Новая концепция высокотемпературной пайки

Иллюстрации

Показать все

Изобретение относится к области металлургии, а именно к высокотемпературной пайке. Механическая смесь частиц порошков для высокотемпературной пайки изделия содержит по меньшей мере один источник бора и по меньшей мере один источник кремния. Частицы имеют средний размер менее чем 250 мкм, каждая частица является источником кремния или источником бора. Механическая смесь содержит бор и кремний в массовом соотношении бора к кремнию в диапазоне от 5:100 до 1:1; кремний и бор присутствуют совместно в механической смеси в концентрации по меньшей мере 25 мас.%. По меньшей мере один источник бора и по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, составляющих менее чем 10 мас.%. Упрощается процесс пайки при сокращении количества тугоплавких присадок. 10 н. и 29 з.п. ф-лы, 6 ил., 19 табл., 13 пр.

Реферат

Настоящее изобретение относится к новой концепции высокотемпературной пайки, смеси, композиции и изделию. Настоящее изобретение дополнительно относится к способу обеспечения паяного изделия, к паяному изделию, полученному с помощью этого способа, и к применениям.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Сегодня существуют различные способы соединения для соединения вместе сплавов, имеющих высокие температуры плавления. Под высокой температурой подразумевается температура плавления выше чем 900°C. Одним общепринятым способом, который используют, является сварка. Сварка относится к способу, в котором основной материал плавится с дополнительным материалом или без него, т.е. к созданию литого изделия посредством плавления и повторного затвердевания. Другим способом соединения является высокотемпературная пайка. В процессе высокотемпературной пайки к основному материалу добавляют тугоплавкую присадку и тугоплавкая присадка плавится во время процесса при температуре выше 450°C, т.е. формируя жидкую межфазную поверхность раздела при температуре ниже, чем температура ликвидуса основного материала, подлежащего соединению. При высокотемпературной пайке жидкая межфазная поверхность раздела должна иметь хорошее смачивание и текучесть. Низкотемпературная пайка является процессом, в котором две или больше металлических детали соединяют посредством плавления и натекания присадочного металла, т.е. припоя, в соединение, причем легкоплавкий припой имеет температуру плавления ниже, чем обрабатываемое изделие. При высокотемпературной пайке присадочный металл плавится при более высокой температуре, чем легкоплавкий припой, но при этом обрабатываемое металлическое изделие не плавится. Различие между низкотемпературной пайкой и высокотемпературной пайкой основывается на температуре плавления присадочного припоя. Температура 450°C обычно используется как точка практического разграничения между низкотемпературной пайкой и высокотемпературной пайкой.

При высокотемпературной пайке тугоплавкую присадку наносят в соприкосновение с зазором или промежутком между основным материалом, подлежащим соединению. В процессе нагрева тугоплавкая присадка плавится и заполняет зазор, подлежащий соединению. В процессе высокотемпературной пайки существуют три главные стадии, причем первая стадия называется физической стадией. Физическая стадия включает в себя смачивание и растекание тугоплавкой присадки. Вторая стадия обычно происходит при заданной температуре соединения. В течение этой стадии осуществляется взаимодействие твердое тело - жидкость, которое сопровождается существенным переносом массы. Объем основного материала, который непосредственно примыкает к жидкому присадочному металлу, либо растворяется в жидком присадочном металле, либо реагирует с ним на этой стадии. Одновременно небольшое количество элементов из жидких фаз проникает в твердый основной материал. Это перераспределение компонентов в области соединения приводит к изменениям состава присадочного металла, и иногда к началу затвердевания присадочного металла. Последняя стадия, которая перекрывает вторую, характеризуется формированием конечной микроструктуры соединения и продолжается во время затвердевания и охлаждения соединения.

Способом, тесно связанным со сваркой и высокотемпературной пайкой, является диффузионная высокотемпературная пайка (DFB), также называемая соединением в исчезающей жидкой фазе (TLP) или активированным диффузионным соединением (ADB). Иногда упоминается диффузионное соединение, но диффузионное соединение относится к диффузионной высокотемпературной пайке или к диффузионной сварке, и теперь диффузионное соединение рассматривается как нестандартный термин.

