Способ и устройство для измерения переменного напряжения
Иллюстрации
Показать всеИзобретение относится к измерительной технике и предназначено для измерения переменного напряжения в линиях электропередач. Сущность: измерительное устройство с гальванической развязкой для измерения переменного напряжения содержит измерительную схему (35), имеющую микроконтроллер, схему питания (33), которая может осуществлять питание измерительной схемы (35), трансформатор (T), имеющий первичную обмотку, питаемую при помощи сетевого синусоидального напряжения (U1) и соединенную с линией электропередачи, и вторичную обмотку. Вторичная обмотка соединена с измерительной схемой (35) и со схемой пиатния (33). Схема питания (33) и измерительная схема (35) содержат соответственно первый и второй двухполупериодные выпрямительные элементы (BRG, BRG′), отличающиеся друг от друга. Второй выпрямительный элемент (BRG′) сконфигурирован так, чтобы не создавать влияний нагрузки на вторичную обмотку трансформатора (T). Выпрямительный элемент (BRG′) нагружен на полное сопротивление (R′) с высоким значением. 4 н. и 16 з.п. ф-лы, 21 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к устройству и соответствующему способу для измерения переменного напряжения в линиях электропередачи сети электропитания.
ПРЕДПОСЫЛКА СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Известны устройства для измерения напряжения в линиях электропередачи сети электропитания с переменным напряжением. В некоторых случаях применения в таких устройствах применяются измерительные трансформаторы для преобразования переменного сетевого напряжение в более низкое переменное напряжение для гарантирования гальванической развязки самого измерительного прибора от сети электропитания и получения напряжения, используемого обычными измерительными схемами.
Применение трансформатора для получения гальванической развязки предотвращает опасные ситуации, которые могут происходить в том случае, когда прибор подсоединен к внешним устройствам, например зондам различных типов.
Однако одним из недостатков этого способа является то, что измерительные трансформаторы являются очень дорогими и громоздкими.
Одним из решений для устранения этих недостатков, по меньшей мере частично, является изготовление прибора для измерения напряжения, который измеряет свое собственное переменное сетевое напряжение с применением трансформатора, уже имеющегося на самом измерительном приборе, с функцией питания. При применении своего собственного уже существующего трансформатора, подсоединенного к линии, предотвращаются риски, относящиеся к соединению приборов с внешними устройствами, в частности, если измерительный прибор также выполняет дополнительные функции, например функции управления, и требует других различных соединений. К тому же происходит снижение издержек, относящихся к измерительному трансформатору, который уже больше не надо применять внутри устройства, что позволяет сделать устройство компактным и легким.
В частности, вторичная обмотка уже существующего трансформатора может быть применена одновременно для измерения напряжения и питания схем измерения и управления.
Один недостаток применения уже существующего трансформатора и измерения напрямую напряжения постоянного тока, генерированного на стадии питания, заключается в том, что измерение получаемого напряжения не является надежным, так как оно зависит строго нелинейным образом от электрического параметра самой измерительной схемы. В частности, измерение напряжения нелинейно зависит от поглощающей способности самого прибора, которая в случае, если он выполняет дополнительные функции, может быть крайне непостоянной, например, в зависимости от количества и типа реле, активизируемых в том случае, если прибор осуществляет управления внешними нагрузками. К тому же измерение может зависеть от других факторов окружающей среды, таких как температура и/или влажность или других факторов.
В патенте США US-A-5,546,331 описывается схема для измерения переменного источника, которая предназначена для применения коэффициентов для корректирования расчета напряжения. Этот способ измерения является слишком неточным для целей настоящего изобретения и при этом не принимается в расчет нелинейность, вводимая некоторыми переменными факторами окружающей среды, такими как, например, рабочая температура; этот способ требует также много времени на калибровку для оценки надежных коэффициентов, так как они зависят от фактических параметров компонентов схемы.
