Способы соединения изолированных проводников

Иллюстрации

Показать все

Группа изобретений относится к способу соединения изолированных проводников при обработке подземного пласта. Способ соединения концов двух изолированных проводников включает в себя соединение концевого участка сердечника первого изолированного проводника с концевым участком сердечника второго изолированного проводника. При этом по меньшей мере часть концевых участков сердечников по меньшей мере частично оголена. Помещают электроизоляционный материал поверх оголенных участков сердечников. Помещают втулку поверх концевых участков двух соединяемых изолированных проводников. Причем втулка имеет один или несколько поднятых участков. При этом концевые участки содержат оголенные участки сердечников. Соединяют втулку с оболочками изолированных проводников. Осуществляют механическое сжатие поднятых участков втулки до тех пор, пока поднятые участки втулки не будут иметь диаметр, по существу, аналогичный диаметру остальной части втулки. Причем при сжатии поднятых участков втулки происходит спрессовывание электроизоляционного материала внутри втулки. Техническим результатом является повышение эффективности соединения и увеличение электроизолирующих свойств. 2 н. и 11 з.п. ф-лы, 54 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к системам для изолированных проводников, используемых в нагревательных элементах. В частности, изобретение относится к фитингам для сращивания между собой изолированных проводящих кабелей.

Уровень техники

Углеводороды, добываемые из подземных пластов часто используются в качестве источников энергии, сырья для промышленности и изготовления потребительских товаров. Опасения относительно истощения имеющихся запасов углеводородов и опасения относительно снижения в целом качества добываемых углеводородов стали причиной разработки процессов, направленных на повышение эффективности извлечения, обработки и/или использования углеводородных ресурсов. Для извлечения из подземных пластов углеводородных материалов, которые ранее были недоступны и/или слишком дорогостоящи для извлечения при помощи существующих способов, могут использоваться процессы на месте залегания. Для более легкого извлечения углеводородного материала из подземного пласта и/или увеличения стоимости углеводородного материала может потребоваться изменение химических и/или физических свойств углеводородного материала в подземном пласте. Химические и физические изменения могут включать в себя реакции на месте залегания, в результате которых образуются извлекаемые флюиды, происходят изменения состава, изменения растворимости, изменения плотности, фазовые переходы и/или изменения вязкости углеводородного материала в пласте.

Нагреватели могут помещаться в стволы скважин для нагрева пласта во время процессов на месте залегания. Существует много разных типов нагревателей, которые могут использоваться для нагревания пласта. Примеры процессов на месте залегания, в которых используются скважинные нагреватели, описаны в документах US 2,634,961 на имя Люнгстрэм; US 2,732,195 на имя Люнгстрэм; US 2,780,450 на имя Люнгстрэм; US 2,789,805 на имя Люнгстрэм; US 2,923,535 на имя Люнгстрэм; US 4,886,118 на имя Ван Мюрс и соавт; а также US 6,688,387 на имя Уэллингтон и соавт.

Кабели с минеральной изоляцией (МИ) (изолированные проводники), предназначенные для эксплуатации в подземных условиях, например, в отдельных областях применения для нагрева углеводородсодержащих пластов, имеют увеличенную длину, могут иметь увеличенный внешний диаметр и могут использоваться при более высоких напряжениях и температурах по сравнению с общепринятыми значениями для кабелей с минеральной изоляцией. При производстве и/или монтаже изолированных проводников большой длины возникает много потенциальных проблем.

Например, потенциально могут возникать электрические и/или механические проблемы из-за разрушения со временем электроизоляции, используемой в изолированном проводнике. Также потенциально могут возникать проблемы с электрическими изоляторами, которые приходится решать при монтаже нагревателя с изолированным проводником. При монтаже нагревателя с изолированным проводником могут возникать такие проблемы как вздутие сердечника или другие механические неисправности. Подобные неполадки могут создавать проблемы с электропитанием во время использования нагревателя и потенциально могут сделать нагреватель непригодным для выполнения поставленной для него задачи.