Диффузионная высокотемпературная пайка (DFB), соединение в исчезающей жидкой фазе (TLP) или активированное диффузионное соединение (ADB) является процессом, который сращивает или соединяет металлы путем их нагрева до подходящей температуры высокотемпературной пайки, при которой либо предварительно размещенный присадочный металл будет плавиться или перетекать под влиянием капиллярного эффекта, либо жидкая фаза будет формироваться на месте между двумя поверхностями, находящимися в соприкосновении друг с другом. В любом случае присадочный металл диффундирует в основной материал до тех пор, пока физические и механические свойства соединения не станут почти идентичными свойствам основного металла. Два критических аспекта DFB, TLP или ADB являются такими:

- жидкость должна быть образована и стать активной в области соединения; и

- должна произойти обширная диффузия элементов присадочного металла в основной материал.

Способы получения соединения, похожего или такого же, как соединение, получаемое при использовании DFB, TLP или ADB, но имеющего преимущество высокотемпературной пайки, например, имеющего возможность запаивать большие зазоры и т.д., посредством применения технологии высокотемпературной пайки и тугоплавких присадок раскрыты в WO 2002/38327, WO 2008/060225 и WO 2008/060226. При применении тугоплавкой присадки, т.е. тугоплавкого припоя, с составом, близким к основному материалу, но с добавленными понижающими температуру плавления компонентами, например, кремнием и/или бором, и/или фосфором. При этом паяное соединение будет иметь состав, близкий к основному материалу после высокотемпературной пайки, поскольку тугоплавкая присадка имела состав, подобный основному материалу, при этом тугоплавкая присадка смешивается с основным материалом благодаря растворению основного материала, и понижающие температуру плавления компоненты диффундируют в основной материал.

Существует множество причин для выбора определенного способа соединения, такие как стоимость, производительность, безопасность, скорость и свойства соединенного изделия. Родственные Е-модули будут уменьшать риск высоких напряжений в материале с более высоким Е-модулем, когда материал нагружается. При похожем коэффициенте теплового расширения результатом будет уменьшение термически индуцированных напряжений. При похожем электрохимическом потенциале результатом будет уменьшение риска коррозии.

Использование присадок, т.е. сплавов, при соединении основных металлов является сложным процессом. Присадка должна находиться в форме, которая могла бы быть нанесена на основной металл перед нагревом. Обычно присадки представляют собой частицы, соответственно произведенные сверхтонким измельчением, но присадки также могут быть в форме фольги, произведенной "формованием из расплава", т.е. быстрого затвердевания (RS). Что касается RS, то с его помощью можно произвести лишь ограниченное число составов. Число составов, которые могут быть изготовлены в виде частиц, т.е. порошка, значительнее, и обычным способом производства порошков является сверхтонкое измельчение. Когда присадки находятся в форме порошков, тогда их часто комбинируют со связующими для образования пасты, которая может быть нанесена на основной металл любым подходящим образом. Производство фольги или производство порошков для сплавов являются сложными процессами, и, следовательно, дороги. Когда используют порошки, порошки наносят в подходящей форме пасты, как упомянуто выше, это добавит дополнительный этап в процесс, поскольку паста должна быть смешена со связующими и другими компонентами, которые являются практически значимыми для свойств пасты. В обоих процессах выполняют большой объем работы для получения правильной формы, свойств, внешнего вида и состава присадки перед плавлением и соединением.

ИЗОБРЕТЕНИЕ

Целью изобретения является уменьшение количества этапов процесса соединения подложек из основных материалов. Другой целью является упрощение соединения основных материалов и, таким образом, уменьшение затрат.

Если это возможно, при выборе тугоплавких присадок выгодным является состав, близкий к основному материалу, поскольку основной материал выбран для целей назначения изделия. Если бы это было возможно, и затраты являлись бы неограниченными, лучше всего было бы разработать по одной тугоплавкой присадке для каждого основного материала. Следовательно, другой целью изобретения является сокращение необходимого числа тугоплавких присадок.

