газоочистной установки 26 описан более подробно в US 5885539. Необязательно, отходящие газы, вытекающие из газоочистной установки 26, дополнительно обрабатывают в устройстве удаления диоксида серы (не показано), например, скруббере с морской водой, такой как описанный в US 5484535, скруббер с влажным известняком, такой как описанный в EP 0162536, или другое такое устройство, в котором используется щелочное поглощающее вещество для удаления диоксида серы из отходящих газов. Необязательно, отходящие газы, вытекающие из газоочистной установки 26 или устройства удаления диоксида серы, в зависимости от обстоятельств, проходят через устройство удаления диоксида углерода (не показано), которое удаляет по меньшей мере некоторую часть диоксида углерода от отходящих газов. Устройство удаления диоксида углерода может быть любого типа, подходящего для удаления газообразного диоксида углерода из отходящих газов. Пример подходящих системы и способа удаления диоксида углерода представляет собой тот, который известен как процесс с охлажденным аммиаком, раскрытый в WO 2006/022885. Таким образом, очищенные отходящие газы, содержащие в основном газообразный азот и газообразный кислород, выпускают в атмосферу через проточно подсоединенную дымовую трубу 28.

Фиг. 2 схематически иллюстрирует четырнадцать электролизеров 4, 4b, обозначенных сплошными линиями на фиг. 2, которые относятся к тому же типу, что и электролизер 4, представленный на фиг. 1. Электролизеры 4, 4b организованы в первый и второй ряды или подсерии 30a и 30b соответственно, каждый(ая) с семью электролизерами 4, 4b. Каждый электролизер 4, 4b снабжен отводным каналом 16, 16a-d. Первая подсерия 30a имеет первый общий сборный канал 20a, а вторая подсерия 30b имеет второй общий сборный канал 20b для канализирования неочищенного газа из отводных каналов 16, 16a-d в первый и второй всасывающий канал 24a, 24b соответственно. Потоки неочищенного газа из первого и второго всасывающих каналов 24a, 24b объединяются в общем всасывающем канале 24 и канализируются в газоочистное устройство 26.

Фиг. 2 также изображает шесть электролизеров 4, 4b, проиллюстрированных штриховыми линиями. Штриховые линии указывают на то, что компоновка по фиг. 2 может необязательно включать третью и четвертую подсерии 30c, 30d, вдоль которых расположены соответствующие электролизеры 4, 4b. Третий сборный канал 20c подсерии 30c проточно соединен с тем же всасывающим каналом 24a, как и первый сборный канал 20a. Таким образом, поток неочищенного газа из первого сборного канала 20a и поток неочищенного газа из третьего сборного канала 20c объединяются в первом всасывающем канале 24a. Аналогичным образом, второй всасывающий канал 24b принимает поток неочищенного газа как из второго сборного канала 20b, так и из четвертого сборного канала 20d подсерии 30d. Другими словами, поток неочищенного газа из первого и третьего сборных каналов 20a, 20c и из второго и четвертого сборных каналов 20b, 20d соответственно на каждой стороне, занимающей центральное положение (централизованной) газоочистной установки 26, канализируется в один и тот же всасывающий канал 24a и 24b соответственно. Первая и третья подсерии 30a, 30c находятся в одном электролизном цехе 2 завода 1 по производству алюминия, как описано со ссылкой на фиг. 1. Вторая и четвертая подсерии 30b, 30d находятся в другом электролизном цехе 2.

Два удлиненных электролизерных цеха 2 расположены параллельно и имеют общую центральную конструкцию, содержащую, например, газоочистную установку 26 и дымовую трубу 28. Отводные каналы 16, 16a-d одного электролизного цеха 2 расположены параллельно друг другу и присоединены параллельно к каждому соответствующему сборному каналу 20a-d. Сборные каналы 20a-d расположены перпендикулярно отводным каналам 16.

Поток неочищенного газа, образующегося в соответствующих электролизерах 4, 4b, канализируют из первого и второго всасывающих каналов 24a, 24b в общий всасывающий канал 24 и далее в газоочистную установку 26. Неочищенный газ обрабатывают в газоочистной установке 26 и затем выпускают в атмосферу через дымовую трубу 28. Только шесть электролизеров 4, 4b показаны штриховыми линиями на фиг. 2, однако обозначенные штриховыми линиями подсерии 30c, 30d должны предпочтительно содержать такое же число электролизеров 4, 4b, как и обозначенные сплошными линиями подсерии 30a, 30b, а по своим функциям и оборудованию быть аналогичными обозначенным сплошными линиями подсериям 30a, 30b, чтобы иметь уравновешенный объем потока неочищенного газа, протекающего в системе 15 сбора неочищенного газа.

