Полупроводниковый детектор с внутренним усилением на основе полуизолирующего арсенида галлия и способ его изготовления
Иллюстрации
Показать всеИзобретение относится к радиографии, в частности к системам цифрового изображения в рентгеновских и гамма-лучах с помощью многоканальных полупроводниковых детекторов на основе полуизолирующего арсенида галлия. Предложенные конструкция и способ ее изготовления позволяют реализовать принцип внутреннего усиления в многоканальных полупроводниковых детекторах. Полупроводниковый детектор включает формирование полуизолирующей i-области, которая выполнена на основе арсенида галлия, компенсированного хромом, и металлические контакты к ней, при этом между металлическими контактами и i-областью формируют слой полупроводника, например арсенида индия, толщиной менее диффузионной длины электронов, инжектируемых из металлического контакта в i-область, и понижающий высоту потенциального барьера контакта металл-GaAs до энергии теплового равновесия кристалла, kT. Формирование осуществляют путем нанесения слоя индия поверх металлических контактов к i-области и последующего отжига контактов в условиях, достаточных для проплавления первичного металлического контакта. 2 н.п. ф-лы, 1 табл., 2 ил.
Реферат
Изобретение относится к радиографии, в частности к системам цифрового изображения в рентгеновских и гамма-лучах с помощью многоканальных полупроводниковых детекторов на основе полуизолирующего арсенида галлия, и предназначено для использования в производстве рентгеновских систем нового поколения для медицины, промышленности и научных исследований.
Известны аналоги заявленного изобретения [1-5], в которых для реализации внутреннего усиления используется монолитная пластина полупроводника, на противоположных концах которой созданы омические контакты.
Если полупроводник имеет большое время жизни и малое расстояние между контактами, то в структуре организуется фоторезистивное усиление с коэффициентом усиления, значительно большим единицы [1].
В [2] сообщается о формировании полупроводниковой структуры с инжектирующими контактами. Инжекция носителей способствует формированию положительной внутренней обратной связи по току; чувствительность такой структуры может значительно превысить значения, достигаемые на сопряженных фоторезисторах, не имеющих инжектирующих контактов.
В [3] показано, что возможно использовать структуры типа транзистора для регистрации рентгеновского, гамма-излучения и излучения ионизирующих частиц высоких энергий. Неосновные носители, образованные в базе при торможении частицы, диффундируют к эмиттерному и коллекторному переходам, где вовлекаются в дрейф существующими полями. Неравновесные дырки оказываются в потенциальной яме и заряжают ее положительно относительно эмиттера. Изменение разности потенциалов эмиттер-база увеличивает инжектируемый эмиттером ток электронов, чем и обуславливается внутреннее усиление.
Изменение внутреннего поля (поляризация) может происходить за счет захвата носителей, и, как следствие, уменьшение высоты потенциального барьера на границе металл-полупроводник. Уменьшение высоты потенциального барьера приводит к дополнительной инжекции с контактов, что, в свою очередь, ведет к инжекционному росту фототока и чувствительности [4]. Показано, что в p-i-n структуре, i-область которой изготовлена из a-Se [5], имеет место деформация внутреннего поля. Установлено, что это происходит за счет захвата носителей и, как следствие, дополнительной инжекции с контактов, что в свою очередь ведет к росту избыточного фототока, и чувствительность структур превышает единицу.
Недостатком известных устройств является низкий коэффициент усиления, единицы, который достигается в условиях высокого уровня инжекции носителей заряда в структурах.
Наиболее близким техническим решением является детектор, выполненный на основе Ме-i-Ме структуры. Конструкция детектора включает полуизолирующую i-область, которая выполнена на основе арсенида галлия, компенсированного хромом, и металлические контакты к ней, например, на основе тонкого напыленного слоя никеля либо хрома [6]. Относительно невысокие значения деформации распределения внутреннего электрического поля в прототипе не позволяют управлять инжекцией в широких пределах и создавать условия для достижения высоких коэффициентов усиления, что является недостатком данных устройств.
