Способ производства полимеров, не содержащих воду и растворитель

Иллюстрации

Показать все

Изобретение относится к полимерам, не содержащим воду и растворитель, в частности к продуктам на основе синтетического каучука. Синтетическими каучуками являются стиролбутадиеновый каучук или бутадиеновые каучуки, полученные с литиевым, никелевым, титановым, кобальтовым, неодимовым катализатором. Способ включает стадии обработки текучей среды в концентрирующей установке, повторного нагревания, подачи повторно нагретой концентрированной текучей среды в экструдерный узел для удаления летучих соединений. Изобретение позволяет улучшить эффективность и экологию способа, а также сократить расход энергии при его осуществлении. 3 н. и 49 з.п. ф-лы, 11 ил.

Реферат

Настоящее изобретение касается полимеров, не содержащих воду и растворитель, особенно продуктов на основе синтетического каучука, не содержащих воду и растворитель, таких как продукты на основе негалогенированного и галогенированного бутилового каучука, продукты на основе модифицированного и немодифицированного полибутадиенового каучука и полистиролбутадиенового каучука, а также способа их производства. Кроме того, изобретение касается устройства, подходящего для осуществления указанного выше способа.

Синтетические каучуки обладают важным назначением в промышленности и обычно получаются в результате (со)полимеризации мономеров, которая обычно производится посредством суспензионных, эмульсионных или осуществляемых в растворе способов. Примеры синтетических каучуков включают бутиловые каучуки и галогенированные бутиловые каучуки, полиизобутилен, этиленпропилендиеновые каучуки М-класса (ЭПДМ), нитрилбутадиеновые каучуки (НБК) и стиролбутадиеновые каучуки (СБК), а также полибутадиеновые каучуки (ПБК).

После (со)полимеризации выгружаемая из реактора смесь содержит по меньшей мере полимер, растворители, остаточные мономеры и катализатор. Для извлечения полимера, поток выгружаемой массы обычно обрабатывается паром и горячей водой. В результате этого большая часть растворителя и не вступивших в реакцию мономеров отгоняется. Одним недостатком контакта с паром и водой является то, что синтетические каучуки коагулируются. В таком случае каучуковые полимеры находятся в форме мокрой крошки в воде. Затем большая часть воды отделяется путем сливания, например, с последующим использованием сушильных экструдеров и завершающей стадии вакуумной сушки.

Полимеризации бутадиена с различными катализаторами (например, неодимовым (Nd), кобальтовым (Со), литиевым (Li), никелевым (Ni), титановым (Ti)) приводит к полибутадиеновому каучуку с различными физическими свойствами в зависимости от каталитической системы, как и от процесса реакции. Сополимеризация стирола и бутадиена также может осуществляться при использовании аналогичных условий реакции. В следующем тексте полибутадиеновые каучуки и стиролбутадиеновые каучуки из процесса, проводимого в растворе (SSBR) будут обобщаться как полимеры бутадиенового каучука. Полимеризация в промышленности проводится, например, при температурах примерно от 30°C до +150°C, чтобы получить высокие молярные массы. В процессах, идущих в растворе, в качестве растворителя используется инертный углеводород. После полимеризации полимер бутадиенового каучука присутствует в виде гомогенного раствора в углеводороде. Не вступившие в реакцию мономеры также могут присутствовать в выгружаемой из реактора смеси. Полимер бутадиенового каучука должен быть извлечен и отделен от растворителя.

В процессе, проводимом в растворе, поток, выгружаемый из реактора полимеризации, подвергается быстрому испарению. Для регулирования физических свойств могут быть прибавлены добавки. После этого поток полимера обрабатывается паром и горячей водой в испарительном аппарате. Таким образом, в то время как полимер бутадиенового каучука коагулируется с образованием крошки, большая часть растворителя и непрореагировавших мономеров отгоняются, и вода отделяется от паров путем конденсации. Стадия отгонки легких фракций применяется, чтобы удалить сохранившиеся остатки мономера и остатки растворителя.

Затем суспензия воды и крошки полибутадиенового каучука превращается в конечную, поступающую в продажу форму кип в процессе дальнейшей сушки. Эта сушка, как правило, осуществляется путем слива, с последующим применением сушильных экструдеров и окончательной стадии сушки в псевдоожиженном слое, или аппарата для сушки горячим воздухом или аналогичных сушильных аппаратов, например, шнекового транспортера.