В патенте Германии DE 4413028 A1 (DE′028) описывается устройство для измерения тока, поглощаемого нагрузкой, при помощи измерительного трансформатора тока, обладающего двойной функцией измерения тока и питания измерительного прибора. В патенте DE′028 описано применение двух различных выпрямителей: двухполупериодного выпрямителя для генерирования напряжения питания и однополупериодного выпрямителя с измерительной функцией. Использование только показаний, полученных в патенте DE′028, не освобождает полностью сигнал измерения и его оценку от влияний нагрузки, так как в данном случае не имеется показаний конкретной обработки сигнала измерения, которая, будучи осуществляемой в те периоды, когда выпрямитель связан со стадией питания, отражает сильную зависимость от влияний нагрузки. Эта зависимость от влияний нагрузки не позволяет получить точные измерения, сравнимые с теми случаями практического применения, к которым относится настоящее изобретение.
В патенте Германии DE 102009050806 A1 (DE′806) описывается, как и в патенте DE′028, устройство, которое может измерять ток, поглощаемый нагрузкой, при помощи измерительного трансформатора тока, обладающего двойной функцией измерения тока и питания измерительного прибора. В этом документе комплексно описывается принятие выбора для выделения положительных полупериодов сигнала на вторичной обмотке трансформатора тока с целью генерирования напряжения питания и выделения отрицательных полупериодов, с которыми связана измерительная функция. В патенте DE′806 не рассматриваются подробно причины, которые приводят к этому выбору, и не описываются влияния нагрузки на измерительный трансформатор и не проиллюстрированы режимы для обработки сигнала, соответствующего отрицательному полупериоду. Нет никакого упоминания, касающегося возможных влияний магнитного гистерезиса, связанного с сердечником трансформатора. Применение проиллюстрированного в патенте DE′806 способа измерения тока, даже если его применить к измерению напряжения, никоим образом не позволяет осуществить точные измерения, которые требуются в тех случаях практического применения, к которым относится настоящее изобретение, так как в этом патенте DE′806 не рассматривается проблема ухудшения качества точного измерения вследствие явлений магнитного гистерезиса в сердечнике трансформатора.
Необходимо подчеркнуть в данном случае, что оба упомянутых документа, относящихся к известному уровню техники, относятся к устройствам, способным осуществлять измерение токов, а не напряжений. Применение одного трансформатора с функциями измерения и питания приводит к возникновению существенно различных влияний нагрузки между измерением напряжения и измерением тока: для того, чтобы достичь очень точных измерений, поскольку указанные влияния нагрузки должны быть приняты во внимание вместе с неидеальными явлениями трансформатора, такими как полное сопротивление обмоток и явления гистерезиса в сердечнике трансформатора, эти влияния не позволяют непосредственно распространить применение способов измерения тока на способы двойного назначения, применяемые для измерения напряжения.
Следует также подчеркнуть, что в двух вышеупомянутых документах, относящихся к известному уровню техники, описывается применение трансформатора тока, который сам по себе обладает высокой линейностью и пренебрежимо малыми явлениями гистерезиса, так как он является измерительным трансформатором. Поэтому в них описывается применение измерительного трансформатора не только для присущей ему функции измерения тока, но и для функции питания. Случаи практического применения, к которым относится настоящее изобретение, являются противоположными и намного более сложными.
Фактически, область техники, к которой относится настоящее изобретение, касается применения уже существующего питающего трансформатора напряжения с незначительными характеристиками линейности и со значительными явлениями магнитного гистерезиса не только для присущей ему функции питания, но и для осуществления функции измерения напряжения с чрезвычайно высокой точностью.
Таким образом, целью настоящего изобретение является получение устройства для измерения напряжений, которое является изолированным, экономичным и простым в изготовлении и которое может осуществлять чрезвычайно надежное измерение напряжения без необходимости применения специально предназначенного для этого измерительного трансформатора, но с применением обычного питающего трансформатора напряжения, который также обладает способностью осуществлять питание самого измерительного устройства.
Заявитель настоящего изобретения разработал, опробовал и осуществил настоящее изобретение для устранения недостатков известного уровня техники и для достижения этих и других целей и преимуществ.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение описано и охарактеризовано в независимых пунктах формулы изобретения, тогда как в зависимых пунктах формулы изобретения описываются другие характерные признаки изобретения или варианты основной идеи изобретения.