Кроме этого, в подземных областях применения может потребоваться соединение нескольких кабелей с минеральной изоляцией для получения кабелей с минеральной изоляцией достаточной длины, уходящих на такую глубину и расстояние, чтобы можно было эффективно нагревать подземный пласт и соединять участки с разной функциональностью, например, соединять вводные кабели с секциями нагревателя. Для подобных длинных нагревателей также требуется повышенное напряжение для подачи достаточного количества энергии на наиболее удаленные концы нагревателей.

Традиционные сращенные конструкции кабелей с минеральной изоляцией обычно не подходят для напряжений свыше 1000 D, свыше 1500 D или свыше 2000 В и не могут функционировать длительное время без поломок при повышенных температурах, например, свыше 650°C, свыше 700°C или свыше 800°C. Для подобных областей применения с высоким напряжением и высокой температурой обычно приходится спрессовывать минеральный изоляционный материал в сростке таким образом, чтобы он был расположен как можно ближе к уровню спрессовывания или находился над уровнем спрессовывания непосредственно в самом изолированном проводнике (кабеле с минеральной изоляцией).

Относительно большой наружный диаметр и большая длина кабелей с минеральной изоляцией для некоторых областей применения требуют, чтобы сращивание кабелей осуществлялось при горизонтальном положении кабелей. Также осуществляется сращивание кабелей с минеральной изоляцией, которые были уложены горизонтально для других областей применения. Подобная технология обычно предусматривает выполнение небольшого отверстия, через которое минеральная изоляция (например, порошковый оксид магния) заполняется в сросток и слегка спрессовывается за счет вибрации или утрамбовывания. Подобные способы не обеспечивают достаточного спрессовывания минеральной изоляции, либо вообще не обеспечивают никакого спрессовывания минеральной изоляции и не подходят для осуществления сращиваний при использовании в условиях высоких напряжений, необходимых для подобных подземных областей применения.

Поэтому существует потребность в сростках для изолированных проводников, которые, несмотря на их простоту, могут функционировать при высоких напряжениях и температурах в подземных условиях в течение длительного времени, без поломок. Кроме этого, для предотвращения поломок сростка при весовой нагрузке и температурах, которым могут подвергаться кабели под землей, сростки должны обладать высокой прочностью на изгиб и прочностью на растяжение. Также можно использовать технологии и способы для снижения интенсивности электрического поля в сростках таким образом, чтобы уменьшить токи потерь в сростках и увеличить интервал между рабочим напряжением и электрическим пробоем. Снижение интенсивности электрического поля позволяет увеличить напряжение и рабочий диапазон температур для сростков.

Помимо этого, могут возникать проблемы, связанные с увеличением натяжения изолированных проводников во время монтажа и/или установки изолированных проводников под землей. Например, наматывание или разматывание изолированных проводников на катушки перед транспортировкой и установкой изолированных проводников может приводить к механическому напряжению электрических проводников и/или других компонентов изолированных проводников. Поэтому нужны более надежные системы и способы для уменьшения или предотвращения потенциальных проблем, возникающих во время изготовления, монтажа и/или установки изолированных проводников.

Раскрытие изобретения

Рассматриваемые здесь варианты осуществления, в целом, относятся к системам, способам и нагревателям для обработки подземных пластов. Рассматриваемые здесь варианты осуществления также относятся к нагревателям, в которых используются инновационные компоненты. Подобные нагреватели могут быть получены с использованием рассматриваемых здесь систем и способов.

По некоторым вариантам осуществления изобретением предлагается одна или несколько систем, способов и/или нагревателей. По отдельным вариантам осуществления системы, способы и/или нагреватели используются для обработки подземных пластов.

По некоторым вариантам осуществления способ для соединения концов двух изолированных проводников включает в себя: соединение концевого участка сердечника первого изолированного проводника с концевым участком сердечника второго изолированного проводника, при этом по меньшей мере часть концевых участков сердечников по меньшей мере частично оголена; помещение электроизоляционного материала поверх оголенных участков сердечников; помещение втулки поверх концевых участков двух соединяемых изолированных проводников, причем втулка имеет один или несколько поднятых участков, причем концевые участки включают в себя оголенные участки сердечников; соединение втулки с оболочками изолированных проводников; и механическое сжатие поднятых участков втулки до тех пор, пока диаметр поднятых участков втулки, по существу, не станет таким же, как у остальной части втулки, при этом при сжатии поднятых участков втулки происходит спрессовывание электроизоляционного материала внутри втулки.