На этой стадии также могут быть включены добавки.

Упомянутые выше процессы коагуляции и отгонки с паром имеют в качестве недостатка очень высокий расход энергии. Большое количество пара необходимо не только чтобы испарить растворитель, но также и для того, чтобы нагревать и поддерживать все количество содержащейся в отпарных колоннах воды при высокой температуре. Также необходимо дополнительное добавление пара, чтобы отгонять остаточные количества растворителя путем снижения парциального давления растворителя в отпарной колонне.

Вышеупомянутые процессы также используют большое количество воды, потому что концентрация бутадиенового каучука в суспензии после коагуляции, как правило, составляет только от 5 до 12% по массе. Вода из этой суспензии частично может быть возвращена в цикл, а частично образует сточные воды и должна быть утилизирована.

Каучуковая крошка отделяется от основной массы воды механическим путем с использованием простых сетчатых поддонов или экранов. Бутадиеновый каучук после этого первого отделения еще содержит примерно от 20 до 50% воды. Дальнейшая механическая сушка осуществляется затем с использованием экструдеров путем пластикации продукта и отжимания воды. Недостатком этого механического процесса высушивания является загрязнение воды маленькими частицами каучука, которые не были задержаны ситами, в результате чего сточные воды требуют дополнительной обработки.

Упомянутое выше механическое обезвоживание может только уменьшить содержание влаги до величины примерно от 5 до 15%. В таком случае требуются дополнительные стадии термической сушки. При этом каучук нагревается до температуры от 130 до 200°C под давлением в одношнековом или двухшнековом экструдере. Чтобы увеличить давление устанавливается пластина с фильерами. Когда каучук продавливается через эту пластину с фильерами, вода в каучуке испаряется и формирует крошку с открытыми порами. Эта крошка передается в конвекционную сушилку, где остаточная влага удаляется под действием горячего воздуха. После такой сушки бутадиеновый каучук в большинстве случаев имеет содержание влаги от 0,1 до 0,8%. Затем необходима стадия охлаждения, осуществляемая путем прохождения холодного воздуха через каучуковую крошку, чтобы охладить крошку бутилового каучука до максимальной температуры получения кип 60°C. Затем крошка формуется с получением кип под действием гидравлических прессов, и эти кипы упаковываются в коробки или ящики для перевозки.

Вышеупомянутый процесс сушки бутадиеновых каучуков является сложным и требует крупноразмерного оборудования.

Многие другие специальные способы были разработаны с целью удаления воды и летучих органических растворителей из полимеров. Дегазация в экструдере в вакууме, с использованием или без использования растворителей, образующих азеотропы, получила признание при практических применениях в качестве наиболее предпочтительной технологии, тем не менее, энергетические требования таких способов из известного уровня техники являются достаточно высокими.

Патент США US 3117953 А1 раскрывает приспособление и способ для очистки полиэтилена высокого давления. В то же время, замена раствором синтетического каучука для полиэтилена в патенте США US 3117953 А1 привела бы к крошке, формирующейся до попадания в экструдер, что совсем нежелательно.

Немецкий патент DE 19537113 раскрывает способ и приспособление для полимерных смол, в частности, поликарбонатных смол, с использованием отпарной колонны, декантатора и экструдера. Тем не менее, введение пара давало бы в результате нежелательно высокое содержание остаточной воды или очень высокое потребление энергии.

Патент США US 4055001 раскрывает способ получения полимеров, таких как бутиловый каучук, имеющих содержание воды менее чем 0,1% масс, путем использования во время процесса сушки ультразвуковых волноводов. Однако очень высокое напряжение сдвига, сопряженное с использованием ультразвука, является недопустимым для таких полимеров как галобутиловые каучуки.

Европейский патент ЕР 0102122 раскрывает способ для извлечения полимера из раствора, в частности, для извлечения полиэтилена, с использованием частично заполненного экструдера. Однако европейский патент ЕР 0102122 умалчивает об удалении остаточной воды.

Патент США US 2001/056176 А1 раскрывает одностадийный способ извлечения полимера, а точнее говоря, пример концентрирования растворов каучука. При этом раствор каучука нагревается с паром, чтобы удалить имеющиеся растворители в одну стадию путем дегазации в вакууме с получением белой крошки. При этом в патенте США US 2001/056176 А1 требуется большой объемный расход пара, чтобы удалить летучие компоненты при низком давлении пара, а результатом является включение в крошку дополнительной воды, которая впоследствии должна была бы удаляться.