Технической задачей является увеличение внутреннего коэффициента усиления детекторной Ме-i-Ме структуры при взаимодействии с квантами рентгеновского и гамма-излучения широкого спектрального диапазона.
Цель достигается тем, что между металлическими контактами и i-областью формируется слой полупроводника толщиной менее диффузионной длины электронов, инжектируемых из металлического контакта в i-область, понижающий высоту потенциального барьера контакта металл-GaAs до энергии, близкой к энергии теплового равновесия кристалла, kT.
В предлагаемом устройстве устранены недостатки прототипа, связанные с высоким потенциальным барьером на границе металл-полупроводник, который препятствует инжекции электронов с катодного металлического контакта в полуизолирующий i-слой. За счет управляемого изменения химического состава приповерхностного слоя под металлическим контактом путем формирования тонкого слоя полупроводника с меньшей шириной запрещенной зоны, способного понизить высоту потенциального барьера до величины, близкой к kT, инжекционные способности катодного электрода значительно возрастают. Это позволяет запустить механизм внутреннего инжекционного усиления детекторной Ме-i-Ме структуры при взаимодействии с квантами рентгеновского и гамма-излучения широкого спектрального диапазона.
Поскольку на поверхности GaAs уровень Ферми жестко закреплен вблизи уровня электрической нейтральности за счет высокой плотности поверхностных состояний Ds=1014 см −2 эВ−1, то высота потенциального барьера на границе Cr, Ni контактов и i-GaAs составит ~0,83 эВ. Тогда эквивалентную схему Me-i-Me детекторной структуры можно представить в виде последовательно соединенных сопротивления высокоомной i-области и 2-х встречно включенных барьеров Шоттки Me-i контактов, один из которых при любой полярности сигнала всегда включен в обратном направлении, ограничивая инжекцию электронов в i-слой.
Экспериментально установлено, что для создания омического контакта к GaAs необходимо использовать металл, с работой выхода, меньшей, чем у GaAs (работа выхода GaAs составляет 4,5 эВ). Такой контакт должен вести себя как квазиомический контакт. Примеры таких металлов: In, Mg, Gd, имеющие работу выхода 4,12 эВ, 3,68 эВ и 3,10 эВ соответственно. Например, создание на поверхности i-GaAs узкозонного слоя твердого раствора Ga1−xInxAs позволяет сформировать квазиомический контакт катода. В InAs поверхностный уровень Ферми закреплен в зоне проводимости, что значительно снижает высоту потенциального барьера металл-полупроводник в твердых растворах системы GaAs-InAs по сравнению с высотой барьера металл-GaAs, как показано на рисунке 1. Примером такого контакта может быть In-контакт к GaAs как n-, так и p-типа. Он образуется при относительно низких температурах до 300°C.
На рисунке 1 представлена зонная диаграмма омического контакта In-n-GaAs.
При термическом осаждении In на поверхность i-GaAs не происходит существенного подлегирования приповерхностной области полупроводника, что делает несущественным процесс тунелирования через контактный слой. В результате, основной вклад в сопротивление образованного омического контакта вносит прохождение электронов над потенциальным барьером. Высота потенциального барьера, преодолеваемого электронами в омическом контакте, определенная из наклона зависимости приведенного сопротивления омического контакта от обратной температуры, оказалась равной 0,03 эВ, что по порядку величины сравнимо с энергией колебания кристаллической решетки kT=0,26 эВ при 300К. Таким образом, основным механизмом протекания тока в контакте In-i-GaAs является термоэлектронная эмиссия через потенциальный барьер высотой 0,03 эВ. Именно в такой структуре возможна реализация сложного механизма внутреннего инжекционного усиления при поглощении квантов ионизирующих (УФ, рентгеновского и гамма) излучений.