Соответственно, настоящее изобретение предлагает решение технических проблем и целей с помощью новой изобретательской концепции высокотемпературной пайки. Первый аспект относится к смеси по меньшей мере одного источника бора и по меньшей мере одного источника кремния, причем смесь включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 3:100 масс./масс. до примерно 100:3 масс./масс., предпочтительно в диапазоне от примерно 5:100 мас./мас. до примерно 2:1 мас./мас., более предпочтительно от примерно 5:100 мас./мас. до примерно 1:1 мас./мас., при этом кремний и бор присутствуют в смеси в концентрации по меньшей мере 25 мас.%, предпочтительно кремний и бор присутствуют в смеси в концентрации по меньшей мере 35 мас.%. По меньшей мере один источник бора и по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и при этом смесь является механической смесью порошков, а частицы в порошках могут иметь средний размер частиц менее чем 250 мкм, предпочтительно частицы в порошках имеют средний размер частиц менее чем 160 мкм, и более предпочтительно частицы имеют средний размер частиц менее чем 100 мкм.

Смесь по настоящему изобретению является выгодной в том, что она обеспечивает возможности получать соединения между подложками. Полученные соединения состоят из материала, подобного материалу(ам) подложек, за исключением того, что соединения содержат дополнительные количества элементов смеси. Путем обеспечения формирования соединений материала в подложках в соответствии с новой концепцией высокотемпературной пайки, можно избежать или по меньшей мере снизить риски коррозии, поскольку будет меньше различий между материалом в соединениях и в подложке по сравнению с тем, когда используются коммерческие материалы для высокотемпературной пайки.

Подложки относятся к деталям получаемого изделия, при этом данные детали могут быть, например, но не ограничиваются этим, толстыми деталями, такими как сепараторы или отстойники и т.д., либо тонкими деталями, такими как пластины или рулоны. Подложками могут быть любые детали, которые должны быть соединены или на которые следует нанести покрытие. Подложки также могут быть заготовками. Подложки состоят из основных материалов, т.е. из материала, подлежащего высокотемпературной пайке. Основные материалы относятся к основным металлам или основным сплавам, причем упомянутые основной металл или основные сплавы подходят для высокотемпературной пайки. Примеры основных материалов могут быть найдены в таблице 1, при этом изобретение не ограничивается примерами в таблице 1.

Основной материал может быть сплавом, включающим в себя элементы, такие как железо (Fe), хром (Cr), никель (Ni), молибден (Mo), марганец (Mn), медь (Cu), кобальт (Co) и т.д. Примеры таких сплавов находятся в списке таблицы 1, причем основные материалы не ограничиваются этим списком, а являются лишь примерами возможных основных материалов.

Таблица 1
Основные материалы Приблизительная температура солидуса [°C] Приблизительная температура ликвидуса [°C]
Никель 200/201 1435 1445
Nicrofer 5923hMo 1310 1360
Сплав Hastelloy® C-2000® 1328 1358
Hastelloy B3 1370 1418
Сплав C22 1357 1399
Inconel 625 1290 1350
Сплав C 276 1325 1370
Nicrofer 3033 1330 1370
Nicrofer 3127HMo 1350 1370
AL6XN 1320 1400
254SMO 1325 1400
Монель 400 1299 1348
Низкоуглеродистая сталь 1505 1535
Нержавеющая сталь типа 316 1390 1440
Нержавеющая сталь типа 304 1399 1421

Основной материал относится к металлу или сплаву. Сплав определяется как однородное объединение или соединение двух или более элементов, причем сплав обладает выраженными показателями всех или большинства тех характеристик, которые обычно описываются как металлические. Сплавы являются соединениями, а не только смесями. Металл относится к элементу, который имеет металлические свойства.

Соединения являются комбинациями двух или более элементов. Стекло, сталь, окись железа являются соединениями, в которых каждый атом притягивается всеми смежными атомами так, что образуется однородное или почти однородное твердое тело, причем такие тела очевидно не являются только механическими смесями, химическими соединениями переменного или неопределенного состава, такими как силикаты и полимеры, которые химически соединяются, но являются соединением переменных составов.

Без привязки к какой-либо конкретной теории, изобретатели полагают, что присутствие бора обеспечивает смачиваемость и понижение температуры плавления, а кремний обеспечивает понижение температуры плавления.

