Устройство беспроводной базовой станции, использующее систему совместной передачи harq, устройство беспроводного терминала, система беспроводной связи и способ беспроводной связи
Иллюстрации
Показать всеИзобретение относится к технологии системы совместной передачи с распределенной антенной. Технический результат - эффективность процесса HARQ в системе совместной передачи. Для этого в устройстве передачи на стороне обслуживающего eNB модуль передачи первого пакета выполняет операцию пакетной передачи данных повторной передачи. С другой стороны, в устройстве передачи на стороне совместного eNB модуль передачи второго пакета выполняет операцию передачи нового пакета данных, соответствующего информации, переданной из обслуживающего eNB посредством модуля передачи пакетов. Информация управления о передаче на UE посредством обслуживающего eNB и совместного eNB передается посредством использования только PUCCH от UE на обслуживающий eNB и PDCCH от обслуживающего eNB на UE. Обслуживающий eNB и совместный eNB выполняют передачу нового пакета данных и информации управления передачей данных и т.д. через интерфейс X2. 4 н. и 2 з.п. ф-лы, 15 ил., 3 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ
[0001] Настоящее изобретение относится к технологии системы совместной передачи, использующей распределенную антенну. Технология пакетной передачи включает в себя, например, технологию связи E-UTRA (усовершенствованного универсального наземного радиодоступа), которая была исследована в качестве стандарта связи мобильного телефона следующего поколения.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
[0002] Ссылаясь на множественный доступ с кодовым разделением каналов с расширенным спектром, широко исследуется технология "мягкой передачи обслуживания" для того, чтобы препятствовать прерыванию передач данных посредством одновременно передаваемых и принимаемых одних и тех же сигналов между двумя базовыми станциями, когда мобильный терминал перемещается от одной ячейки к смежной ячейке. В качестве предшествующей области техники, относящейся к совместной передаче, например, раскрывается система, описанная в патентном документе 1, следующем непатентном документе 1 и т.д. В предшествующем уровне техники раскрывается система совместной передачи для успешного увеличения емкости линии связи.
[0003] На основании аналогичного понятия, система совместной передачи, использующая распределенную антенну, размещенную в отличной базовой станции, представляется относительно технологии с множественными входами и множественными выходами (MIMO), соответствующей макроскопическому замиранию. В качестве предшествующего уровня техники, полученного посредством комбинирования технологии MIMO и технологии совместной передачи, например, предлагаются системы, описанные в следующих непатентных документах 2-6. Эти системы нацелены на достижение как макроскопического эффекта разнесения так и эффекта MIMO.
[0004] Рассмотрения макроскопического разнесения с совместной передачей были сделаны в проекте планирования нового стандарта мобильной телефонной связи, таком как LTE (проекте долгосрочного развития) и т.д., для которого операция стандартизации выполняется посредством 3GPP (проекта партнерства третьего поколения) организации стандартизации, например. Эти рассмотрения раскрываются, например, следующим непатентным документом 7. Однако, так как было трудно распределить данные высокого уровня различным базовым станциям, совместная передача не была реализована, но система распределения данных только одной базовой станции была использована для простой реализации.
[0005] В последнее время усовершенствованный стандарт LTE в качестве стандарта следующего поколения LTE был развит как система четвертого поколения (4G). В этом стандарте, особенно в запросе производительности системы, относящемся к эффективности (использования) частоты для нисходящей линии связи (DL) и восходящей линии связи (UL), ставится достаточно положительная цель. Практическое рассмотрение проблемы, описанной выше, было раскрыто, например, в следующем непатентном документе 8.
[0006] Чтобы достигнуть вышеупомянутой цели, некоторые компании представили выгодные предложения о передаче с формированием диаграммы направленности, управлении помехами внутри ячейки и управлении ретрансляцией. В этих предложениях тема обсуждения, относящаяся к совместной передаче, была поднята снова, чтобы пересмотреть возможность реализации. Конкретно, это раскрывается, например, в следующем непатентном документе 9 или 10. В усовершенствованном LTE цель пропускной способности пользователя на краю ячейки устанавливается как приблизительно в 1,4 раза больше, что и в выпуске 8 стандарта связи LTE. Принимая это во внимание, предполагается, что система совместной передачи будет важным кандидатом в технологии усовершенствованного LTE.
[0007] Прежде, чем принять технологию совместной передачи в стандарте связи следующего поколения, таком как усовершенствованный LTE и т.д., существует ряд аспектов, которые должны быть рассмотрены ниже. Это, например, поиск данных и канала управления, тактирование (распределение времени) передачи, планирование пакетов пользователя, процесс гибридного автоматического запроса на повторную передачу данных (HARQ) и т.д. между узлами eNode-B через интерфейс X2. Самым важным поиском среди них является поиск, относящийся к HARQ.