Патент США US 5283021 А1 раскрывает двухстадийный способ удаления растворителя из раствора эластомерного полимера. При этом раствор полимера нагревается непосредственно при помощи нагревающейся жидкой среды и распыляется в вакууме. В процессе распыления растворитель испаряется, при этом формируя крошку, которая затем подается в экструдер для дальнейшей дегазации. Тем не менее, образование крошки на этой стадии нежелательно.

Европейский патент EР 1127609 А2 раскрывает способ обработки продукта по меньшей мере в одном смесителе-пластикаторе. Европейский патент EР 1127609 А2 использует энергию, сообщенную частично через стенку самого смесителя-пластикатора, чтобы испарить растворитель из растворов, содержащих эластомеры и термопластики. По этой причине требуется смеситель-пластикатор с большой площадью поверхности, что является большими капитальными затратами. Другая часть энергии сообщается посредством вращающегося вала смесителя-пластикатора в виде механической энергии. Механическая энергия является более дорогостоящей и, следовательно, менее выгодной с точки зрения окружающей среды, при сравнении с нагреванием паром. Смесители-пластикаторы, использованные в европейском патенте EР 1127609 А2, требуют большого объема обслуживания и очистки. Более того, подведение механической энергии посредством смесителя-пластикатора сильно зависит от вязкости продукта, что снижает универсальность применения способа.

Европейский патент EP 1165302 А1 раскрывает устройство и метод дегазации пластических материалов. Приспособление в европейском патенте EP 1165302 A1 представляет собой экструдер с задним вентиляционным отверстием и несколькими вентиляционными секциями, работающими в условиях вакуума. Вакуум необходим, чтобы достичь низкой остаточной концентрации летучих соединений. Европейский патент EP 1165302 A1 раскрывает, что может применяться вымывающий агент, чтобы дополнительно улучшить эффективность дегазации. Пластический материал, использованный в европейской заявке EP 1165302 А1 - термопластичный поликарбонат, в конце процесса дегазации остается текучим расплавом. Тем не менее, раствор синтетического каучука, обработанный в соответствии с европейским патентом EP 1165302 А1, в конце стадии дегазации превращался бы в крошку и не мог бы обрабатываться далее.

В издании «Process Machinery», Parts I and II, March and April 2000; автор: C.G. Hagberg раскрывается непосредственное быстрое испарение растворов каучука с использованием резервуара для мгновенного вскипания и экструдера. Однако этот источник умалчивает о содержаниях летучих соединений в конечном продукте.

Японский патент JP 61120803 описывает удаление растворителя путем использования экструдера, имеющего вентиляционное устройство, для получения каучукового концентрата на основе смеси раствора каучука, содержащего диспергированные наполнители.

Следовательно, на основании изложенного выше предметом настоящего изобретения являлось предоставить непрерывный, энергосберегающий, экологически и экономически благоприятный способ удаления летучих соединений из жидкости, содержащей по меньшей мере один полимер, предпочтительно по меньшей мере один синтетический каучук, с получением полимерного продукта, который в основном не содержит летучих соединений.

Эта задача решается с помощью способа удаления летучих соединений из жидкости (F), содержащей по меньшей мере один нелетучий полимер и по меньшей мере одно летучее соединение, который включает по меньшей мере следующие стадии:

a) обработки жидкости (F) по меньшей мере в одной концентрирующей установке, включающей по меньшей мере нагреватель, сосуд для дегазации (4) и испарительный трубопровод, при этом жидкость (F) нагревается, нагретая жидкость (G) подается в сосуд для дегазации, где часть летучих соединений удаляется через испарительный трубопровод с получением концентрированной жидкости (Н),

b) повторного нагревания концентрированной жидкости (Н) из стадии а) по меньшей мере в одной установке для повторного нагревания с получением повторно нагретой концентрированной жидкости (L);

c) подачи повторно нагретой концентрированной жидкости (L) из стадии b) по меньшей мере в один экструдерный узел, включающий по меньшей мере секцию дегазации экструдера, включающую по меньшей мере транспортирующую секцию,

вентиляционное отверстие с одним или более испарительными трубопроводами,

накопительную секцию и выпускную секцию, при этом летучие соединения удаляются через вентиляционные отверстия и испарительные трубопроводы;

при этом повторно нагретая концентрированная жидкость (L) при входе в секцию дегазации экструдера является свободнотекучей, а продукт (Р), полученный в выпускной секции, в основном не содержит летучих соединений.