Источник бора относится к элементарному бору (B), сплаву или соединению, содержащему бор.

Источник кремния относится к элементарному кремнию (Si), сплаву или соединению, содержащему кремний.

Механическая смесь порошков относится к механическому смешиванию двух или больше компонентов. Механическая смесь порошков представляет собой частицы из различных источников, причем каждая частица является либо источником бора, либо источником кремния.

Загрязняющий кислород относится к неизбежным количествам кислорода, которые содержатся, например, в технических сортах и т.д. источника кремния или источника бора, и это количество может составлять вплоть до 5 мас.% кислорода в источнике бора и вплоть до 5 мас.% кислорода в источнике кремния. Загрязняющий кислород может составлять вплоть до 10 мас.%.

Количество кремния и бора в смеси зависит от чистоты кремния и бора, а также от типа источника кремния или источника бора, которые содержатся в смеси. Например, если источником кремния является ферросилиций (Fe-Si), железо является тяжелым, и количество кремния и бора будет ниже. В таблице 2 приведено несколько примеров.

Таблица 2
Смесь B или Si B4C, Fe-B, Fe-Si, Ni-B Si B Общая масса Масса B+Si Количество B+Si[мас.%]
Si/B4C 10,0 2,6 2,0 12,6 12,0 95,2
Si/Fe-B 10,1 12,5 2,0 22,6 12,1 53,5
B/Fe-Si 2,0 30,2 10,1 32,6 12,1 37,6
Si/Ni-B 10,1 13,0 2,0 23,1 12,1 52,4

В соответствии с одним примером смесь по меньшей мере одного источника бора и по меньшей мере одного источника кремния включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 5:100 до примерно 2:1, предпочтительно от примерно 5:100 до примерно 1:1, причем кремний и бор присутствуют в смеси в концентрации по меньшей мере 50 мас.%, предпочтительно кремний и бор присутствуют в смеси в концентрации по меньшей мере 60 мас.%, более предпочтительно кремний и бор присутствуют в смеси в концентрации по меньшей мере 70 мас.%, наиболее предпочтительно кремний и бор присутствуют в смеси в концентрации по меньшей мере 80 мас.%, и причем по меньшей мере один источник бора и по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и причем смесь является механической смесью порошков, а частицы в порошках имеют средний размер частиц менее чем 160 мкм.

Одним преимуществом размера частиц менее чем 250 мкм является способность распределять смесь на подложке настолько равномерно, насколько это возможно.

Одно преимущество массового соотношения бора и кремния в диапазоне от примерно 5:100 до примерно 2:1 состоит в том, что полученный тугоплавкий припой будет иметь хорошую смачиваемость и, таким образом, хорошую текучесть. Хорошая текучесть является преимуществом при высокотемпературной пайке соединений, потому что полученный тугоплавкий припой будет вытекать из тех областей, где получается тугоплавкий припой, и перетекать в область соединения.

В соответствии с другим примером имеется смесь по меньшей мере одного источника бора и по меньшей мере одного источника кремния, при этом смесь включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 1:10 до примерно 7:10, причем кремний и бор присутствуют в смеси в концентрации по меньшей мере 25 мас.%, предпочтительно кремний и бор присутствуют в смеси в концентрации по меньшей мере 35 мас.%. Упомянутый по меньшей мере один источник бора и упомянутый по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и причем смесь является механической смесью порошков, а частицы в порошках имеют средний размер частиц менее чем 160 мкм, предпочтительно менее чем 100 мкм.

В соответствии с другим примером имеется смесь по меньшей мере одного источника бора и по меньшей мере одного источника кремния, при этом смесь включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 15:100 до примерно 4:10, причем кремний и бор присутствуют в смеси в концентрации по меньшей мере 25 мас.%, предпочтительно кремний и бор присутствуют в смеси в концентрации по меньшей мере 35 мас.%. Упомянутый по меньшей мере один источник бора и упомянутый по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и причем смесь является механической смесью порошков, а частицы в порошках имеют размер частиц менее чем 160 мкм, предпочтительно менее чем 100 мкм.