[0008] В стандарте связи LTE и т.д. требуется, чтобы технология пакетной передачи позволила выполнять высокоскоростные передачи в мобильном терминале. При передаче пакетов устройство приема принимает информацию связи, в то же время обнаруживая ошибку на основании кода с коррекцией ошибок, добавленного к пакету связи устройством передачи. Затем, устройство приема возвращает устройству передачи ACK (подтверждение) или NAK (отрицательное подтверждение) о статусе приема пакета связи. Устройство передачи повторно передает информацию передачи, когда устройство приема возвращает NAK, или когда подтверждение статуса передачи не может быть принято до того, как истечет некоторый период времени после передачи пакета.
[0009] В технологии HARQ, принятой в LTE и т.д., например, шаблон повторной передачи определяется на стороне устройства передачи после рассмотрения, что данные, декодирование которых потерпело неудачу посредством устройства приема, не отвергаются, а декодируются посредством комбинации с данными повторной передачи в процессе иерархического уровня протокола уровня 1 LTE и т.д. На стороне устройства приема данные, прием которых потерпел неудачу, не отвергаются, а декодируются посредством комбинации с данными повторной передачи. Таким образом, управление повторной передачей реализуется с высокой производительностью и высокой точностью.
[0010] Поэтому, в системе пакетной передачи следующего поколения, важно определить, как HARQ должен реализоваться в системе совместной передачи, чтобы реализовать систему совместной передачи с высоким эффектом разнесения.
[0011] Однако, в предшествующем уровне техники, раскрытой как патентный документ 1 или непатентные документы 1-10, не была раскрыта практическая технология для реализации HARQ в совместной передаче.
[0012] В дополнение, система, описанная в следующем патентном документе 2, раскрывается как предшествующий уровень техники, полученный посредством комбинирования HARQ и технологии MIMO. Патентный документ 2 относится к практической системе для реализации HARQ при пакетной передаче, используя множественные антенны передачи MIMO.
[0013] Однако, MIMO основана на том, что множество антенн расположено в одной базовой станции, в то время как совместная передача основана на том, что антенны множества базовых станций, размещенных распределенным способом, выполняют совместную передачу в направлении нисходящей линии связи на мобильный терминал. Чтобы реализовать совместную передачу, включающую в себя HARQ между базовыми станциями, размещенными распределенным способом, необходимо решить проблемы, которые не являются необходимыми в MIMO, для системы связи для данных пользователя и данных канала, распределения времени (тактирования) и т.д. среди базовых станций. Особенно, комбинация нового пакета данных и пакета данных повторной передачи в HARQ с совместной передачей не раскрывается вышеупомянутым предшествующим уровнем техники, что остается нерешенной проблемой.
Патентный документ 1: National Publication of International Patent Application №2008-503974
Патентный документ 2: National Publication of International Patent Application №2008-517484
Непатентный документ 1: A.J. Viterbi, A.M. Viterbi, K.S. Gilhousen, and E. Zehavi, "Soft handoff extends CDMA cell coverage and increases reverse link capacity", IEEE J. Sel. Areas Commun., том 12, стр. 1281-1288, октябрь 1994.
Непатентный документ 2: W. Roh and A. Paulraj, "MIMO channel capacity for the distributed antenna systems", in IEEE VTC′ 02, том 3, стр. 1520-1524, сентябрь 2002.
Непатентный документ 3: Z. Ni and D. Li, "Impact of fading correlation and power allocation on capacity of distributed MIMO", IEEE Emerging technologies: Frontiers of Mobile and Wireless Communication, 2004, том 2, май 31- июнь 2, 2004 стр.: 697-700 том. 2.
Непатентный документ 4: Syed A. Jafar, and S. Shamai, "Degrees of freedom region for the MIMO X Channel", IEEE Transactions on Information Theory, том 54, №1, стр. 151-170, январь 2008.
Непатентный документ 5: D. Wang, X. You, J. Wang, Y. Wang, and X. Hou, "Spectral Efficiency of Distributed MIMO Cellular Systems in a composite Fading Channel", IEEE International conference on, Communications, 2008. ICC ′08, стр. 1259-1264, май 19-23, 2008.
Непатентный документ 6: O. Simeone, O. Somekh, ; H.V. Poor, and S. Shamai, "Distributed MIMO in multi-cell wireless systems via finite-capacity links", Communications, Control and Signal Processing, 2008.ISCCSP 2008. 3rd International Symposium on, стр. 203-206, март 12-14, 2008.