Предпочтительно этот способ мог бы включать дополнительные стадии, указанные ниже:

d) подачи повторно нагретой концентрированной жидкости (Н или L) из стадии а) или b) по меньшей мере в один смесительно-пластицирующий узел, включающий по меньшей мере секцию дегазации, вентиляционное отверстие с одним или более испарительными трубопроводами и выпускную секцию, при этом летучие соединения удаляются через вентиляционные отверстия и испарительные трубопроводы с получением высоковязкой жидкости (N или Р);

e) подачи высоковязкой жидкости (N) из стадии d) по меньшей мере в один экструдерный узел, включающий по меньшей мере секцию дегазации экструдера, включающую по меньшей мере транспортирующую секцию, вентиляционное отверстие с одним или более испарительными трубопроводами, накопительную секцию и выпускную секцию, при этом летучие соединения удаляются через вентиляционные отверстия и испарительные трубопроводы;

f) подачи высоковязкой жидкости (М) из стадии с) по меньшей мере в один смесительно-пластицирующий узел, включающий по меньшей мере секцию дегазации, вентиляционное отверстие с одним или более испарительными трубопроводами и выпускную секцию, при этом летучие соединения удаляются через вентиляционные отверстия и испарительные трубопроводы;

при этом повторно нагретая концентрированная жидкость (L) при входе в секцию дегазации экструдера является свободнотекучей, а продукт (Р), полученный в выпускной секции, в основном не содержит летучих соединений, чтобы сформировать высоковязкую жидкость.

Подчеркивается, что объем изобретения также включает в себя любые желаемые комбинации диапазонов и областей предпочтения, указанных для каждого признака.

В контексте данного изобретения термин «свободнотекучий» означает вязкость в диапазоне от 500 до 50000000 мПа·с, предпочтительно от 5000 до 30000000 мПа·с и наиболее предпочтительно от 10000 мПа·с до 300000 мПа·с.

В случае если не указано иное, величины вязкости жидкостей относятся к вязкости при нулевом сдвиге, экстраполированной от измерений при данной температуре с использованием вискозиметра Haake Rheostress RS 150 или ротационного реометра типа «конус-пластина» для сильно вязких образцов.

В контексте данного изобретения термин «в основном не содержащий летучих соединений» означает общую концентрацию летучих соединений меньше чем 1% масс., предпочтительно меньше чем 0,5% масс., в расчете на массу нелетучего полимера.

В частности, термин «в основном не содержащий летучих соединений» означает «в основном не содержащий воду и в основном не содержащий летучих органических соединений».

Считают, что нелетучие полимеры в основном не содержат воду, если остаточная концентрация воды меньше чем 0,5% масс., предпочтительно меньше чем 0,25% масс., более предпочтительно меньше чем 0,1% масс., и в высшей степени предпочтительно меньше чем 0,075% масс. в пересчете на массу полимера.

В контексте данного изобретения термин «летучие органические соединения» означает органические соединения, имеющие температуру кипения ниже 250°C при нормальном давлении.

Нелетучие полимеры считаются в основном не содержащими летучих органических соединений, если остаточная концентрация указанных летучих органических соединений меньше чем 0,75% масс., предпочтительно меньше чем 0,25% масс. и наиболее предпочтительно меньше чем 0,1% масс., в пересчете на массу полимера. Указанные летучие органические соединения обычно представляют собой растворители, использованные при полимеризации или последующих технологических стадиях, таких как стадия галогенирования, и включают углеводороды, такие как гексаны и пентаны.

Предпочтительные нелетучие полимеры представляют собой продукты на основе синтетического каучука.

В контексте этого изобретения термин продукты на основе синтетического каучука включает бутиловые каучуки и галогенированные бутиловые каучуки, полиизобутилен, этиленпропилендиеновые каучуки М-класса (ЭПДМ), нитрилбутадиеновые каучуки (НБК) и стиролбутадиеновые каучуки (СБК), а также бутадиеновые каучуки. Предпочтительными продуктами на основе синтетического каучука являются стиролбутадиеновые каучуки и бутадиеновые каучуки, такие как бутадиеновый каучук, полученный с литиевым катализатором, бутадиеновый каучук, полученный с никелевым катализатором, бутадиеновый каучук, полученный с титановым катализатором, бутадиеновый каучук, полученный с кобальтовым катализатором, и бутадиеновый каучук, полученный с неодимовым катализатором, при этом бутадиеновый каучук, полученный с неодимовым катализатором, является даже более предпочтительным.