Согласно вышеупомянутым целям измерительное устройство согласно настоящему изобретению применимо для измерения синусоидального переменного напряжения в линии электропередачи сети электропитания с гарантированием гальванической развязки ее работающих схем по отношению к последней.
Измерительное устройство согласно настоящему изобретению содержит измерительную схему, схему питания, которая осуществляет питание измерительной схемы, а также трансформатор внутри или снаружи коробки измерительного устройства с функцией питания. Питающий трансформатор также имеет свою вторичную обмотку, соединенную с измерительной схемой и схемой питания.
Согласно первому варианту осуществления настоящего изобретения схема питания содержит первый элемент, применимый для преобразования переменного напряжения вторичной обмотки в выпрямленное напряжение полного колебания, а измерительная схема содержит второй элемент, также применимый для преобразования переменного напряжения вторичной обмотки в выпрямленное напряжение полного колебания. Активная нагрузка с высоким полным сопротивлением соединена со вторым элементом.
Согласно одному варианту осуществления настоящего изобретения первый и второй элементы являются диодными мостами.
Измерительная схема содержит также микроконтроллер, применимый для измерения переменного напряжения, имеющегося на вторичной обмотке трансформатора. Микроконтроллер сконфигурирован для экстраполирования выпрямленного синусоидального сигнала, выборки полного сигнала, полученного от второго диодного выпрямительного моста.
Подвергнутый выборке сигнал оценивают в интервалах времени в течение моментов, когда измеряемое напряжение сводится к нулю, и в которых, для целей измерения, искажение, благодаря нагрузке схемы питания, пренебрежимо мало, так как элемент схемы питания находится в непроводящем состоянии в указанные интервалы времени.
Таким образом, согласно первому варианту осуществления настоящего изобретения два элемента применяют для того, чтобы сигнал напряжения измерительной схемы стал практически независимым, по меньшей мере для определенных интервалов времени, от сигнала напряжения схемы питания, так чтобы напряжение, имеющееся в измерительной схеме в указанном интервале времени, было пропорционально переменному напряжению линии электропередачи сети электропитания.
Обычно интервалы непроводимости первого выпрямителя, по существу, относящиеся к его работе в сочетании со сглаживающим конденсатором, имеют временное продление, зависящее нелинейным образом от поглощения нагрузки схемы питания, и включают момент времени, когда напряжение, подвергнутое выборке при помощи микроконтроллера, стремится к нулю.
Интервалы непроводимости первого выпрямителя, не зависящие от нагрузки схемы питания, определяются и фиксируются в соответствии с оценкой пересечения между интервалами непроводимости первого выпрямителя, которые обычно зависят от нагрузки, по мере того как происходит изменение значений, приобретенных благодаря нагрузке.
Пересечение не является пустым и имеет ненулевое продление, так как каждый из интервалов непроводимости, зависящий от нагрузки, которые должны быть пересечены, имеет ненулевое продление и так как каждый из интервалов непроводимости, зависящий от нагрузки, содержит момент, когда напряжение, подвергнутое выборке, стремится к нулю.
Интервалы непроводимости, независимые от нагрузки, согласно настоящему изобретению могут быть подвергнуты параметризации в энергонезависимой памяти микроконтроллера и отнесены к прохождению через нуль напряжения, подвергнутого выборке.
Так как все временное изменение напряжения, подвергнутого выборке, распознается микроконтроллером, то микроконтроллер также распознает нулевые моменты напряжения, следовательно, микроконтроллер распознает, какие временные срезы обнаруженного сигнала, подвергнутого выборке, соответствуют с определенностью интервалам непроводимости первого выпрямителя.
Так как срез сигнала, подвергнутого выборке, пропорционален переменному напряжению линии электропередачи сети электропитания, подвергаемому измерению, и так как пропорциональность известна согласно коэффициенту трансформации, а указанный коэффициент, в свою очередь, известен с точностью, которая достигнута в результате простой калибровки измерительного устройства, становится возможным измерение значения напряжения в линии электропередачи с большой точностью.
Измерение осуществляется путем интерполяции только части сигнала, подвергнутого выборке, соответственно интервалам, когда первый выпрямитель определенно не находится в проводящем состоянии, независимо от нагрузки, при помощи синусоидальной интерполирующей функции.