Непатентный документ 7: 3GPP TR 25.814 v7.0.0. Physical layer aspects for evolved UTRA, выпуск 7, июнь 2006.
Непатентный документ 8: 3GPP TR 36.913 V7.0.0., Requirements for Further Advancements for E-UTRA, выпуск 8, V8.0.0, июнь 2008.
Непатентный документ 9: 3GPP TSG RAN WG1 Meeting #53bis Warsaw, Poland, "Collaborative MIMO for LTE-A downlink", июнь 30- июль 4, 2008, R1-082501.
Непатентный документ 10: 3GPP TSG RAN WG1 Meeting #53bis Warsaw, Poland, "Network MIMO Precoding", июнь 30- июль 4, 2008, R1-082497.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0014] Проблема настоящего изобретения заключается в реализации соответствующего и эффективного процесса HARQ в системе совместной передачи.
Аспект, описанный ниже, основан на системе беспроводной связи, в которой первое устройство беспроводной базовой станции и второе устройство беспроводной базовой станции выполняют процесс совместной передачи, чтобы позволить устройству беспроводного терминала не отвергать пакет, в отношении которого декодирование потерпело неудачу, а объединить этот пакет с повторно переданным пакетом и декодировать получившийся в результате пакет в то же время управляя повторной передачей пакета согласно информации статуса передачи, возвращенной от устройства беспроводного терминала, причем это устройство беспроводной базовой станции или устройство беспроводного терминала принадлежат системе беспроводной связи, или на способе беспроводной связи для реализации процесса.
[0015] Первый модуль передачи пакетов передает в качестве первого пакета новый пакет данных или пакет данных повторной передачи, соответствующий запросу повторной передачи, от первого устройства беспроводной базовой станции на устройство беспроводного терминала, когда выдается запрос повторной передачи в процесс совместной передачи посредством устройства беспроводного терминала.
[0016] Модуль передачи пакетов передает информацию о втором пакете, отличном от первого пакета, между новым пакетом данных и пакетом данных повторной передачи от первого устройства беспроводной базовой станции на второе устройство беспроводной базовой станции. Модуль передачи пакетов выполняет процесс передачи, используя, например, интерфейс X2, регулируемый между первым устройством беспроводной базовой станции и вторым устройством беспроводной базовой станции.
[0017] Второй модуль передачи пакетов передает второй пакет согласно информации, переданной от модуля передачи пакетов в синхронизации с процессом передачи первого пакета посредством первого модуля передачи пакетов от второго устройства беспроводной базовой станции на устройство беспроводного терминала, когда выдается запрос повторной передачи.
[0018] С помощью вышеупомянутой конфигурации первое устройство беспроводной базовой станции и второе устройство беспроводной базовой станции имеют модуль буфера повторной передачи, и первое устройство беспроводной базовой станции может быть сконфигурировано для хранения информации о пакете, в отношении которой выполняется процесс совместной передачи для устройства беспроводного терминала, в модуле буфера повторной передачи в первом устройстве беспроводной базовой станции, и второе устройство беспроводной базовой станции может быть сконфигурировано не для хранения информации о пакете, в отношении которой выполняется процесс совместной передачи для устройства беспроводного терминала, в модуле буфера повторной передачи во втором устройстве беспроводной базовой станции.
[0019] С помощью вышеупомянутой конфигурации первый пакет может быть сконфигурирован как пакет данных повторной передачи, и второй пакет может быть сконфигурирован как новый пакет данных. В этом случае модуль передачи пакетов считывает информацию о пакете данных повторной передачи из модуля буфера повторной передачи в первом устройстве беспроводной базовой станции и передает информацию на второе устройство беспроводной базовой станции. Модуль передачи пакетов передает, например, информацию управления связью, относящуюся ко второму устройству беспроводной базовой станции, для передачи данных между первым устройством беспроводной базовой станции и устройством беспроводного терминала и информацию, относящуюся к распределению времени (тактированию) передачи второго пакета посредством второго устройства беспроводной базовой станции.