Среднемассовая молекулярная масса молекул стиролбутадиенового каучука и молекул бутадиенового каучука Mw обычно находится между 50000 и 1000000 г/моль, предпочтительно между 150000 и 400000 г/моль.

Предмет изобретения будет описываться более подробно с помощью схематических чертежей, на которых:

ФИГ.1 показывает одноступенчатую концентрирующую установку, установку для повторного нагревания и экструдерный узел, имеющий одну секцию дегазации экструдера, одну накопительную секцию и одну выпускную секцию.

ФИГ.2 показывает одноступенчатую концентрирующую установку, установку для повторного нагревания и экструдерный узел, имеющий две секции дегазации экструдера, две накопительные секции и одну выпускную секцию.

ФИГ.3 показывает одноступенчатую концентрирующую установку, имеющую клапан сброса давления, установку для повторного нагревания, и экструдерный узел, имеющий клапан сброса давления, а кроме того, имеющий две секции дегазации экструдера, две накопительные секции, боковое загрузочное устройство и выпускную секцию.

ФИГ.4 показывает двухступенчатую концентрирующую установку, установку для повторного нагревания и экструдерный узел, имеющий одну секцию дегазации экструдера, одну накопительную секцию и одну выпускную секцию.

ФИГ.5 показывает одноступенчатую концентрирующую установку, установку для повторного нагревания и экструдерный узел, имеющий три секции дегазации экструдера, три накопительные секции и одну выпускную секцию, при этом одна секция дегазации экструдера представляет собой секцию противоточной дегазации.

ФИГ.6 показывает одноступенчатую концентрирующую установку, имеющую устройство регулирования давления, установку для повторного нагревания, и экструдерный узел, имеющий устройство регулирования давления, четыре секции дегазации экструдера, четыре накопительные секции и одну выпускную секцию, при этом одна секция дегазации экструдера представляет собой секцию противоточной дегазации.

ФИГ.7 показывает одноступенчатую установку для предварительной промывки, одноступенчатую концентрирующую установку, установку для повторного нагревания и экструдерный узел, имеющий одну секцию дегазации экструдера, одну накопительную секцию и одну выпускную секцию.

ФИГ.8 показывает основную установку для предварительной промывки.

ФИГ.9 показывает установку для предварительной промывки, включающую устройство для коагуляции.

ФИГ.10 показывает двухступенчатую установку для предварительной промывки.

ФИГ.11 показывает двухступенчатую установку для предварительной промывки, имеющую дополнительные нагреватели.

Основной и приводимый в качестве примера вариант исполнения стадии способа показан на Фиг.1. На стадии а) жидкость F, содержащая по крайней мере один нелетучий полимер и по меньшей мере одно летучее соединение, посредством насоса 1 передается в нагреватель 2, где эта жидкость F нагревается.

Жидкость F, также называемая клеем (связующим), содержит, например, от 3 до 50% масс, нелетучего полимера, предпочтительно синтетического каучука и более предпочтительно бутадиенового каучука, и от 60 до 97% масс, летучих соединений, в частности, растворителя или растворителя и воды, при этом вышеупомянутые компоненты составляют в сумме от 90 до 100, предпочтительно от 95 до 100% масс, общей массы жидкости F.

Растворитель предпочтительно выбирается из группы, состоящей из линейных или разветвленных алканов, имеющих от 3 до 10 атомов С, предпочтительно от 3 до 7 атомов С.Более предпочтительными растворителями являются изобутен, н-пентан, изопентан, н-гексан, циклогексан, изогексан, метилциклопентан, метилциклогексан и н-гептан, а также смеси, содержащие или состоящие из этих алканов.

В предпочтительном варианте исполнения изобретения жидкость F содержит от 3 до 40% масс. нелетучего полимера, предпочтительно синтетического каучука и более предпочтительно бутадиенового каучука, от 60 до 95% масс. летучих органических соединений, в частности, растворителя, и от 0,5 до 20% масс. воды, при этом упомянутые выше компоненты составляют в сумме от 95 до 100% масс. общей массы жидкости F.

Жидкость F обычно получается из процессов полимеризации или последующих технологических стадий. Жидкости F, содержащие воду, обычно получаются после процессов отгонки с паром, следующих за полимеризацией.