Механизм внутреннего усиления в предложенном устройстве работает следующим образом. В интересующей области энергий ионизирующего излучения современных синхротронных центров (10÷60) кэВ поглощение квантов происходит по закону Бугера [7] в результате классического фотоэффекта. Квант излучения передает всю свою энергию Eo одному из атомных электронов, который растрачивает эту энергию на образование неравновесных электронно-дырочных пар в ионизационном треке в количестве No=Eo/Ei, где Ei - энергия образования электронно-дырочной пары. Дырки будут захватываться на глубокие отрицательно заряженные центры, а электроны под действием электрического поля дрейфуют к аноду. Время захвата дырок τp - на отрицательно заряженные центры хрома N t − может быть оценено: τ p − = 1 / σ p − ⋅ υ p ⋅ N t − , где сечение захвата дырки σρ -=7·10-15 см2, тепловая скорость дырок υр ~107 см-3, N t − ≅ 1017 см-3. По порядку величины τ p − ≅10-10 с. Время жизни неравновесных электронов ограничивается временем захвата на нейтральные центры N t o , концентрация которых N t o = N t − N t − ≅2·1017 см-3. Сечение захвата электронов на нейтральные центры по порядку величины составляет ~10-17 см2. Тогда время жизни неравновесных электронов, τn, оцененное по формуле: составляет ≥5·10-8 с. Под действием электрического поля в i-области электроны дрейфуют до анода, обусловливая индуцированный ток во внешней цепи. Как только электрон выбрасывается электрическим полем в n-подложку, в i-области нарушается электрическая нейтральность, часть положительно заряженных доноров остается не скомпенсированной. Для восстановления электрической нейтральности из металлического контакта через сформированный слой с пониженным потенциальным барьером в i-область втягивается электрон, который также за время жизни успевает дойти до противоположного контакта. Таким образом, наблюдается инжекционное усиление индуцированного тока по типу фоторезистора. Как и в случае фоторезистивного усиления, коэффициент усиления будет определяться соотношением времени жизни τn и времени дрейфа t д р неравновесных электронов. На рисунке 2 представлены экспериментальные результаты силы тока, наведенного в i-слое детектора, поглощенного квантами, от мощности экспозиционной дозы (МЭД) ионизирующего излучения.
На рисунке 2 представлена зависимость силы тока от дозы для детектора на основе GaAs:Cr, d=295 мкм, при облучении анода (сверху) и катода (снизу), прототипа (колонка а) и предложенного устройства (колонка б).
Как следует из рисунка 2, в предложенном устройстве за счет внутреннего инжекционного усиления сила наведенного тока в сотни раз превышает аналогичную характеристику прототипа. Следовательно, во столько же раз будет различаться и экспериментально наблюдаемое значение квантовой эффективности, η: η=ηo·τn/ t д р , где ηo≤1. Фоторезистивный эффект усиливается тем, что за счет захвата дырок идет перераспределение поля в структуре и напряженность электрического поля в области нескомпенсированного заряда возрастает. Инжекционный фоторезистивный механизм усиления в предложенном устройстве подтверждается также экспериментальной зависимостью квантовой эффективности от толщины высокоомного i-слоя di. Поскольку t д р =di/υm, где υm - максимальная дрейфовая скорость электронов в i-слое, то квантовая эффективность обратно пропорциональна толщине чувствительного слоя, что представлено в таблице 1.