[0020] С помощью упомянутых конфигураций в соответствии с аспектами, описанными выше, может быть дополнительно включен модуль передачи информации управления для передачи информации управления о связи (передаче) посредством первого устройства беспроводной базовой станции на устройство беспроводного терминала и информации управления о связи (передаче) посредством второго устройства беспроводной базовой станции на устройство беспроводного терминала между первым устройством беспроводной базовой станции и устройством беспроводного терминала. Например, модуль передачи информации управления может выполнять передачу информации управления от первого устройства беспроводной базовой станции на устройство беспроводного терминала через физический канал управления нисходящей линией связи и выполнять передачу информации управления от устройства беспроводного терминала на первое устройство беспроводной базовой станции через физический канал управления восходящей линией связи. Физический канал управления восходящей линией связи в этом случае включает в себя по меньшей мере, например, информацию индикации качества индивидуального канала для каждого первого устройства беспроводной базовой станции и второго устройства беспроводной базовой станции, и информацию индикации матрицы предварительного кодирования и информацию индикации ранга, общую для первого устройства беспроводной базовой станции и второго устройства беспроводной базовой станции. В дополнение, физический канал управления нисходящей линией связи включает в себя по меньшей мере, например, информацию индивидуальной схемы модуляции и кодирования, и информацию конкретного индивидуального кодирования для каждого из первого устройства беспроводной базовой станции и второго устройства беспроводной базовой станции.
[0021] Система беспроводной связи по пунктам 6 или 7 имеет характеристики, описанные выше.
С помощью конфигурации, описанной выше, информация управления от устройства беспроводного терминала к первому устройству беспроводной базовой станции может быть сконфигурирована для включения в себя информации статуса передачи (HARQ-ACK/NAK), указывающей результат приема пакета от первого устройства беспроводной базовой станции и результат приема пакета от второго устройства беспроводной базовой станции, соответственно.
[0022] С помощью конфигурации, описанной выше, первое устройство беспроводной базовой станции может быть сконфигурировано для центрального управления по меньшей мере назначением устройства беспроводного терминала, назначением ресурсов связи и управления распределением времени передачи, ассоциированным с процессом совместной передачи.
[0023] Устройство беспроводного терминала для выполнения передачи данных посредством системы беспроводной связи, имеющей вышеупомянутую конфигурацию, имеет следующие аспекты.
Модуль приема пакета данных повторной передачи выполняет процесс приема в отношении пакета данных повторной передачи, когда выдается запрос повторной передачи.
[0024] Когда модуль приема пакета данных повторной передачи успешно выполняет процесс приема в отношении пакета данных повторной передачи, новый модуль приема пакета данных выполняет последовательный процесс подавления помех в отношении принятого сигнала, принятого устройством беспроводного терминала с помощью пакета данных повторной передачи, в отношении которого был успешно выполнен процесс приема, и выполняет процесс приема нового пакета данных согласно получившемуся в результате принятому сигналу.
[0025] С конфигурацией этого аспекта устройства беспроводного терминала может быть дополнительно включен модуль определения процесса совместной передачи для определения, должен ли быть выполнен процесс совместной передачи, и определения первого устройства беспроводной базовой станции и второго устройства беспроводной базовой станции для выполнения этого процесса, когда определяется, что может быть дополнительно выполнен процесс совместной передачи. Например, модуль определения процесса совместной передачи выполняет определение согласно информации о мощности приема для опорного сигнала, который должен быть принят от каждого устройства беспроводной базовой станции, в настоящее время находящегося в связи.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0026] Фиг. 1 является пояснительным изображением модели сети, на основании которой выполнен настоящий вариант осуществления;
Фиг. 2 является конфигурацией варианта осуществления устройства передачи;
Фиг. 3 является конфигурацией варианта осуществления устройства приема;
Фиг. 4 является пояснительным изображением случаев группировки, в которых совместно работают два узла eNode B;
Фиг. 5 является пояснительным изображением системы совместной передачи HARQ нисходящей линии связи для сценария 2;
Фиг. 6 является пояснительным изображением системы совместной передачи HARQ нисходящей линии связи для сценария 3;
Фиг. 7 является примером последовательности операций процесса определения обслуживающего eNB и совместного eNB;
Фиг. 8 является пояснительным изображением канала данных и канала управления;
Фиг. 9 является примером формата данных UCI и DCI;
Фиг. 10 является примером распределения времени передачи между каналом управления и каналом данных;
Фиг. 11 является графиком, указывающим BLER для геометрии для каждого UE при начальной передаче, повторной передаче #1, #2 и #3 в результате моделирования;
Фиг. 12 является графиком, указывающим CDF для SINR для S-eNB и C-eNB с и без SIC в результате моделирования;
Фиг. 13 является графиком, указывающим вероятность промежутка в линии связи между обслуживающим eNB и совместным eNB;
Фиг. 14 является графиком, указывающим SINR для промежутка в линии связи между обслуживающим eNB и совместным eNB с и без SIC в точке CDF 0.5; и
Фиг. 15 является графиком, указывающим коэффициент усиления для промежутка в линии связи посредством подавления между обслуживанием eNB и совместным eNB в точке CDF 0.5.