По некоторым вариантам осуществления способ для соединения концов двух изолированных проводников включает в себя: соединение концевого участка сердечника первого изолированного проводника с концевым участком сердечника второго изолированного проводника, при этом по меньшей мере часть концевых участков сердечников по меньшей мере частично оголена; помещение электроизоляционного материала поверх оголенных участков сердечников; помещение внутренней втулки поверх концевых участков двух соединяемых изолированных проводников, причем концевые участки включают в себя оголенные участки сердечников; помещение внешней втулки поверх внутренней втулки, при этом между внутренней втулкой и внешней втулкой имеется свободный объем, а во внешней втулке имеется отверстие; соединение внутренней втулки и внешней втулки с оболочками изолированных проводников; и подачу текучей среды под давлением в свободный объем между внутренней втулкой и внешней втулкой для вдавливания внутренней втулки в электроизоляционный материал и спрессовывания электроизоляционного материала.

По некоторым вариантам осуществления фитинг для соединения концов изолированных проводников включает в себя: внутреннюю втулку, помещаемую во время использования поверх концевых участков первого изолированного проводника и второго изолированного проводника, причем внутренняя втулка помещена поверх по меньшей мере частично оголенных концевых участков сердечников изолированных проводников, а электроизоляционный материал помещен во время использования поверх оголенных концевых участков сердечников внутри втулки; причем во внешней втулке имеется отверстие, расположенное над внутренней втулкой, при этом между внутренней втулкой и внешней втулкой имеется свободный объем; причем внутренняя втулка и внешняя втулка во время использования соединены с оболочками изолированных проводников; при этом внутренняя втулка сжимается во время использования текучей средой под давлением, подаваемой в свободный объем между внутренней втулкой и внешней втулкой, и при сжатии внутренней втулки происходит спрессовывание электроизоляционного материала во внутренней втулке.

По некоторым вариантам осуществления способ для соединения концов сердечников трех изолированных проводников включает в себя: помещение концевой заделки поверх участков трех изолированных проводников, причем в концевой заделке имеется три отдельных отверстия, проходящих продольно через концевую заделку, каждый из изолированных проводников проходит через одно из отверстий таким образом, что концевые участки изолированных проводников выступают с одной стороны концевой заделки; оголение сердечников на концевых участках изолированных проводников, выступающих из концевых заделок путем удаления оболочки и электроизоляции с концевых участков; соединение концов оболочек изолированных проводников с концевой заделкой; соединение цилиндра со стороной концевой заделки, из которой выступают концевые участки изолированных проводников; заполнение цилиндра электроизоляционным материалом таким образом, чтобы по меньшей мере часть сердечников оставалась оголенной; соединение электрической шины с оголенными участками сердечников; заполнение цилиндра электроизоляционным материалом таким образом, чтобы сердечники были, по существу, упакованы в электроизоляционный материал; и соединение концевой крышки с цилиндром для герметизации внутренней части цилиндра.

По некоторым вариантам осуществления фитинг для соединения концов сердечников трех изолированных проводников включает в себя: концевую заделку, помещенную поверх концевых участков трех изолированных проводников, в котором в концевой заделке имеются три отдельных отверстия, проходящие продольно через концевую заделку, каждый из изолированных проводников проходит через одно из отверстий таким образом, что концевые участки изолированных проводников выступают с одной стороны концевой заделки, оголенные сердечники концевых участков изолированных проводников выступают из концевой заделки; цилиндр, соединенный со стороной концевой заделки из которой выступают концевые участки изолированных проводников; электрическую шину, соединенную с оголенными участками сердечников; электроизоляционный материал, заполняющий цилиндр таким образом, чтобы сердечники были, по существу, упакованы в электроизоляционный материал; и концевую крышку, соединенную с цилиндром для герметизации внутренней части цилиндра.