Совместное применение второго выпрямителя позволяет получить в соответствующие интервалы времени сигнал измерения, полностью пропорциональный напряжению сети, независимо от поглощения нагрузки схемы питания, вместе с синусоидальной интерполяцией сигнала, подвергнутого выборке, в интервалы времени, соответствующие непроводящему состоянию первого выпрямителя, что позволяет достичь гораздо большей точности в измерении, чем это может быть достигнуто при использовании известных технических решений.
К тому же то, что интервалы времени при интерполяции независимы от поглощения нагрузки, делает описанное техническое решение простым для внедрения и экономичным.
В основном, в отличие от измерительных трансформаторов питающие трансформаторы обладают значительными явлениями магнитного гистерезиса: как известно, память сердечника трансформатора может быть связана с ними и с последовательной зависимостью напряжения на вторичной обмотке в заданный момент времени не только от напряжения на первичной обмотке в тот же самый момент, но и также от изменения магнитного поля в сердечнике трансформатора, произошедшего за время, предшествующее данному моменту.
В другом варианте осуществления настоящего изобретения схема питания содержит средство, сконфигурированное для выделения и отделения нечетных полуциклов напряжения на вторичной обмотке трансформатора, чтобы осуществить генерирование напряжения питания, а измерительная схема содержит средство, сконфигурированное для выделения и отделения четных полуциклов напряжения на вторичной обмотке трансформатора для измерения напряжения в пиковые моменты четных полуциклов.
Данное техническое решение позволяет добиться еще больше точности измерения, если явления магнитного гистерезиса, относящиеся к сердечнику питающего трансформатора, не является пренебрежимо малым.
В действительности, влияния гистерезиса почти полностью исчезают при достижении пикового значения, когда трансформатор не нагружен; учет пиковых моментов для измерения напряжения делает также этот вариант осуществления настоящего изобретения простым для внедрения и экономичным, так как значение напряжения измерительной схемы, достигаемое во время пиковых моментов четных полуциклов, легко выявить.
Термины "четный" и "нечетный", относящиеся к полуциклам переменного напряжения, применяются в данном описании и формуле изобретения только для того, чтобы отличить полуциклы переменного напряжения друг от друга и идентифицировать их различное применение: одни - для питания и другие - для измерения.
В одном варианте осуществления настоящего изобретения средства, сконфигурированные для выделения и отделения нечетных полуциклов, содержат по меньшей мере первый диод и второй диод, согласованные в направлении протекания тока и соединенные соответственно с клеммами схемы питания.
Средства, сконфигурированные для выделения и отделения четных полуциклов, содержат по меньшей мере полупроводниковое устройство, выбранное из третьего диода или первого усилителя тока, такого как транзисторный усилитель, который электрически соединен с катодом второго диода. Соединение со вторым диодом является соединением прямого типа, когда выбран третий диод, и осуществляется с анодом третьего диода или при помощи резистора, если выбран усилитель тока. Кроме того, в одном варианте осуществления настоящего изобретения средства, предназначенные для выделения четных полуциклов, содержат по меньшей мере четвертый диод, катод которого соединен с анодом первого диода и анод которого соединен с анодом второго диода. Это последнее соединение, общее для схемы питания и также для измерительной схемы, может рассматриваться как опорный узел потенциала заземления, по отношению к которому осуществляются измерения напряжения.
Согласно вариантам осуществления настоящего изобретения диоды могут быть заменены на электронные компоненты, подходящие для осуществления функций диодов, например транзисторы в диодной конфигурации или другие полупроводниковые компоненты.
Благодаря вышеописанной схемной конфигурации пиковое значение измеряемого полуволнового напряжения является положительным и почти независимо от явлений гистерезиса, связанных с трансформатором. Пиковое измерение полуволнового напряжения в измерительной схеме пропорционально переменному напряжению, подвергаемому измерению, и осуществляется с применением одного или более конденсаторов в качестве элемента/ов памяти. Для гарантирования значений напряжения, совместимых с микроконтроллером, который осуществляет контроль измерения, необходимо также осуществлять ослабление сигнала измерения.