Фиг. 2 иллюстрирует четыре подсерии 30a-d электролизеров 4, 4b, однако завод 1 по производству алюминия может, как правило, содержать от 4 до 100 подсерий электролизеров 4, но по соображениям ясности на фиг. 2 проиллюстрированы только четыре подсерии 30a-d. Кроме того, даже несмотря на то, что лишь несколько электролизеров 4 проиллюстрированы в каждой подсерии 30a-d на фиг. 2, одна подсерия может, как правило, содержать от 25 до 100 электролизеров 4. На иллюстрации в виде сверху конструкция, представленная на фиг. 2 и имеющая четыре подсерии 30a-d электролизеров 4, проточно соединенных с общим всасывающим каналом 24 и газоочистной установкой 26, выглядит H-образной, хорошо известным специалистам в данной области техники образом.

Как указано выше, систему 15 сбора неочищенного газа используют для собирания неочищенного газа, выделившегося в электролизерах 4, и для канализирования неочищенного газа в газоочистную установку 26. Система 15 сбора неочищенного газа описана здесь в отношении первой подсерии 30a для целей простоты и ясности. Однако следует понимать, что система 15 сбора неочищенного газа может собирать и уравновешивать поток неочищенного газа из более чем одной подсерии. Возможно организовать и эксплуатировать все подсерии одинаковым образом, как описано ниже для подсерии 30a.

Система 15 сбора неочищенного газа, показанная на фиг. 2, имеет один отводной канал 16, 16a-d, предусмотренный на каждом электролизере 4. Каждый отводной канал 16, 16a-d снабжен соответствующим впуском 34, 34a, 34b отводного канала и соответствующим выпуском 36, 36a, 36b отводного канала, который проточно соединяет соответствующий отводной канал 16, 16a-d с соответствующим электролизером 4 и с первым общим сборным каналом 20a соответственно. Каждый отводной канал 16, 16a-d канализирует отводимый поток 32, 32a, 32b неочищенного газа из соответствующего электролизера 4 в первый общий сборный канал 20a. Все электролизеры 4 в первой подсерии 30a проточно соединены с первым общим сборным каналом 20a. Система 15 сбора неочищенного газа дополнительно включает в себя первый всасывающий канал 24a, в который неочищенный газ, поступающий из электролизеров 4, канализируется через проточно подсоединенный первый сборный канал 20a. Поток неочищенного газа из первого всасывающего канала 24a направляется в общий всасывающий канал 24, который канализирует неочищенный газ в газоочистную установку 26. Неочищенный газ обрабатывают, в соответствии с приведенным выше описанием, в газоочистной установке 26, и очищенный газ выпускают в атмосферу через дымовую трубу 28.

Комбинированные теплопередающие и создающие гидравлическое сопротивление элементы 17, такие как теплообменники 17', 17a-d, предусмотрены на некоторых из отводных каналов 16, 16a-d, проиллюстрированных на фиг. 2. В варианте реализации, показанном на фиг. 2, для первой подсерии 30a, каждый из четырех отводных каналов 6a-d, которые проточно соединены с первым сборным каналом 20a ближе всех к тому положению P, в котором первый сборный канал 20a присоединяется к первому всасывающему каналу 24a, оборудован соответствующим теплообменником 17', 17a-d. Как описано со ссылкой на фиг. 1, в электролизерах 4 во время процесса электролиза выделяются большие количества тепла. Однако для эффективной очистки неочищенного газа, например путем сухой очистки, неочищенный газ предпочтительно охлаждают перед его поступлением в газоочистную установку 26. Соответствующие теплообменники 17a-d служат для снижения температуры соответствующих отводимых потоков 32, 32a-b неочищенного газа, канализируемых через отводные каналы 16a-d, прежде чем неочищенный газ проходит через каналы 20a, 24a, 24 в газоочистную установку 26. Остальные три отводных канала 16 первой подсерии 30a могут также, необязательно, быть оборудованы теплообменниками 17', которые проиллюстрированы на фиг. 2 штриховыми линиями на тех соответствующих отводных каналах 16 подсерии 30a, которые находятся наиболее далеко от положения P, в котором первый сборный канал 20a присоединяется к первому всасывающему каналу 24a. Как правило, по меньшей мере 10% всех отводных каналов 16, 16a-d снабжены теплопередающим и создающим гидравлическое сопротивление элементом 17. Возможно снабдить все отводные каналы 16, 16a-d теплопередающим и создающим гидравлическое сопротивление элементом 17. Часто примерно 10-90%, более типично 20-60%, всех отводных каналов 16, 16a-d снабжены теплопередающим и создающим гидравлическое сопротивление элементом 17.