По некоторым вариантам осуществления способ для перевода трехфазного нагревателя с замкнутым на землю участком в однофазный режим с использованием трехфазного источника питания включает в себя: установку резистора между нейтральным проводом источника электропитания и замкнутым на землю участком трехфазного нагревателя таким образом, чтобы через замкнутый на землю участок проходил минимальный ток, либо ток совсем не проходил, при этом резистор последовательно соединен с замкнутым на землю участком; подачу электропитания на два других участка нагревателя от источника электропитания таким образом, чтобы два участка функционировали в качестве однофазного нагревателя, при этом ток проходит в пласт по одному участку и возвращается по другому участку, в котором два участка соединены под землей при помощи фитинга, у которого имеется: концевая заделка, помещенная поверх концевых участков трех изолированных проводников, в котором в концевой заделке имеются три отдельных отверстия, проходящие продольно через концевую заделку, каждый из изолированных проводников проходит через одно из отверстий таким образом, что концевые участки изолированных проводников выступают с одной стороны концевой заделки, оголенные сердечники концевых участков изолированных проводников выступают из концевой заделки; цилиндр, соединенный со стороной концевой заделки из которой выступают концевые участки изолированных проводников; электрическая шина, соединенная с оголенными участками сердечников; электроизоляционный материал, заполняющий цилиндр таким образом, чтобы сердечники были, по существу, упакованы в электроизоляционный материал; и концевая крышка, соединенная с цилиндром для герметизации внутренней части цилиндра.

По некоторым вариантам осуществления фитинг для соединения одного из концов первого изолированного проводника с одним из концов второго изолированного проводника включает в себя: втулку, выполненную с возможностью ее помещения поверх конца первого изолированного проводника и конца второго изолированного проводника; и муфту для соединения сердечников, расположенную внутри втулки, муфта для соединения сердечников выполнена с возможностью ее одевания вокруг одного из концов сердечника первого изолированного проводника и одного из концов сердечника второго изолированного проводника, при этом сердечники изолированных проводников выполнены с возможностью совместного перемещения в муфте для соединения сердечников после того как концы изолированных проводников помещены в муфту, и между концами сердечников имеется заданный промежуток; причем внутренний объем втулки выполнен с возможностью по меньшей мере его частичного заполнения электроизоляционным материалом, а электроизоляционный материал выполнен с возможностью его сжимания с концевым участком электроизолятора первого изолированного проводника и концевым участком электроизолятора второго изолированного проводника после соединения фитинга с изолированными проводниками.

По дополнительным вариантам осуществления признаки из конкретных вариантов осуществления могут комбинироваться с признаками из других вариантов осуществления. Например, признаки из одного варианта осуществления могут комбинироваться с признаками из любых других вариантов осуществления.

По дополнительным вариантам осуществления обработка подземного пласта осуществляется с использованием любых рассматриваемых здесь способов, систем, источников электропитания или нагревателей.

По дополнительным вариантам осуществления в конкретные рассматриваемые здесь варианты осуществления могут добавляться дополнительные признаки.

Краткое описание чертежей

Признаки и преимущества способов и установки по настоящему изобретения станут более понятны со ссылкой на следующее подробное описание на данный момент предпочтительных, но, тем не менее, иллюстративных вариантов осуществления настоящего изобретения совместно с прилагаемыми чертежами.

На фиг.1 показан схематический вид одного из вариантов осуществления части системы тепловой обработки на месте залегания для обработки углеводородсодержащего пласта.

На фиг.2 изображен один из вариантов осуществления теплового источника изолированного проводника.

На фиг.3 изображен один из вариантов осуществления теплового источника изолированного проводника.

На фиг.4 изображен один из вариантов осуществления теплового источника изолированного проводника.

На фиг.5 изображен вид сбоку, в сечении одного из вариантов осуществления фитинга для соединения изолированных проводников.

На фиг.6 изображен один из вариантов осуществления режущего инструмента.