В одном варианте осуществления настоящего изобретения для предотвращения изменения резистивным аттенюатором, путем нагрузки вторичной обмотки, пикового значения напряжения, подвергаемого измерению и запоминаемого при помощи соответствующего конденсатора в измерительной схеме, вместо одного конденсатора схема содержит емкостный делитель, состоящий из первого конденсатора, последовательно соединенного со вторым конденсатором. Делитель ослабляет сигнал и также осуществляет функцию сохранения пикового значения измеряемого напряжения.
В предпочтительном варианте осуществления настоящего изобретения микроконтроллер, применяемый для осуществления измерений напряжения, соединен с общим узлом между первым конденсатором и вторым конденсатором.
В предпочтительном варианте осуществления настоящего изобретения осуществляется разряд двух конденсаторов во время нечетных полуциклов напряжения, то есть после измерения пикового напряжения. Процесс разряда происходит посредством разрядного резистора и первого управляемого переключателя, замыкание которого преимущественно управляется при помощи катода пятого диода, который имеет свой анод, подсоединенный к катоду четвертого диода. Согласно вариантам осуществления настоящего изобретения функция выпрямления пятого диода может считаться избыточной, так как во время четных полуциклов полуциклов непроводимости пятого диода четвертый диод в любом случае является проводящим и, следовательно, потенциал катода четвертого диода является отрицательным и незначительным по отношению к земле и таким образом не приводит ни к какому приведению в действие и/или отказу первого переключателя, что делает применение пятого диода ненужным, и регулятор замыкания первого переключателя соединен, либо напрямую, либо при помощи резистора, с катодом четвертого диода.
Согласно варианту осуществления настоящего изобретения разрядные средства приводятся в действие при помощи микроконтроллера, который позволяет осуществлять разряд первого и второго конденсаторов после измерения напряжения.
Согласно другому варианту осуществления изобретения, если микроконтроллер обеспечивает считывание измерения пикового напряжения с задержкой, то становится возможным сохранить на зажимах конденсаторов запомненный уровень пикового напряжения, временно препятствуя замыканию первого переключателя, который обычно активизируется автоматически во время нечетных полуциклов.
Согласно вариантам осуществления настоящего изобретения во избежание возможного различного температурного дрейфа двух конденсаторов емкостного делителя применяют резистивный делитель, изготовленный с применением резисторов, имеющих высокие омические значения для того, чтобы не создавать соответствующую нагрузку. Резистивный делитель соединен с первым транзистором/усилителем тока, сконфигурированным для заряда конденсатора с функцией запоминания. Первый транзистор, также функционирующий как выпрямитель, может заменить третий диод. Для дальнейшего улучшения температурной стабильности транзистора можно компенсировать изменение напряжения на его эмиттерном переходе с применением второго транзистора, преимущественно с тепловым соединением с первым транзистором, соединенным в "диодной" конфигурации и последовательно соединенным с резистором делителя, соединенного с землей.
Согласно вариантам осуществления настоящего изобретения первый транзистор и второй транзистор могут быть заменены полупроводниковыми электронными компонентами, которые осуществляют те же самые функции.
В результате, при наличии того же самого трансформатора питание, получаемое при помощи однополупериодного выпрямителя, состоит из напряжения, которое в среднем ниже, чем в том случае, когда применяется двухполупериодный выпрямитель (даже если происходит увеличение параметра сглаживающего конденсатора), так как для гарантирования того же самого среднего значения среднего тока для нагрузки, как и в случае двухполупериодного выпрямителя (и следовательно, того же самого напряжения на нагрузке), трансформатор должен осуществить распределение более высокого среднеквадратичного тока, и тем самым потребуется более мощный и больший трансформатор.
Согласно варианту на основании вышеупомянутого и во избежание применения более мощного трансформатора в том случае, когда для изолированного измерительного устройства требуется применение большой мгновенной мощности и/или высокого напряжения питания, является возможным временное изменение в топологии схемы, так чтобы работа схемы питания осуществлялась в двухполупериодном режиме как в нечетных, так и в четных полуциклах напряжения. Таким образом, путем изменения топологии становится возможным модифицирование схемы питания с возвратом к схеме с двухполупериодным выпрямителем.