НАИЛУЧШИЙ РЕЖИМ ДЛЯ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0027] Наилучшие варианты осуществления описываются подробно ниже со ссылками на приложенные чертежи.
Сначала модель сети системы описывается согласно вариантам осуществления настоящего изобретения.
Фиг. 1 является пояснительным изображением модели сети, на основании которой сконструирован настоящий вариант осуществления.
[0028] Чтобы сохранить общие положения, сеть конфигурируется как система пакетной передачи, включающая в себя две беспроводные базовые станции для совместного выполнения обслуживания в отношении беспроводного мобильного терминала (UE: пользовательского оборудования), такого как терминал мобильного телефона и т.д. Система пакетной передачи может быть реализована как, например, система E-UTRA (усовершенствованного универсального наземного радио доступа) в соответствии со стандартом связи LTE, по которому выполняется операция стандартизации посредством 3GPP.
[0029] В LTE и т.д., базовая станция называется eNode-B (усовершенствованным узлом B). В настоящем варианте осуществления в описании ниже базовая станция называется eNode-B или eNB, для краткости.
[0030] Как иллюстрировано на Фиг. 1, одна из двух беспроводных базовых станций является обслуживающей базовой станцией (обслуживающим eNode-B, который в дальнейшем называется "обслуживающим eNB" или "S-eNB", для краткости), и другая называется совместно работающей базовой станцией (совместным eNode-B, который в дальнейшем называется "совместным eNB" или "C-eNB", если необходимо). Определение, к какому принадлежит eNB, обслуживающему eNB или совместный eNB, зависит от интенсивности мощности в течение длительного периода, принятого каждым UE. Поэтому, расположение eNB для каждого UE может быть различным. В качестве разумного определения, интенсивность мощности в течение длительного периода от обслуживающего eNB, принятого каждым UE, выше, чем интенсивность совместного eNB.
[0031] Фиг. 2 является конфигурацией устройства пакетной передачи согласно варианту осуществления, сконфигурированного в eNode-B в сети, иллюстрированной на Фиг. 1. Фиг. 3 является конфигурацией устройства приема пакетов согласно варианту осуществления, сконфигурированного в UE, иллюстрированном на Фиг. 1. Устройство передачи на Фиг. 2 обеспечивается на стороне нисходящей линии связи узла eNode-B, и устройство приема на Фиг. 2 обеспечивается на стороне нисходящей линии связи для UE. Конфигурации устройства передачи/приема на стороне канала восходящей линии связи устройств имеют общую конфигурацию, и подробное описание опускается в настоящем описании.
[0032] Устройство передачи, иллюстрированное на Фиг. 2, включает в себя модуль 201 передачи нового пакета данных, модуль 202 передачи пакета данных повторной передачи, модуль 203 назначения канала, модуль 204 модуляции, модуль 205 беспроводной обработки, модуль 206 управления передачей, модуль 207 приема канала управления восходящей линии связи и модуль 208 передачи/приема канала управления X2. Модуль 201 передачи нового пакета данных дополнительно конфигурируется модулем 201-1 генерирования блока, модулем 201-2 захвата новой части и модулем 201-3 кодирования нового пакета данных. Модуль 202 передачи пакета данных повторной передачи дополнительно конфигурируется модулем 202-1 буфера повторной передачи, модулем 202-2 захвата части повторной передачи и модулем 202-3 кодирования пакета данных повторной передачи.
[0033] Устройство приема, проиллюстрированное на Фиг. 3, включает в себя модуль 301 беспроводной обработки, модуль 302 приема пакета данных повторной передачи, модуль 303 приема нового пакета данных, модуль 304 управления приемом и модуль 305 передачи канала управления восходящей линией связи. Модуль 302 приема пакета данных повторной передачи дополнительно конфигурируется модулем 302-1 демодуляции пакета данных повторной передачи, модулем 302-2 буфера повторной передачи, модулем 302-3 комбинации части повторной передачи, модулем 302-4 декодирования пакета данных повторной передачи и модулем 302-5 распределения выходного сигнала. Модуль 303 приема нового пакета данных дополнительно конфигурируется модулем 303-1 повторного кодирования пакета данных повторной передачи, модулем 303-2 повторной модуляции пакета данных повторной передачи, модулем 303-3 подавителя, модулем 303-4 демодуляции нового пакета данных и модулем 303-5 декодирования нового пакета данных.
[0034] Ниже подробно описываются операции вариантов осуществления устройства передачи и устройства приема с помощью вышеупомянутых конфигураций.