На фиг.7 изображен вид сбоку, в сечении другого варианта осуществления фитинга для соединения изолированных проводников.

На фиг.8А изображен вид сбоку, в сечении одного из вариантов осуществления резьбового фитинга для соединения трех изолированных проводников.

На фиг.8В изображен вид сбоку, в сечении одного из вариантов осуществления сварного фитинга для соединения трех изолированных проводников.

На фиг.9 изображен один из вариантов осуществления моментного инструмента.

На фиг.10 изображен один из вариантов осуществления зажимного устройства, которое может использоваться для механического спрессовывания фитинга при соединении изолированных проводников.

На фиг.11 показано изображение в разобранном виде одного из вариантов осуществления гидравлического пресса.

На фиг.12 показано изображение одного из вариантов осуществления собранного гидравлического пресса.

На фиг.13 изображен один из вариантов осуществления фитинга и изолированных проводников, закрепленных в зажимных устройствах перед спрессовыванием фитинга и изолированных проводников.

На фиг.14 изображен вид сбоку еще одного, другого варианта осуществления фитинга для соединения изолированных проводников.

На фиг.15 изображен вид сбоку одного из вариантов осуществления фитинга с отверстием, закрытым вставкой.

На фиг.16 изображен один из вариантов осуществления фитинга с устройствами уменьшения электрического поля, расположенными между оболочками изолированных проводников и втулками, а также у концов изолированных проводников.

На фиг.17 изображен один из вариантов осуществления устройства уменьшения напряженности электрического поля.

На фиг.18 изображен вид в сечении фитинга в тот момент, когда изолированные проводники помещаются в фитинг.

На фиг.19 изображен вид в сечении фитинга после соединения изолированных проводников внутри фитинга.

На фиг.20 изображен вид в сечении еще одного, другого варианта осуществления фитинга в тот момент, когда изолированные проводники помещаются в фитинг.

На фиг.21 изображен вид в сечении еще одного, другого варианта осуществления фитинга после соединения изолированных проводников внутри фитинга.

На фиг.22 изображен один из вариантов осуществления блоков электроизоляционного материала, расположенных вокруг сердечников соединенных изолированных проводников.

На фиг.23 изображен один из вариантов осуществления четырех блоков электроизоляционного материала, расположенных вокруг сердечников соединенных изолированных проводников.

На фиг.24 изображен один из вариантов осуществления внутренней втулки, помещенной поверх соединенных изолированных проводников.

На фиг.25 изображен один из вариантов осуществления внешней втулки, установленной вокруг внутренней втулки и соединенных изолированных проводников.

На фиг.26 изображен один из вариантов осуществления скошенного конца изолированного проводника после сжатия.

На фиг.27 изображен один из вариантов осуществления первой половины спрессовывающего устройства, используемого для спрессовывания электроизоляционного материала при соединении изолированных проводников.

На фиг.28 изображен один из вариантов осуществления устройства, соединенного вокруг изолированных проводников.

На фиг.29 изображен вид сбоку изолированного проводника внутри устройства, когда первый плунжер находится в положении над изолированным проводником с оголенным сердечником.

На фиг.30 изображен вид сбоку изолированного проводника внутри устройства, когда второй плунжер находится в положении над изолированным проводником с оголенным сердечником.

На фиг.31A-D изображены другие варианты осуществления второго плунжера.

На фиг.32 изображен один из вариантов осуществления, на котором вторая половина устройства удалена, а первая половина оставлена для спрессовывания электроизоляционного материала вокруг муфты соединения между изолированными проводниками.

На фиг.33 изображен один из вариантов осуществления электроизоляционного материала, расположенного вокруг муфты соединения изолированных проводников.

На фиг.34 изображен один из вариантов осуществления втулки, помещенной вокруг электроизоляционного материала.

На фиг.35 изображен один из вариантов осуществления гидравлического пресса, который может использоваться для приложения усилия к плунжеру для гидравлического спрессовывания электроизоляционного материала внутри устройства.

На фиг.36 изображен один из вариантов осуществления втулки, используемой для окружного механического спрессовывания.