В соответствии с другим примером имеется смесь по меньшей мере одного источника бора и по меньшей мере одного источника кремния, при этом смесь включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 3:100 до примерно 100:3, предпочтительно в диапазоне от примерно 5:100 до примерно 1:1, причем кремний и бор присутствуют в смеси в диапазоне от примерно 40 мас.% до примерно 100 мас.%, предпочтительно кремний и бор присутствуют в смеси в диапазоне от примерно 45 мас.% до примерно 100 мас.%. Упомянутый по меньшей мере один источник бора и упомянутый по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и причем смесь является механической смесью порошков, а частицы в порошках имеют средний размер частиц менее чем 160 мкм, предпочтительно менее чем 100 мкм.

В соответствии с одним примером имеется смесь по меньшей мере одного источника бора и по меньшей мере одного источника кремния, при этом смесь включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 1:10 до примерно 7:10, причем кремний и бор присутствуют в смеси в диапазоне от примерно 40 мас.% до примерно 100 мас.%, предпочтительно кремний и бор присутствуют в смеси в диапазоне от примерно 45 мас.% до примерно 100 мас.%. Упомянутый по меньшей мере один источник бора и упомянутый по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и причем смесь является механической смесью порошков, а частицы в порошках имеют средний размер частиц менее чем 160 мкм, предпочтительно менее чем 100 мкм, более предпочтительно менее чем 50 мкм.

В соответствии с другим примером имеется смесь по меньшей мере одного источника бора и по меньшей мере одного источника кремния, при этом смесь включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 15:100 до примерно 4:10, причем кремний и бор присутствуют в смеси в диапазоне от примерно 40 мас.% до примерно 100 мас.%, предпочтительно в диапазоне от примерно 45 мас.% до примерно 100 мас.%. Упомянутый по меньшей мере один источник бора и упомянутый по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и причем смесь является механической смесью порошков, а частицы в порошках имеют средний размер частиц менее чем 160 мкм, предпочтительно менее чем 100 мкм, более предпочтительно менее чем 50 мкм.

В соответствии с одним примером имеется смесь бора и кремния, при этом смесь включает в себя бор и кремний в массовом соотношении бора к кремнию в диапазоне от примерно 1:10 до примерно 7:10, причем кремний и бор присутствуют в смеси в диапазоне от примерно 40 мас.% до примерно 100 мас.%, предпочтительно в диапазоне от примерно 45 мас.% до примерно 100 мас.%. Упомянутый по меньшей мере один источник бора и упомянутый по меньшей мере один источник кремния являются бескислородными за исключением неизбежных количеств загрязняющего кислорода, и причем смесь является механической смесью порошков, а частицы в порошках имеют средний размер частиц менее чем 160 мкм, предпочтительно менее чем 100 мкм, более предпочтительно менее чем 50 мкм.

В соответствии с одним примером упомянутый по меньшей мере один источник кремния может быть выбран из группы, состоящей из элементарного кремния (Si), сплава или соединения, содержащего кремний. Источник кремния может быть чистым или техническим сортом.

В соответствии с другим примером упомянутый по меньшей мере один источник бора может быть выбран из группы, состоящей из элементарного бора (B), сплава или соединения, содержащего бор. Источник бора может быть чистым или техническим сортом.

В соответствии с другим примером упомянутый по меньшей мере один источник бора может быть выбран, но не ограничен этим, из группы, состоящей из элементарного бора, карбидов бора, боридов никеля или боридов кремния. Упомянутый по меньшей мере один источник кремния может быть выбран, но не ограничен этим, из группы, состоящей из элементарного кремния, ферросилиция, кремнистого железа, карбидов кремния или боридов кремния.

В соответствии с другим примером упомянутый по меньшей мере один источник бора может быть выбран из элементарного бора, B4C, B4Si, B3Si, NiB и FeB, а упомянутый по меньшей мере один источник кремния может быть выбран из элементарного кремния, FeSi, SiC и B4Si, B3Si.

В соответствии с одним примером смесь может быть механической смесью порошков. Смесь определяется как механическое смешивание двух или более компонентов. В соответствии с первым аспектом смесь является механической смесью или механической микстурой двух или более порошков, т.е. смесью порошка "источника кремния" и порошка "источника бора".

Второй аспект относится к композиции, включающей в себя смесь согласно первому аспекту изобретения.