Очень уникальное и важное поведение для HARQ может быть частотой появления ошибочных блоков обычно 1% или меньше, когда пакет данных повторной передачи декодируется после процесса комбинирования HARQ, выполненного модулем 305-3 комбинации части повторной передачи, иллюстрированном на Фиг. 2. В варианте осуществления, иллюстрированном на Фиг. 2, в процессе последовательного подавления помех (SIC), выполняемом модулем 303-3 подавителя, положительно используется декодированный пакет данных повторной передачи, таким образом, реализуя эффективный процесс SIC. Таким образом, в варианте осуществления, иллюстрированном на Фиг. 2, пакет повторной передачи сначала детектируется в UE, а затем детектируются другие пакеты (новые пакеты или пакеты повторной передачи).
[0035] Затем в настоящем варианте осуществления один новый пакет и один пакет повторной передачи доставляются при полной синхронизации на одно UE от двух совместно работающих узлов eNode-B, которые реализуют устройство передачи системы нисходящей линии связи, иллюстрированной на Фиг. 1.
[0036] Фиг. 4 является пояснительным изображением случаев группировки, в которых совместно работают два узла eNode-B. В этом примере совместная передача группируется в четыре типа сценариев. Каждый сценарий относится к отличному назначению ресурса канала и отличной структуре канала управления. Для простоты, объяснение здесь относится к случаю только одного UE, но сценарий для множества оборудований UE описывается далее.
[0037] В сценарии 1, иллюстрированном на Фиг. 4 (a), предполагается, что только новый пакет данных доставляется на UE, размещенное на краю ячейки, от обслуживающего eNB. Чтобы совместно реализовать макроскопическую передачу, некоторые новые пакеты данных передаются от обслуживающего eNB на совместный eNB через интерфейс X2. Затем, новые пакеты данных одновременно доставляются на соответствующее UE от обоих узлов eNode-B. На стороне UE выполняется процесс приема, подавляя помехи друг от друга.
[0038] В сценарии 2, проиллюстрированном на Фиг. 4 (b) предполагается, что два типа пакета передачи доставляются на UE, размещенное на краю ячейки. Один пакет является пакетом данных повторной передачи, и другой пакет является новым пакетом данных. Пакет данных повторной передачи одновременно доставляется от обслуживающего eNB на UE, когда новый пакет данных, переданный от обслуживающего eNB через интерфейс X2, доставляется от совместного eNB на UE. В UE, как описано ниже, модуль 303 приема нового пакета данных, иллюстрированный на Фиг. 3, выполняет процесс приема, подавляя помехи друг от друга в процессе SIC.
[0039] В сценарии 3, проиллюстрированном на Фиг. 4 (c), так же как в сценарии 2, доставляются два типа пакетов передачи, то есть пакет данных повторной передачи и новый пакет данных. В сценарии 3, в отличие от сценария 2, новый пакет данных одновременно доставляется от обслуживающего eNB на UE, когда пакет данных повторной передачи доставляется от совместного eNB на UE. В этом случае пакет данных повторной передачи передается от обслуживающего eNB на совместный eNB. В UE, как описано ниже, модуль 303 приема нового пакета данных, проиллюстрированный на Фиг. 3, выполняет процесс приема, подавляя помехи друг от друга в процессе SIC.
[0040] В сценарии 4, иллюстрированном на Фиг. 4 (d), предполагается, что только пакет данных повторной передачи доставляется от обслуживающего eNB на UE, расположенное на краю ячейки. Чтобы совместно реализовать макроскопическую передачу, некоторые пакеты данных повторной передачи передаются от обслуживающего eNB на совместный eNB через интерфейс X2. Затем, пакеты данных повторной передачи одновременно доставляются на соответствующее UE от обоих узлов eNB. UE выполняет процесс приема, подавляя помехи друг от друга.