Устройство измерения напряжения с гальванической развязкой согласно настоящему изобретению, как описано выше, обеспечивает точное измерение напряжения в линии электропередачи электрической сети с применением при этом небольшого количества дополнительных смонтированных на поверхности компонентов без увеличения размеров самой схемы, а также с очень ограниченными дополнительными затратами даже в том случае, если уже существующий питающий трансформатор обладает значительными явлениями магнитного гистерезиса.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Вышеописанные и другие отличительные признаки настоящего изобретения будут ясны из нижеследующего описания предпочтительного варианта осуществления настоящего изобретения, приведенного в качестве примера, которым изобретение не ограничивается, со ссылкой на приложенные чертежи, на которых изображено:
на Фиг.1 - принципиальная схема соединений стандартной двухполупериодной схемы питания, которая представляет собой известное устройство измерения напряжения;
на Фиг.2 - график напряжения на вторичной обмотке трансформатора, представленного на Фиг.1;
на Фиг.3 - график напряжения на выводах нагрузки, представленной на Фиг.1;
на Фиг.4 - принципиальная схема соединений устройства для питания и измерения напряжения согласно первому варианту осуществления настоящего изобретения;
на Фиг.5 - график электрического параметра схемы, представленной на Фиг.4;
на Фиг.6 - график электрического параметра схемы, представленной на Фиг.4;
на Фиг.7 - график электрического параметра схемы, представленной на Фиг.4;
на Фиг.8 - схема однополупериодного выпрямителя для питания измерительного устройства;
на Фиг.9 - график напряжения на вторичной обмотке трансформатора, представленного на Фиг.8;
на Фиг.10 - вариант схемы однополупериодного выпрямителя, представленной на Фиг.8;
на Фиг.11 - схема однополупериодного выпрямителя для измерения напряжения;
на Фиг.12 - схема для питания и измерения напряжения, полученного при помощи объединения схем, представленных на Фиг.10 и Фиг.11, и концептуально представляющая собой второй вариант осуществления настоящего изобретения без приспособлений для обнаружений пиковых значений;
на Фиг.13 - график напряжения на нагрузке схемы, представленной на Фиг.12;
на Фиг.14 - график измеряемого напряжения схемы, представленной на Фиг.12;
на Фиг.15 - вариант схемы для питания и измерения напряжения, представленной на Фиг.12;
на Фиг.16 - другой вариант схемы для питания и измерения напряжения, представленной на Фиг.12;
на Фиг.17 - график электрического параметра схем, представленных на Фиг.15 и 16;
на Фиг.18 - график электрического параметра схем, представленных на Фиг.15 и 16;
на Фиг.19 - другой вариант схемы для питания и измерения напряжения, представленной на Фиг.15;
на Фиг.20 - вариант схемы для питания и измерения напряжения, представленной на Фиг.19;
на Фиг.21 - другой вариант схемы для питания и измерения напряжения согласно настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
На Фиг.1 показана принципиальная схема соединений обычно применяемого двухполупериодного устройства питания, которое не применимо для точных измерений напряжения и которое содержит трансформатор T, приспособленный для трансформации переменного напряжения E1, подаваемого на его первичную обмотку, в переменное напряжение E2 на вторичной обмотке. Первичная обмотка трансформатора T подсоединена к электрической сети с переменным напряжением, что предусмотрено для измерения напряжения сети.
Устройство содержит также диодный выпрямительный мост BRG, применяемый для преобразования напряжения E2 в напряжение питания E3, представленное в виде сплошной линии на графике на Фиг.3.
Выход диодного выпрямительного моста BRG соединен с конденсатором C, который, в свою очередь, параллельно соединен с резистором R. Последний представляет собой активную нагрузку, соответствующую полной и регулируемой поглощательной способности прибора. Конденсатор C, параллельно соединенный с нагрузкой, служит для сглаживания, по меньшей мере частично, напряжения E3 (жирные линии на Фиг.3).
Напряжение E2 необязательно должно быть идеально синусоидальным из-за влияний нагрузки на вторичную обмотку трансформатора T благодаря наличию резистора R и конденсатора C, а также тому факту, что трансформатор T сам по себе не является идеальным устройством.