В соответствии с одним примером композиция может дополнительно включать в себя порошки основного материала в комбинации с любым из примеров смеси согласно первому аспекту.

Основной материал относится к металлу или сплаву, который является подходящим для высокотемпературной пайки, как упомянуто выше. Например, основной материал может включать в себя любой металл, как показано в таблице 2.

В соответствии с другим примером композиция может также включать в себя порошки основного материала, в которых основной материал присутствует в количестве менее чем 75 мас.%, рассчитанного на общую массу кремния, бора и основного материала. Такая композиция обеспечивает дополнительный основной материал при получении тугоплавкого припоя во время процесса сплавления. При высокотемпературной пайке, например, тонких деталей или тонких пластин дополнительный основной материал может снижать или уменьшать риск прогорания пластин или деталей, как видно из экспериментальных примеров ниже.

В соответствии с другим примером композиция дополнительно включает в себя порошки тугоплавкого припоя.

Тугоплавкий припой относится к основному материалу, который сплавляется с понижающими температуру плавления компонентами, и, таким образом, обладает более низкой температурой плавления, чем основной материал.

В соответствии с дополнительным примером композиция дополнительно включает в себя по меньшей мере одно связующее, выбранное из растворителей, воды, масел, гелей, лаков, олифы, полимеров, воска или их комбинаций.

В качестве примера, связующее может быть выбрано из сложных полиэфиров, полиэтиленов, полипропиленов, акриловых полимеров, (мет)акриловых полимеров, поливиниловых спиртов, поливинилацетатов, полистиролов, восков.

В соответствии с дополнительным примером связующее может быть сложным полиэфиром, воском или их комбинациями.

В соответствии с дополнительным примером композиция является краской или композиция является пастой, или композиция является дисперсией.

В соответствии с дополнительным примером связующее является гелем, а композиция является пастой.

Если композиция является пастой, одно преимущество состоит в том, что паста может быть легко нанесена на выбранные области на подложке.

В соответствии с дополнительным примером связующее является лаком или олифой, а композиция является краской.

Одно преимущество композиции, являющейся краской, состоит в том, что краска может быть легко распределена по поверхности подложки и прилипает к поверхности, и поэтому может удерживаться, например, при транспортировке, штамповании, резке и т.д.

В соответствии с дополнительным примером связующее выбирается из сложных полиэфиров, полиэтиленов, полипропиленов, акриловых полимеров, (мет)акриловых полимеров, поливиниловых спиртов, поливинилацетатов, полистиролов, восков или их комбинаций, а композиция является краской или композиция является пастой.

В соответствии с дополнительным примером связующее выбирается из сложных полиэфиров, полиэтиленов, полипропиленов, акриловых полимеров, (мет)акриловых полимеров, поливиниловых спиртов, поливинилацетатов, полистиролов, восков или их комбинаций, а композиция является краской.

В соответствии с дополнительным примером связующее выбирается из сложных полиэфиров, полиэтиленов, полипропиленов, акриловых полимеров, (мет)акриловых полимеров, поливиниловых спиртов, поливинилацетатов, полистиролов, восков или их комбинаций, а композиция является пастой.

В соответствии с дополнительным примером смесь диспергируется в связующем.

В соответствии с дополнительным примером композиция является дисперсией.

Если композиция является дисперсией, одно преимущество состоит в том, что связующее может легко быть выпарено после нанесения дисперсии на поверхность подложки. Другим преимуществом является меньшее количество дополнительного углерода, включаемого в тугоплавкий припой.

Третий аспект относится также к изделию, в котором композиция согласно примерам второго аспекта может быть нанесена на подложку. Подложка может быть основным материалом.

Основной материал может быть металлом или сплавом, при этом упомянутые основные материалы подходят для высокотемпературной пайки, как упоминалось ранее. Сплав определяется как однородное объединение или соединение двух или более элементов, причем сплав обладает выраженными показателями всех или большинства тех характеристик, которые обычно описываются как металлические. Сплавы являются соединениями, а не только смесями. Бор классифицируется как металлоид, и не является металлом. Кремний является четырехвалентным металлоидом, и не является металлом. Кремний и бор могут быть сплавами, когда они находятся в соединении вместе с металлическим элементом.