Жидкость F, поступающая в нагреватель, обычно и предпочтительно имеет температуру от 10°C до 100°C, предпочтительно от 30°C до 80°C. Вязкость жидкости F находится, например, в интервале от 100 мПа·с до 90000 мПа·с, предпочтительно в интервале от 500 мПа·с до 60000 мПа·с.

Нагревателем может быть любое устройство, которое способно увеличивать температуру жидкости F. В предпочтительном варианте исполнения нагреватель 2 представляет собой теплообменник. Нагревающая среда выбирается из группы, состоящей из пара, топочного мазута или перегретой воды. Этот теплообменник является, например, теплообменником кожухотрубчатого типа, где жидкость F находится внутри трубок, а нагревающая среда находится в межтрубном пространстве. Чтобы усиливать передачу тепла, могут применяться специальные вставки в трубках. Также может использоваться другой тип теплообменника, в котором жидкость F находится с наружной стороны трубок теплообменника. Преимуществом упомянутых выше типов теплообменников является предотвращение неравномерного распределения и простое обслуживание, а также хорошая передача тепла. Указанные теплообменники являются хорошо известными и коммерчески доступными. В менее предпочтительном варианте исполнения также могут применяться теплообменники пластинчатого типа.

После нагревания получается нагретая жидкость G. Нагретая жидкость G имеет более высокую температуру, чем жидкость F, предпочтительно температуру от 100 до 200°C, более предпочтительно от 110°C до 190°C и даже более предпочтительно от 120°C до 175°C. Эта нагретая жидкость G затем передается далее в сосуд для дегазации 4. В сосуде для дегазации летучие компоненты по меньшей мере частично испаряются. Эти пары отделяются и удаляются из нагретой жидкости G посредством вакуумной линии 4.1. Давление в сосуде для дегазации 4 находится, например, в интервале от 100 до 4000 гПа, предпочтительно в интервале от 200 до 2000 гПа и более предпочтительно в интервале от 230 до 1100 гПа.

Пары, удаленные через вакуумную линию 4.1, предпочтительно конденсируются и возвращаются в цикл процесса получения жидкости F. После дегазации и разделения получается концентрированная жидкость Н, которая удаляется из сосуда для дегазации 4 посредством насоса 4.2.

В предпочтительном варианте исполнения изобретения сосуд для дегазации выполнен в форме циклонного сепаратора, чтобы дополнительно способствовать отделению паров от нагретой жидкости G. В другом предпочтительном варианте исполнения изобретения этот сосуд для дегазации 4 имеет дно конической или по меньшей мере торосферической формы, чтобы позволять сосуду опустошаться полностью или практически полностью.

Насос 4.2 предпочтительно непосредственно соединен с выпускным отверстием сосуда для дегазации 4. В основном соединительная деталь между насосом и сосудом предпочтительно является насколько возможно короткой.

По причине высокой вязкости концентрированной жидкости Н на этой стадии входное отверстие насоса предпочтительно выполнено с большим впуском, таким образом снижая скачок давления у входного отверстия.

Насос 4.2 может выбираться из группы, состоящей из насосов объемного типа, шестеренчатых насосов, поршневых насосов, мембранных насосов, винтовых насосов, насосов экструдерного типа, таких как одношнековые или двухшнековые экструдеры с противоположно вращающимися или однонаправленно вращающимися шнеками, или насосов типа смесителей-пластикаторов. Насосы объемного типа и шестеренчатые насосы являются предпочтительными, шестеренчатые насосы являются даже более предпочтительными.

В другом предпочтительном варианте исполнения насос 4.2 включает комбинацию экструдера или смесителя-пластикатора и шестеренчатого насоса, при этом шестеренчатый насос питается из экструдера или смесителя-пластикатора.

Количество летучих соединений, которое удаляется на этой стадии а), зависит, например, от температуры жидкости G и давления в сосуде для дегазации 4. В предпочтительном варианте исполнения изобретения температура жидкости G и давление в сосуде для дегазации 4 выбираются так, что концентрированная жидкость Н все еще является свободнотекучей, как определено выше, и содержит, например, от 10 до 60, предпочтительно от 20 до 60% масс. нелетучего полимера, предпочтительно синтетического каучука и более предпочтительно бутадиенового каучука, и примерно от 40 приблизительно до 90, предпочтительно от 40 до 80% масс. летучих веществ, при этом вышеупомянутые компоненты - нелетучий полимер, летучее органическое соединение и вода в сумме составляют от 90 до 100% масс., предпочтительно от 95 до 100% масс. от общей массы жидкости Н.