[0041] Предполагается, что сценарий 2, иллюстрированный на Фиг. 4 (b), и сценарий 3, иллюстрированный на Фиг. 4 (c), являются лучшими системами передачи для обеспечения самого высокого коэффициента усиления при разнесении посредством макроскопического анализа передачи и коэффициента подавления посредством процесса SIC, так как, поскольку BLER (частота появления ошибочных блоков) для пакета данных повторной передачи после комбинации HARQ достаточно низка, пакет данных повторной передачи может быть извлечен первым, и затем новый пакет данных может быть извлечен посредством процесса SIC, таким образом, получая лучший результат. Поэтому, предпочтительно, чтобы один новый пакет данных и один пакет данных повторной передачи могли постоянно захватываться, в качестве правила совместной передачи, и они могли быть переданы одновременно как от обслуживающего eNB, так и от совместного eNB. Согласно результату моделирования на уровне системы, описанному ниже, определено, что если UE перемещается со скоростью 3 км/ч, вероятность повторной передачи равна 8-10%. Однако, если оно перемещается со скоростью 30 км/ч, вероятность повторной передачи увеличивается до 70-80%. Поэтому, когда есть сосуществующие группы терминала и перемещающиеся с различной скоростью, вероятность повторной передачи может быть оценена как 30-40%. Это означает, что вероятность совместной передачи HARQ между новым пакетом данных и пакетом данных повторной передачи равна 23-29%. Рассматривается, что вероятность того, что сценарий 1, иллюстрированный на Фиг. 4 (a) как нормальная совместная передача без повторной передачи, составляет приблизительно 70%. Однако, так как сценарий 4, иллюстрированный на Фиг. 4 (d), указывает низкую вероятность наличия пакета HARQ, он не имеет место в практической системе. Поэтому, вероятность того, что сценарий 4 принят, почти равна нулю.
[0042] Посредством поиска, описанного выше, описание ниже сконцентрировано на случаях сценария 2, иллюстрированного на Фиг. 4 (b), и сценария 3, иллюстрированного на Фиг. 4 (c), в качестве работы устройства передачи системы нисходящей линии связи eNode-B, проиллюстрированной на Фиг. 2. Один из этих сценариев выбирается и разрабатывается во время реализации. Более предпочтительный сценарий между ними описывается ниже.
[0043] Фиг. 5 является пояснительным изображением системы совместной передачи HARQ нисходящей линии связи для сценария 2.
Сначала, на Фиг. 5(b), если новый пакет данных, принятый в UE (например, новый пакет данных #0), входит в ошибочное состояние, данные повторно передаются от обслуживающего eNB одновременно с новым пакетом (например, новым пакетом данных #12), доставляемым от совместного eNB (C-eNB) к синхронному распределению времени передачи, определенному обслуживающим eNB (S-eNB). Аналогичный процесс имеет место с пакетом повторной передачи #4 (или #11), переданным с новым пакетом данных #17 (или #15).
[0044] Фиг. 5(a) является блок-схемой конфигурации процесса устройства передачи для сценария 2. Когда устройство передачи на Фиг. 2 реализуется как система нисходящей линии связи на стороне обслуживающего eNB, модуль 504 буфера повторной передачи на стороне обслуживающего eNB на Фиг. 5 (a) соответствует модулю 202-1 буфера повторной передачи, иллюстрированному на Фиг. 2. Первый модуль 501 передачи пакетов на стороне обслуживающего eNB соответствует части, исключая модуль 202-1 буфера повторной передачи в модуле 202 передачи пакетов данных повторной передачи, иллюстрированном на Фиг. 2. Кроме того, РЧ 503 на стороне обслуживающего eNB соответствует части, сконфигурированной модулем 203 назначения канала, модулем 204 модуляции и модулем 205 беспроводной обработки, иллюстрированными на Фиг. 2. С другой стороны, когда устройство передачи реализуется как система нисходящей линии связи на стороне совместного eNB, второй модуль 503 передачи пакетов на стороне совместного eNB на Фиг. 5 (a) соответствует модулю 201 передачи нового пакета данных на Фиг. 2. РЧ 505 на стороне совместного eNB соответствует части, сконфигурированной модулем 203 назначения канала, модулем 204 модуляции и модулем 205 беспроводной обработки на Фиг. 2. Кроме того, модуль 502 передачи пакета для передачи нового пакета данных от обслуживающего eNB на совместный eNB соответствует модулю 108 передачи/приема канала управления X2, иллюстрированному на Фиг. 2.
[0045] Как понято из конфигурации процесса, описанной выше, когда обслуживающий eNB и совместный eNB, каждый имеющие устройство передачи системы нисходящей линии связи, иллюстрированное на Фиг. 2, действуют согласно сценарию 2, первый модуль 501 передачи пакетов выполняет операцию передачи пакета 507 данных повторной передачи в устройстве передачи на стороне обслуживающего eNB. С другой стороны, в устройстве передачи на стороне совместного eNB второй модуль 503 передачи пакетов выполняет операцию передачи нового пакета 508 данных, соответствующего информации, переданной от обслуживающего eNB модулем 502 передачи пакетов.
[0046] Фиг. 6 является пояснительным изображением системы совместной передачи HARQ нисходящей линии связи для сценария 3.