На фиг.37 изображен один из вариантов осуществления втулки на изолированных проводниках после того как втулка и ребра были спрессованы по окружности.

На фиг.38 изображен один из вариантов осуществления усилительных втулок на соединенных изолированных проводниках.

На фиг.39 показано изображение в разобранном виде другого варианта осуществления фитинга, используемого для соединения трех изолированных проводников.

На фиг.40-47 изображен один из вариантов осуществления способа установки фитинга на концах изолированных проводников.

На фиг.48 изображен один из вариантов осуществления спрессовывающего инструмента, который может использоваться для спрессовывания электроизоляционного материала.

На фиг.49 изображен один из вариантов осуществления другого спрессовывающего инструмента, который может использоваться для спрессовывания электроизоляционного материала.

На фиг.50 изображен один из вариантов осуществления спрессовывающего инструмента, который может использоваться для окончательного спрессовывания электроизоляционного материала.

Хотя изобретение допускает различные модификации и альтернативные формы, на чертежах, в качестве примера, показаны конкретные варианты его осуществления, которые будут рассмотрены далее более подробно. Чертежи могут быть даны не в масштабе. Следует понимать, что чертежи и подробное описание изобретения не преследуют целью ограничения изобретения конкретной раскрываемой формой, наоборот, изобретение охватывает любые модификации, аналоги и альтернативные варианты, не выходящие за объем и сущность настоящего изобретения, в том виде как оно определено в формуле изобретения.

Осуществление изобретения

Следующее описание, в целом, относится к системам и способам обработки углеводородов в пластах. Обработка подобных пластов может осуществляться для извлечения углеводородных продуктов, водорода, а также других продуктов.

Термин «переменный ток» относится к изменяющемуся во времени току, который реверсирует свое направление, по существу, синусоидально. Переменный ток создает в ферромагнитном проводнике поверхностный эффект при протекании тока.

Термин «соединенный» означает либо непосредственное соединение, либо опосредованное соединение (например, одно или несколько промежуточных соединений) между одним или несколькими объектами или компонентами. Фраза «непосредственно соединенный» означает непосредственное соединение между объектами или компонентами таким образом, что объекты или компоненты соединены непосредственно друг с другом так, что объекты или компоненты функционируют в режиме «точка использования».

Термин «пласт» включает в себя один или несколько углеводородсодержащих слоев, один или несколько неуглеводородных слоев, перекрывающую и/или подстилающую породу. Термин «углеводородные слои» относится к слоям пласта, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородный материал и углеводородный материал. «Перекрывающие» и/или «подстилающие» породы включают в себя один или несколько разных типов непроницаемых материалов. Например, перекрывающая и/или подстилающая порода может включать в себя скальные породы, сланцы, аргиллит или мокрый/непроницаемый карбонат. По отдельным вариантам осуществления процессов тепловой обработки по месту залегания, перекрывающая и/или подстилающая порода может включать в себя углеводородсодержащий слой или углеводородсодержащие слои, которые являются относительно непроницаемыми и не подвергаются воздействию температур во время тепловой обработки на месте залегания, которая в результате приводит к значительным изменениям параметров углеводородсодержащих слоев в перекрывающей и/или подстилающей породе. Например, подстилающая порода может содержать сланцы или аргиллит, однако во время процесса обработки по месту залегания подстилающую породу не нагревают до температур пиролиза. В отельных случаях перекрывающая и/или подстилающая порода может быть частично проницаемой.

Термин «пластовые флюиды» относится к флюидам, присутствующим в пласте, и может включать в себя пиролизованный флюид, синтез-газ, подвижные углеводороды и воду (пар). Пластовые флюиды могут включать в себя углеводородные флюиды, а также неуглеводородные флюиды. Термин «подвижный флюид» относится к флюидам в углеводородсодержащем пласте, которые способны перетекать в результате тепловой обработки пласта. Термин «добываемый флюид» относится к флюидам, извлекаемым из пласта.