Подложка представляет собой детали получаемого изделия, детали могут быть, например, но не ограничены этим, толстыми деталями, такими как детали сепараторов или детали отстойников и т.д., либо тонкими деталями, такими как пластины или рулоны, т.е. упомянутая подложка может быть любыми деталями, которые должны быть соединены или на которые следует нанести покрытие. Подложки также могут быть заготовками.

В соответствии с одним примером, изделие включает в себя подложку из основного материала, имеющего температуру солидуса выше 1100°C, и изделие включает в себя также композицию согласно любому из примеров в соответствии со вторым аспектом, причем по меньшей мере часть подложки имеет поверхностный слой композиции.

Новая концепция высокотемпературной пайки обеспечивает, например, соединения, которые получают с помощью тугоплавкого припоя, причем тугоплавкий припой формируется в процессе плавления основного материала и смеси бора и кремния. Тугоплавкий припой в расплавленной форме транспортируется под действием капиллярных сил в область соединения, главным образом, из соседних областей. Температура для концепции высокотемпературной пайки составляет выше 900°C, т.е. выше точки разграничения между низкотемпературной пайкой и высокотемпературной пайкой. Сформированный тугоплавкий припой представляет собой сплав, который, кроме элементов основного материала, имеет элементы, понижающие температуру ликвидуса. Следовательно, тугоплавкий припой имеет температуру ликвидуса ниже, чем у основного материала.

В соответствии с одним примером композицию наносят на подложку, и среднее общее количество нанесенного кремния и бора наносится в среднем количестве менее чем 1 мг/мм2, предпочтительно в диапазоне от 0,01 до 1 мг/мм2, более предпочтительно в диапазоне от 0,02 до 0,8 мг/мм2, наиболее предпочтительно в диапазоне от 0,03 до 0,07 мм/мм2.

В соответствии с другим примером среднее общее количество нанесенного кремния и бора наносится в среднем количестве в диапазоне от 0,06 до 0,3 мг/мм2, если подложка имеет толщину <1 мм.

В соответствии с другим примером среднее общее количество нанесенного кремния и бора наносится в среднем количестве в диапазоне от 0,06 до 1 мг/мм2, если подложка имеет толщину >1 мм.

В соответствии с другим примером изделие может быть получено путем нанесения композиции, согласно любому из примеров второго аспекта, на поверхность подложки, причем упомянутая композиция может быть нанесена как краска, либо композиция может быть нанесена как паста, либо композиция может быть нанесена как дисперсия.

В соответствии с другим примером изделие, согласно любому из примеров в соответствии с третьим аспектом, может быть предназначено для высокотемпературной пайки соединений между областями соприкосновения подложек, либо изделие может быть предназначено для покрытия подложек, либо изделие может быть предназначено как для высокотемпературной пайки соединений, так и для покрытия подложек.

В соответствии с другим примером основной материал изделия может быть выбран из группы, состоящей из сплавов на основе железа, сплавов на основе никеля, сплавов на основе хрома, сплавов на основе меди и сплавов на основе кобальта.

В соответствии с одним примером основной материал может включать в себя от примерно 15 до примерно 22 мас.% хрома, от примерно 8 до примерно 22 мас.% никеля, от примерно 0 до примерно 3 мас.% марганца, от примерно 0 до примерно 1,5 мас.% кремния, необязательно от примерно 1 до примерно 8 мас.% молибдена, а остальное - железо, все процентные доли являются массовым процентом.

В соответствии с другим примером основной материал может включать в себя от примерно 15 до примерно 22 мас.% хрома, от примерно 8 до примерно 22 мас.% никеля, от примерно 0,2 до примерно 3 мас.% марганца, от примерно 0,1 до примерно 1,5 мас.% кремния, необязательно от примерно 1 до примерно 8 мас.% молибдена, а остальное - железо, все процентные доли являются массовым процентом.

В соответствии с другим примером основной материал может включить в себя от примерно 15 до примерно 22 мас.% хрома, от примерно 8 до примерно 22 мас.% никеля, от примерно 1 до примерно 3 мас.% марганца, от примерно 0,5 до примерно 1,5 мас.% кремния, необязательно от примерно 1 до примерно 8 мас.% молибдена, а остальное - железо, все процентные доли являются массовым процентом.