Сначала, на Фиг. 6 (b), когда новый пакет данных (например, новый пакет данных #0), принятый посредством UE, входит в ошибочное состояние, данные передаются через интерфейс X2 в соответствующем канале управления на совместный eNB. Затем, они повторно передаются от совместного eNB одновременно с новым пакетом (например, новым пакетом данных #4), доставляемым от обслуживающего eNB к синхронному распределению времени передачи, определенному обслуживающим eNB. Аналогичный процесс генерируется с пакетом повторной передачи #5 (или #14), переданным с новым пакетом данных #9 (или #7).
[0047] Фиг. 6(a) является блок-схемой конфигурации процесса устройства передачи для сценария 3. Когда устройство передачи на Фиг. 2 реализуется как система нисходящей линии связи на стороне обслуживающего eNB, модуль 604 буфера повторной передачи на стороне обслуживающего eNB на Фиг. 6 (a) соответствует модулю 202-1 буфера повторной передачи на Фиг. 2. Первый модуль 601 передачи пакетов на стороне обслуживающего eNB соответствует новому модулю 201 передачи пакетов данных на Фиг. 2. Кроме того, РЧ 605 на стороне обслуживающего eNB соответствует части, сконфигурированной модулем 203 назначения канала, модулем 204 модуляции и модулем 205 беспроводной обработки. С другой стороны, когда устройство передачи на Фиг. 2 реализуется как система нисходящей линии связи на стороне совместного eNB, второй модуль 603 передачи пакетов на стороне совместного eNB на Фиг. 6(a) соответствует части, исключая модуль 202-1 буфера повторной передачи в модуле 202 передачи пакета данных повторной передачи на Фиг. 2. В дополнение, РЧ 605 на стороне совместного eNB соответствует части, сконфигурированной модулем 203 назначения канала, модулем 204 модуляции и модулем 205 беспроводной обработки на Фиг. 2. Кроме того, модуль 602 передачи пакетов для пакетной передачи данных повторной передачи от модуля 604 буфера повторной передачи в обслуживающем eNB на совместный eNB, соответствует модулю 108 передачи/приема канала управления X2 на Фиг. 2.
[0048] Как понято из конфигурации процесса, описанной выше, когда обслуживающий eNB и совместный eNB, каждый имеющие устройство передачи системы нисходящей линии связи, иллюстрированной на Фиг. 2, действуют согласно сценарию 3, первый модуль 601 передачи пакета выполняет операцию передачи нового пакета 607 данных в устройстве передачи на стороне обслуживающего eNB. С другой стороны, в устройстве передачи на стороне совместного eNB, второй модуль 603 передачи пакетов выполняет операцию передачи пакета 608 данных повторной передачи, соответствующего информации, переданной от модуля 604 буфера повторной передачи на обслуживающий eNB модулем 502 передачи пакета.
[0049] Относительно всей сложности, сценарий 2 является более предпочтительным, чем сценарий 3, так как согласно сценарию 2 совместный eNB принимает новый блок, переданный от обслуживающего eNB через интерфейс X2, и может доставить новый пакет данных, сгенерированный на основании этого принятого блока, не рассматривая, был ли или нет корректно принят пакет на стороне UE, как описано ниже в пояснении канала управления. Как описано ниже, обслуживающий eNB является полностью ответственным, включая доступ к каналу управления для процесса приема и HARQ. Это упрощает структуру совместного eNB. Однако, очевидно, что может быть принята конфигурация сценария 3.
[0050] Ниже дополнительно описывается подробная работа устройства передачи на Фиг. 2 с помощью процесса из сценариев 2 и 3, описанных выше.
На Фиг. 2 модуль 201-1 генерирования блока генерирует блок заранее определенного размера из информационного бита, который должен быть передан. Размер блока, генерируемого модулем 201-1 генерирования блока, равен величине информационного бита, который может быть сохранен в одном пакете. Таким образом, обычный пакет, который должен быть передан устройством передачи, включает в себя информационные биты, соответствующие одному блоку.
[0051] Модуль 202-1 буфера повторной передачи временно хранит для повторной передачи блок информационных битов, сгенерированных модулем 201-1 генерирования блока. Модуль 202-1 буфера повторной передачи может последовательно отвергать блок, который был корректно декодирован устройством приема и не должен быть повторно передан.
[0052] Модуль 206 управления передачей управляет модулем 201-2 захвата новой части и модулем 202-2 захвата части повторной передачи согласно сигналу управления, принятому модулем 207 управления приемом канала восходящей линией связи со стороны UE через канал управления.
[0053] На практике, когда устройство передачи на Фиг. 2 работает как обсл