В общем и в тех случаях, если не указано иное, на всех чертежах, представляющих сигналы, они относятся к различным ситуациям с нагрузкой и тому же самому значению сетевого напряжения. В том случае, если появляется одиночная кривая, то это означает, что сигнал является не зависимым от нагрузки, в случае других значений напряжения на первичной обмотке требуют других новых чертежей, не показанных, в масштабе напряжение-ось; что касается кривых, то кривые в виде пунктирных линий относятся к состоянию отсутствия нагрузки, а кривые, представленные в виде жирных линий, относятся к соответствующему сигналу, а кривые в виде тонких линий относятся к более элементарным сигналам, от которых получают соответствующие сигналы.
В случае известного устройства питания, показанного на Фиг.1, сигнал напряжения на выводах вторичной обмотки описан при помощи графика, представленного на Фиг.2.
Что касается напряжения E2 на вторичной обмотке, показанной на Фиг.2, то s1 и s4 являются моментами в зависимости от значения переменной нагрузки R, когда диодный выпрямительный мост BRG становится проводящим (напряжение на вторичной обмотке трансформатора большее, чем напряжение на зажимах конденсатора С, показанного на Фиг.1, a s2, s5 являются моментами в том случае, когда диодный выпрямительный мост BRG становится непроводящим. В течение интервалов времени [s0, s1] и [s2, s4] трансформатор T практически находится в холостом режиме. В течение интервалов времени [s1, s2] и [s4, s5] трансформатор Т имеет нагрузку R, которая представляет питаемые устройства.
В течение временных интервалов, когда трансформатор T находится в холостом режиме, напряжение E2 на выводах вторичной обмотки трансформатора T придерживается масштабированного варианта (в качестве функции коэффициента витков трансформатора T) синусоидального напряжения E1, но в течение интервалов, когда диодный выпрямительный мост BRG находится в состоянии проводимости, форма напряжения E2 искажена, то есть она отличается от формы, когда отсутствует нагрузка (показано пунктирной линией на Фиг.2). Искажение напряжения Е2 по отношению к сигналу напряжения E1 главным образом зависит от расхода нагрузки (изменяемой с течением времени и в зависимости от условий окружающей среды), а также от полного сопротивления вторичной обмотки трансформатора T, которое также является функцией условий окружающей среды и вследствие этого является трудно определимым.
Описанное явление приводит к различным средним значениям сглаженного напряжения E3 (горизонтальные линии на Фиг.3) по мере изменения режимов нагрузки и температурных условий (жирные линии на Фиг.3 представляют при различных режимах окружающей среды и нагрузки напряжение E3 на зажимах конденсатора C, среднее значение которого обозначено горизонтальными линиями). При условии, что критические моменты s1, s2 и s4, s5 зависят в большой степени нелинейным образом от электрических параметров схемы, так же как средние напряжения постоянного тока (Фиг.3). Таким образом, напряжение E3 может рассматриваться как непропорциональное напряжение E1, и тем самым стандартная двухполупериодная схема питания не может быть применена для точного измерения напряжения сети.
В первом техническом решении, предложенном согласно настоящему изобретению, для устранение влияния нагрузки и соответствующих зависимостей от окружающей среды для целей измерения принимается в расчет вторичная обмотка трансформатора T только в интервалах, соответствующих непроводящему состоянию диодного выпрямительного моста BRG, при гипотезе, заключающейся в том, что указанное непроводящее состояние применимо для всех ситуаций, связанных с допустимой нагрузкой, что равнозначно отсутствию нагрузки.
Непроводящее состояние диодного выпрямительного моста BRG, действительное для допустимых режимов нагрузки, определяется пересечением интервалов времени непроводимости диодного выпрямительного моста BRG, связанных с различными режимами нагрузки, то есть определением самого широкого подиынтервала непроводимости, общего для всех режимов нагрузки. Этот подход, принятый в принципиальной схеме соединений для схемы, показанной на Фиг.4, требует дублирования при помощи второго диодного выпрямительного моста BRG′, диодного выпрямительного моста BRG для получения напряжения U4, на которое не оказывает влияния фильтрационное действие конденсатора С (выпрямительные напряжения на вторичной обмотке в вариантах, на которые оказывает или не оказывает влияние конденсатор C, показаны на Фиг.6 и 7 соответственно).