«Тепловой источник» может быть любой системой для обеспечения нагрева по меньшей мере части пласта, по существу, за счет теплопередачи путем теплопроводности и/или излучения. Например, тепловой источник может включать в себя электропроводящий материал и/или электронагреватели, такие как изолированный проводник, удлиненный элемент и/или проводник, находящийся в канале. Тепловой источник также может включать в себя системы, которые создают тепло за счет сжигания топлива, полученного за пределами или в пределах пласта. Системы могут быть поверхностными горелками, скважинными газовыми горелками, беспламенными распределенными топками и природными распределенными топками. По отдельным вариантам осуществления тепло, подаваемое или создаваемое одним или несколькими тепловыми источниками, может поступать от других источников энергии. Другие источники энергии могут непосредственно нагревать пласт, либо энергия может подаваться в передаточную среду, которая непосредственно или опосредованно нагревает пласт. Следует понимать, что один или несколько тепловых источников, которые подают тепло в пласт, могут использовать разные источники энергии. Так, например, для определенного пласта отдельные тепловые источники могут подавать тепло за счет использования электропроводящих материалов, нагревателей с электрическим сопротивлением, некоторые тепловые источники могут подавать тепло за счет сжигания, а некоторые тепловые источники могут подавать тепло из одного или нескольких источников (например, за счет химических реакций, солнечной энергии, энергии ветра, биомассы или иных источников возобновляемой энергии). Химические реакции могут включать в себя экзотермическую реакцию (например, реакцию окисления). Тепловой источник также может включать в себя электропроводящий материал и/или нагреватель, обеспечивающий подачу тепла в область, прилегающую и/или окружающую место нагрева, такую как скважину нагревателя.

«Нагреватель» является любой системой или тепловым источником для создания тепла в скважине или рядом с областью скважинного ствола. Нагреватели могут быть, но не только, электрическими нагревателями, горелками, топками, которые вступают в реакцию с материалом, находящимся в пласте или получаемым из пласта, и/или комбинацией из них.

«Углеводороды», в целом, можно определить как молекулы, состоящие преимущественно из атомов углерода и водорода. Углеводороды также могут включать в себя другие элементы, такие как, включая, но не ограничиваясь, галогены, элементы металлов, азот, кислород и/или серу. Углеводороды могут быть, но не ограничены только ими, керогеном, битумом, пиробитумом, маслами, природными минералами восками и асфальтитами. Углеводороды могут находиться в минеральных матрицах в земле или рядом с ними. Матрицы могут включать в себя, но не ограничены только ими, осадочные горные породы, пески, силицилиты, карбонаты, диатомиты и другие пористые среды. «Углеводородные флюиды» - это флюиды, которые включают в себя углеводороды. Углеводородные флюиды могут включать в себя, содержать или содержаться в неуглеводородных флюидах, таких как водород, азот, моноксид углерода, диоксид углерода, сероводород, вода и аммиак.

Термин «процесс преобразования на месте залегания» относится к процессу нагревания углеводородсодержащего пласта за счет теплового источника для увеличения температуры по меньшей мере части пласта свыше температуры пиролиза таким образом, чтобы в пласте образовывался пиролизованный флюид.

Термин «процесс тепловой обработки по месту залегания» относится к процессу нагрева углеводородсодержащего пласта за счет тепловых источников для увеличения температуры по меньшей мере части пласта выше температуры при которой начинается подвижность флюида, легкий крекинг и/или пиролиз углеводородсодержащего материала таким образом, что в пласте происходит образование подвижных флюидов, флюидов, полученных в результате легкого крекинга и/или пиролизованных флюидов.

Термин «изолированный проводник» относится к любому удлиненному материалу, способному проводить электричество, который закрыт полностью или частично электроизоляционным материалом.

Термин «нитрид» относится к соединению из азота и одного или нескольких других элементов периодической таблицы. Нитриды включают в себя, но не ограничены только ими, нитрид кремния, нитрид бора или нитрид окиси алюминия.

Термин «перфорирования» включает в себя отверстия, щели, вырезы или проемы в стенке канала, трубы, трубки или иной магистрали для прохождения потока, позволяющие потоку входить или выходить из канала, трубы, трубки или иной магистрали для прохождения потока.