Кроме охлаждения неочищенного газа, теплообменники 17a-d используют для уравновешивания объема потока неочищенного газа в системе 15 сбора неочищенного газа. Система 15 сбора неочищенного газа работает при пониженном давлении (разрежении), которое создается вентилятором 22 (фиг. 1) на газоочистной установке 26. Таким образом, система 15 сбора неочищенного газа активно втягивает неочищенный газ из электролизеров 4 через отводные каналы 16, 16a-d, первый сборный канал 20a, первый всасывающий канал 24a и общий всасывающий канал 24 в газоочистную установку 26. Согласно хорошо известным гидравлическим принципам на неочищенный газ, происходящий из электролизера 4 на относительно большом расстоянии от газоочистной установки 26, будет действовать более высокий перепад давления, чем на неочищенный газ, происходящий из электролизера 4 на относительно меньшем расстоянии от газоочистной установки 26. Таким образом, если бы никакие создающие гидравлическое сопротивление элементы не были использованы в системе 15 сбора неочищенного газа, вентилятор 22 втягивал бы больше неочищенного газа из более близко расположенных электролизеров 4, чем из более удаленно расположенных электролизеров 4, что приводило бы к неравномерной вентиляции электролизеров 4.

Каждый из теплообменников 17', 17a-d используют для создания гидравлического сопротивления в соответствующем отводимом потоке 32, 32a-b неочищенного газа. Возможно иметь несколько различных разновидностей теплообменников 17', 17a-d, так чтобы гидравлическое сопротивление в каждом конкретном отводном канале 16, 16a-d уменьшалось с увеличением расстояния от выпуска соответствующего отводного канала 36, 36a-b до положения P, в котором первый сборный канал 20a присоединяется к первому всасывающему каналу 24a. Расстояние от выпуска соответствующего отводного канала 36, 36a-b до положения P называется здесь термином «расстояние течения», т.е. расстоянием, измеряемым от входа неочищенного газа в первый общий сборный канал 20a на выпуске отводного канала 36, 36a-b до положения P.

В качестве примера, для первого отводимого потока 32a неочищенного газа, составляющего 10000 нормальных кубических метров в час (Нм3/ч), может оказаться предпочтительным иметь гидравлическое сопротивление в примерно 700 Па на первом теплообменнике 17a, установленном в первом отводном канале 16a, который представляет собой отводной канал 16, расположенный наиболее близко к положению P. Гидравлическое сопротивление на втором теплообменнике 17b, установленном во втором отводном канале 16b, расположенном несколько выше по потоку неочищенного газа вдоль общего сборного канала 20a, чем первый отводной канал 16a, ниже, чем гидравлическое сопротивление на первом теплообменнике 17a, в результате чего первое суммарное гидравлическое сопротивление может быть на примерно 1,0-20% выше, чем второе суммарное гидравлическое сопротивление. При такой разности гидравлического сопротивления на теплообменниках 17a и 17b более высокое гидравлическое сопротивление на первом теплообменнике 17a компенсирует более протяженное расстояние течения для второго отводного канала 16b. Соответственно, из отводных каналов 16a и 16b втягиваются практически равные по объему потоки неочищенного газа 32a и 32b. Аналогичным образом, гидравлическое сопротивление на теплообменниках 17c и 17d предпочтительно было бы в каждом случае соответственно все меньшим, чтобы компенсировать еще более протяженные расстояния течения, относящиеся к отводным каналам 16c и 16d. Таким образом, относительно длинное расстояние течения компенсируется наличием меньшего перепада давления на соответствующем теплообменнике 17', 17a-d.

Для тех отводных каналов 16, которые имеют более протяженные расстояния течения, может оказаться предпочтительным иметь очень низкие гидравлические сопротивления, чтобы компенсировать их. Таким образом, отводные каналы 16 с наибольшими расстояниями течения от точки P могут быть совсем не оборудованы теплообменниками, или же могут быть оборудованы необязательными теплообменниками 17' с относительно низким перепадом давления на них, как проиллюстрировано штриховыми линиями на фиг. 2.

Как описано, гидравлическое сопротивлен