Так как диодный выпрямительный мост BRG′ не является емкостно нагруженным, он всегда находится в проводящем состоянии. R′ обозначает эквивалентное сопротивление измерительных схем, расположенных после диодного выпрямительного моста BRG′, и должно иметь высокое значение сопротивления, так чтобы BRG′ и расположенные после него схемы не оказывали значительных нагрузочных влияний на вторичную обмотку трансформатора T.
Расчетное значение масштабированного варианта выпрямленного линейного напряжения U1 обозначено жирной пунктирной линией на Фиг.7. Сплошные линии на Фиг.7 обозначают значение U4, на которое оказывает влияние погрешность в течение интервалов проводимости моста BRG и которые не совпадают с масштабированным вариантом U1 при всех режимах нагрузки.
Принципиальная схема соединений, показанная на Фиг.4, представляет собой схему измерительного устройства 30, которая содержит две различные схемы с различными функциями: схема питания 33 и измерительная схема 35, питаемая схемой питания 33.
Микроконтроллер (не показан), который является частью измерительной схемы 35, осуществляет экстраполяцию оценки сетевого напряжения и ослабленного варианта сигнала U4 только в интервалы времени, когда он точно придерживается масштабированного варианта выбранного сетевого напряжения, то есть во время интервалов непроводимости основного моста BRG, общих для всех режимов нагрузки, интервалов, заранее определенных путем пересечения, как показано выше, согласно элементам схемы и набору допустимых значений. Обработка сигнала, обеспечиваемая микроконтроллером, может быть значительно сложной, и это может представлять собой первый недостаток первого подхода.
Возрастанию погрешности измерения в большой степени способствуют явления гистерезиса ферромагнитного сердечника трансформатора T, который обладает характеристикой "памяти", что приводит к искажению напряжения на вторичной обмотке также в интервалах непроводимости [w0, w1] и т.п. (разбросы кривых в интервалах [w0, w1] и [w3, w4] на Фиг.5). Эффект памяти ферромагнитного сердечника трансформатора T, благодаря токам на обмотках в предыдущие интервалы проводимости, представляет собой явление, зависящее от нагрузки/окружающей среды, что приводит к погрешности при оценке напряжения, и тем самым этот подход может не быть достаточно точным в том случае, если явления гистерезиса, связанные с трансформатором, не являются пренебрежимо малыми.
В однополупериодном выпрямителе (Фиг.8) диод D1 (и, следовательно, также вторичная обмотка трансформатора Т) проводит ток в течение части только одного из двух полупериодов, а в течение другого полупериода не проводит ток. Непроводящее состояние, составляющее четверть периода, снижает эффект памяти сердечника трансформатора T, что приводит к тому, что пиковое значение измерения четного полупериода (того полупериода, когда диод D1 находится полностью в непроводящем состоянии, в течение которого влияние нагрузки на трансформатор является пренебрежимо малым) почти независимо от присоединенной нагрузки: учитывая только однополупериодный выпрямитель, показанный на Фиг.8, который обладает функцией питания, можно отметить, что пиковое значение V2 отрицательного напряжения на вторичной обмотке (достигаемое в момент t5 на Фиг.9) является стабильным и независимым от нагрузки, условий окружающей среды и явлений гистерезиса на трансформаторе (V2 показано жирной линией, а масштабированный вариант V1 показан пунктирной линией, разброс кривых в интервале [t3, t5] обозначает влияния, относящиеся к явлениям гистерезиса в сердечнике трансформатора, в конечном счете, остаточным в течение начальной части четного полупериода полной непроводимости для диода D1).
В варианте, показанном на Фиг.10, применен второй диод D2, без изменений к функциональным свойствам выпрямителя (так как D1 и D2 соединены последовательно).
Таким же образом, как показано на Фиг.11, имеется схема второго выпрямителя, который может работать с другим полупериодом напряжения. Этот дополнительный выпрямитель не имеет, на данный момент, емкостную нагрузку (в дальнейшем будет описан случай,