В предпочтительном варианте исполнения, и в случае, когда исходное сырье - жидкость F содержит воду, жидкость Н включает, к примеру, от 10 до 60, предпочтительно от 20 до 60% масс. нелетучего полимера, предпочтительно синтетического каучука и более предпочтительно бутадиенового каучука, примерно от 25 приблизительно до 90, предпочтительно от 25 до 75% масс. летучих органических соединений, в частности, растворителя, и примерно от 0,5 приблизительно до 15% масс. воды, при этом вышеупомянутые компоненты - нелетучий полимер, летучее органическое соединение и вода в сумме составляют от 90 до 100% масс., предпочтительно от 95 до 100% масс. от общей массы жидкости Н.

Температура концентрированной жидкости Н ниже, чем температура нагретой жидкости G и находится, например, в интервале от 15 до 100°C, предпочтительно в интервале от 30 до 100°C. Концентрированная жидкость Н все еще является свободнотекучей, как определено выше.

На стадии b) концентрированная жидкость Н, полученная на стадии а), затем пропускается через установку для повторного нагревания 6, чтобы получить повторно нагретую концентрированную жидкость L. В предпочтительном варианте исполнения эта установка для повторного нагревания включает теплообменник, при этом применяются те же самые пояснения, включая предпочтения, касающиеся нагревательных сред и типов теплообменников, как описано выше для теплообменника 2.

Температура повторно нагретой концентрированной жидкости L выше, чем температура концентрированной жидкости L и находится, например, в интервале от 50°C до 200°C, предпочтительно в интервале от 90°C до 180°C. Повторно нагретая концентрированная жидкость L все еще является свободнотекучей, как определено выше.

На стадии с) повторно нагретая концентрированная жидкость L, полученная на стадии b), передается в экструдерный узел и подается в транспортирующую секцию 16 секции дегазации экструдера в загрузочном отверстии 12.

Подходящие типы экструдеров включают одношнековые и многошнековые экструдеры, имеющие любое число цилиндрических частей и типы червячных элементов, и другие одновальные или многовальные смесители-пластикаторы. Возможными вариантами исполнения многошнековых экструдеров являются двухшнековые экструдеры, кольцевые экструдеры или планетарные вальцовые экструдеры, при этом предпочтительными являются двухшнековые экструдеры, многовальные транспортирующие смесители-пластикаторы и кольцевые экструдеры.

Одношнековые экструдеры включают те, что имеют шнек, осциллирующий вдоль продольной оси. Двухшнековые экструдеры представляют собой, например, взаимозацепляющиеся с противоположно вращающимися шнеками, работающие без зацепления с противоположно вращающимися шнеками, взаимозацепляющиеся с однонаправленно вращающимися шнеками и работающие без зацепления с однонаправленно вращающимися шнеками двухшнековые экструдеры, причем взаимозацепляющиеся с однонаправленно вращающимися шнеками двухшнековые экструдеры являются предпочтительными.

В одном варианте исполнения изобретения экструдеры могут или нагреваться через цилиндрические части до температур до 300°C или охлаждаться.

В предпочтительном варианте исполнения экструдер имеет устройства, чтобы производить операции с отдельными зонами независимо друг от друга при разных температурах, так что эти зоны могут или нагреваться, быть ненагретыми или охлаждаться. В другом предпочтительном варианте исполнения экструдер для каждой транспортирующей секции имеет по меньшей мере одну отдельную зону, в которой можно производить операции независимо при различных температурах.

Предпочтительные материалы экструдера должны быть коррозионностойкими и в основном должны предохранять повторно нагретую концентрированную жидкость L и продукт Р от загрязнения металлами или ионами металлов. Предпочтительные материалы экструдера включают азотированную сталь, сталь, полученную дуплекс-процессом, нержавеющую сталь, сплавы на никелевой основе, композиционные материалы, такие как металлокерамика, материалы, полученные горячим изостатическим прессованием, жесткие износоустойчивые материалы, такие как стеллит, металлы с нанесенным покрытием, с покрытиями, изготовленными, например, из керамики, нитрида титана, нитрида хрома и алмазоподобного углерода (DLC).