В соответствии с другим примером основной материал может включать в себя более чем 80 мас.% Ni.

В соответствии с другим примером основной материал может включать в себя более чем 50 мас.% Fe, менее чем 13 мас.% Cr, менее чем 1 мас.% Mo, менее чем 1 мас.% Ni и менее чем 3 мас.% Mn.

В соответствии с другим примером основной материал может включать в себя более чем 10 мас.% Cr и более чем 60 мас.% Ni.

В соответствии с другим примером основной материал может включать в себя более чем 15 мас.% Cr, более чем 10 мас.% Mo и более чем 50 мас.% Ni.

В соответствии с другим примером основной материал может включать в себя более чем 10 мас.% Fe, от 0,1 до 30 мас.% Mo, от 0,1 до 30 мас.% Ni и более чем 50 мас.% Co.

В соответствии с другим примером третьего аспекта поверхностный слой материала может быть обеспечен на по меньшей мере одной стороне подложки, либо поверхностный слой материала обеспечивают на обеих сторонах подложки.

В соответствии с другим примером третьего аспекта подложки могут быть рулонами, пластинами и деталями изделий.

В соответствии с другим примером третьего аспекта подложки могут быть разрезаны, отформованы, отштампованы или подвергнуты комбинациям этих обработок. В соответствии с другим примером подложки могут быть теплообменными пластинами или пластинами реактора, или деталями сепараторов, или деталями отстойников, или деталями клапанов и т.д.

В зависимости от того, какие основные материалы используются, существуют различные предпочтительные основные материалы, имеющие различную температуру солидуса, т.е. ту температурную точку, при которой материал затвердевает. В соответствии с данным изобретением температура солидуса основного материала может быть выше 1100°C. В соответствии с одной альтернативой данного изобретения температура солидуса основного материала может быть выше 1220°C. В соответствии с другой альтернативой данного изобретения температура солидуса основного материала может быть выше 1250°C. В соответствии с дополнительной альтернативой данного изобретения температура солидуса основного материала может быть выше 1300°C.

Поверхностный слой может быть нанесен в виде порошка смеси, либо с помощью таких средств, как физическое осаждение из паровой фазы (PVD) или химическое осаждение из паровой фазы (CVD). Физическое осаждение из паровой фазы (PVD) представляет собой разнообразие осаждений в вакууме и является общим термином, используемым для описания любого из разнообразия способов осаждения тонких пленок путем конденсации испаренной формы желаемого материала пленки на различные поверхности заготовок, например, на полупроводниковые пластины. Этот способ нанесения покрытий включает в себя чисто физические процессы, такие как высокотемпературное вакуумное испарение с последующей конденсацией или бомбардировку распыленной плазмой, а не осуществление химической реакции на поверхности, которую следует покрыть, как при химическом осаждении из паровой фазы. Химическое осаждением из паровой фазы (CVD) является химическим процессом, используемым для производства твердых материалов высокой чистоты с высокими рабочими характеристиками. Этот процесс используется, например, в полупроводниковой промышленности для производства тонких пленок. В обычном процессе CVD полупроводниковая пластинка, т.е. подложка, подвергается воздействию одного или более летучих прекурсоров, которые реагируют и/или разлагаются на поверхности подложки, производя желаемое осажденное вещество. Зачастую также образуются летучие побочные продукты, которые удаляют посредством газового потока через реакционную камеру.

Четвертый аспект относится к покрытому слоем тугоплавкого припоя изделию, включающему в себя слой тугоплавкого припоя и подложку, при этом данное покрытое слоем тугоплавкого припоя изделие получается путем нагрева изделия согласно любому из примеров третьего аспекта, и при этом слой тугоплавкого припоя имеет температуру плавления ниже, чем температура плавления подложки.

Другой пример относится к покрытому слоем тугоплавкого припоя изделию, при этом упомянутое покрытое слоем тугоплавкого припоя изделие может включать в себя композицию согласно любому из примеров второго аспекта, при этом упомянутая композиция