«Пиролиз» - разрушение химических связей за счет подачи тепла. Например, пиролиз может включать в себя преобразование соединения в одну или несколько субстанций лишь за счет нагрева. Для начала пиролиза тепло может подаваться на один из участков пласта.

Термин «пиролизованный флюид» или «продукты пиролиза» относится к флюидам, полученным, по существу, во время пиролиза углеводородов. Флюид, полученный в результате реакции пиролиза, может смешиваться с другими флюидами в пласте. Смесь считается пиролизованным флюидом или пиролизованным продуктом. Используемый здесь термин «зона пиролиза» относится к объему пласта (например, относительно проницаемому пласту, такому как пласт из песков), который вступил в реакцию или вступает в реакцию для образования пиролизованного флюида.

Термин «толщина» слоя относится к толщине сечения слоя, в котором сечение проходит перпендикулярно поверхности слоя.

Термин «ствол скважины» относится к отверстию в пласте, полученному за счет бурения или помещения в пласт канала. Ствол скважины может иметь, по существу, круговое сечение или иную форму сечения. Используемые здесь термины «скважина» или «отверстие», применительно к отверстию в пласте, могут использоваться взаимозаменяемо с термином «ствол скважины».

Обработка пласта может осуществляться различными путями для получения широкого спектра разных продуктов. Во время процесса тепловой обработки по месту залегания могут использоваться разные этапы или процессы обработки пласта. По отдельным вариантам осуществления на одном или нескольких участков пласта осуществляется добыча растворением для извлечения с данных участков растворимых минералов. Добыча растворением может осуществляться до, во время и/или после процесса тепловой обработки по месту залегания. По отдельным вариантам осуществления средняя температура одного или нескольких участков, на которых производится добыча растворением, может поддерживаться ниже примерно 120°C.

По отдельным вариантам осуществления один или несколько участков пласта нагреваются для удаления воды из участков и/или удаления из участков метана и других летучих углеводородов. По отдельным вариантам осуществления во время удаления воды и летучих углеводородов средняя температура может подниматься с температуры окружающей среды до температуры примерно ниже 220°C.

По отдельным вариантам осуществления один или несколько участков пласта нагреваются до такой температуры, которая приводит к подвижности и/или легкому крекингу углеводородов в пласте. По отдельным вариантам осуществления средняя температура на одном или нескольких участках пласта увеличивается до температуры подвижности углеводородов на участке (например, до температуры в диапазоне от 100°C до 250°C, от 120°C до 240°C, или от 150°C до 230°C).

По отдельным вариантам осуществления один или несколько участков пласта нагреваются до такой температуры, при которой в пласте начинаются реакции пиролиза. По отдельным вариантам осуществления средняя температура на одном или нескольких участках пласта может увеличиваться до температуры пиролиза углеводородов на участках (например, до температуры в диапазоне от 230°C до 900°C, от 240°C до 400°C, или от 250°C до 350°C).

Нагрев углеводородсодержащего пласта при помощи множества тепловых источников может создавать температурные градиенты вокруг тепловых источников, которые увеличивают температуру углеводородов в пласте до необходимой температуры при необходимой скорости нагрева. Увеличение температурного коэффициента за счет диапазона температур подвижности и/или диапазона температур пиролиза может влиять на качество и количество пластовых флюидов, получаемых из углеводородсодержащего пласта. Медленное увеличение температуры пласта за счет диапазона температур подвижности и/или диапазона температур пиролиза позволяет получать из пласта углеводороды высокого качества, с высокой значением плотности по шкале АНИ. Медленное увеличение температуры пласта за счет диапазона температур подвижности и/или диапазона температур пиролиза позволяет извлекать из пласта большое количество углеводородов, используемых в качестве углеводородной продукции.

По отдельным вариантам осуществления тепловой обработки по месту залегания, вместо медленного увеличения температуры во всем температурном диапазоне, до необходимой температуры нагревается один из участков пласта. По отдельным вариантам осуществления необходимая температура состав