Транспортирующая секция 16 выходит к вентиляционному отверстию 15. В транспортирующей секции 16 часть растворителя испаряется и отделяется от повторно нагретой концентрированной жидкости L. Эти пары удаляются через вентиляционное отверстие 15 посредством испарительного трубопровода 15.1.

Поскольку испаряющиеся летучие соединения имеют тенденцию уносить с потоком повторно нагретую концентрированную жидкость L или продукт Р в направлении вентиляционных отверстий, в предпочтительном варианте исполнения изобретения эти вентиляционные отверстия 15 выполнены так, чтобы предохранять материал, особенно повторно нагретую концентрированную жидкость L или продукт Р от выхода наружу из этих вентиляционных отверстий.

Подходящими устройствами для достижения этой цели являются уплотняющие шнеки, которые установлены на вентиляционных отверстиях и передают любой материал обратно в экструдер, или валики, или ленты, которые используются на внутренней части вентиляционных отверстий, чтобы заталкивать отложившийся материал обратно в экструдер. В качестве альтернативы или предпочтительно в дополнение к упомянутым выше могут применяться покрытия вентиляционных отверстий, которые снижают или предотвращают прилипание материала к поверхности. Подходящие покрытия включают DLC, этилентетрафторэтилен (ЭТФЭ), политетрафторэтилен (ПТФЭ) и никелевые сплавы.

Давление в вентиляционном отверстии 15 составляет, например, величину между 1 и 2000 гПа, предпочтительно между 5 и 900 гПа.

Испарительный трубопровод 15.1 может быть, а предпочтительно является соединенным с конденсирующей системой.

Как правило, назначением конденсирующей системы является собирать летучие соединения, удаленные с помощью вентиляционных отверстий через испарительные трубопроводы, и обычно она включает конденсатор и вакуумный насос. Чтобы осуществлять улавливание летучих соединений, могут использоваться любые конденсирующие системы, известные в технологии.

Как правило, предпочтительным является повторно возвращать эти конденсированные летучие соединения, при желании после проведения разделения фаз, чтобы отделить летучие органические соединения от воды, в процесс получения жидкости F.

Транспортирующая секция 16 оканчивается накопительной секцией 20. Целью накопления является обеспечивать определенный уровень давления в вентиляционном отверстии 15 и сообщать механическую энергию материалу, чтобы способствовать испарению летучих соединений. Накопительная секция 20 может иметь любые устройства, которые дают возможность накопления материала. Она может быть выполнена так, чтобы включать, например, смесительные пластицирующие или суживающие элементы, диски с выступающими элементами или пластины с фильерами.

Примерами суживающих элементов являются конические или цилиндрические направляющие для потока или другие суживающие средства.

Применение смесительных пластицирующих элементов, дисков с выступающими элементами или пластин с фильерами внутри накопительной секции является предпочтительным, смесительные пластицирующие элементы являются даже более предпочтительными. Примеры смесительных пластицирующих элементов включают пластицирующие блоки, которые могут быть выполнены как двух- или трехзаходные смесительные транспортирующие блоки прямого, обратного или нейтрального хода; однозаходные или двухзаходные шнековые смесительные элементы с канавками, однозаходные шестеренчатые смесительные элементы, диски с выступами и одно-, двух- или трехлопастные эксцентриковые диски. Эти смесительные пластицирующие элементы могут быть смонтированы в любую комбинацию на червячных валах экструдера, особенно двухшнекового с противоположно вращающимися шнеками или с однонаправленно вращающимися шнеками червячного экструдера.

Обычная накопительная секция включает от 2 до 10 смесительных пластицирующих блоков, зачастую оканчивающихся смесительным перемещающим элементом обратного хода. Для введения в смесь вымывающего агента могут применяться элементы зубчатого типа или червячные элементы с канавками.

Эксцентриковые диски предпочтительно применяются в последней секции экструдера, там где продукт Р является высоковязким и в основном не содержит летучих соединений.

Для планетарных вальцовых экстудеров предпочтительными являются смесительные пластицирующие элементы, такие как зубовидные вальцы или вальцы с канавками и зазорами.

Как правило, экструдерный узел может включать одну или больше транспортирующих секций и одну или больше накопительных секций, при этом их число ограничивается только конструкционными требованиями. Обычное число транспортирующих секций и накопительных секций составляет от 1 до 30, предпочтительно от 2 до 20 и более предпочтительно от 3 до 15.

Последняя накопительная с