Предложен способ изготовления, позволяющий реализовать заявленное устройство. Способ обеспечивает относительно простую реализацию конструкции предложенного полупроводникового детектора рентгеновского излучения с внутренним усилением путем нанесения тонкого слоя индия поверх металлических контактов к i-области и последующего вжигания контактов в условиях, достаточных для проплавления первичного металлического контакта. Поскольку индий имеет низкую температуру плавления 156°С и высокий коэффициент диффузии в арсениде галлия, то уже при температуре 300°С в течение 10 минут наблюдается проплавление контактного Cr/Ni слоя толщиной до 1 мкм. При взаимодействии под Ni/Cr контактом с поверхностью i-GaAs образуется твердый раствор InGaAs с переменным составом индия, деформирующий энергетическую диаграмму, рисунок 1, так что высота потенциального барьера на границе Ni/Cr- InGaAs-i-GaAs снижается до величины, близкой kT, что обуславливает омические свойства контактов. В таблице 1 представлены экспериментальные результаты чувствительности предложенных рентгеновских детекторов в сравнении с прототипом при изменении ускоряющего напряжения на рентгеновской трубке (1), облучения детектора со стороны анода (2,4) либо катода (3,5) при различной мощности экспозиционной дозы (МЭД) в плоскости детектора, толщины детектора и характеристик контактов к ним (6). Величина чувствительности S определялась из зависимости превышения индуцированной поглощенными квантами силы тока над темновым Iλ-It от плотности мощности экспозиционной дозы W по формуле:
S = ( exp ( Δ ϕ k T ) - 1 ) I t -I λ W , (1)
где Δφ - изменение высоты потенциального барьера контакта Me-i-GaAs, которое понижается в предложенном способе до величины, близкой kT - энергии колебания кристаллической решетки полупроводника. Результаты аппроксимации Iλ(W) на участках с МЭД ≤ 200 мР/с (SI) и с МЭД ≥ 200 мР/с (SII), таблица 1, показывают, что независимо от условий эксперимента в детекторах, выполненных предложенным способом, наблюдается значительное внутренне усиление индуцированного поглощенным фотоном тока по сравнению с прототипом.
Таблица 1
Utube, кВ | ЧувствительностьSI, нКл/мР*см2 МЭД меньше 200 мР/с | ЧувствительностьSII, нКл/мР*см2 МЭД больше 200 мР/с | Характеристика контактов | ||
анод | катод | анод | катод | ||
1 | 2 | 3 | 4 | 5 | 6 |
60 | 2,2 | 5,0 | 2,2 | 5,0 | GaAs:Cr детектор, Cr/Ni контакты d=295 мкм, Udet=30 В |
80 | 2,1 | 4,4 | 1,8 | 3,4 | |
120 | 1,5 | 3,6 | 1,4 | 2,9 | |
60 | 906,0 | 906,0 | 1155,0 | 1155,0 | GaAs:Cr детектор, In контактыd=295 мкмU=30 В |
80 | 1224,4 | 1513,2 | 1405,4 | 1701,8 | |
120 | 1488,7 | 1609,3 | 1602,1 | 1772,0 | |
60 | 2,2 | 6,4 | 2,2 | 6,4 | GaAs:Cr детектор, Cr/Ni контакты, d=480 мкм, U=48 В |
80 | 2,4 | 5,2 | 1,2 | 3,6 | |
60 | 99,7 | 270,4 | 99,7 | 270,4 | GaAs:Cr детектор, In контактыd=480 мкм U=48 В |
80 | 184,6 | 406,1 | 215,5 | 488,4 | |
120 | 242,7 | 459,2 | 339,5 | 590,7 | |
60 | 2,1 | 6,6 | 2,1 | 6,6 | GaAs:Cr детектор, Cr/Ni контакты, d=510 мкм, U=51 В |
80 | 3,1 | 5,6 | 1,8 | 3,4 | |
60 | 151,2 | 229,9 | 120,9 | 230,3 | GaAs:Cr детектор, In контактыd=510 мкм, U=51 В |
80 | 231,6 | 373,1 | 230,3 | 453,1 | |
120 | 300,6 | 425,3 | 345,0 | 565,3 | |
60 | 2,1 | 7,2 | 2,1 | 7,2 | GaAs:Cr детектор, Cr/Ni контакты, d=682 мкм, U=69 В |
80 | 2,6 | 6,1 | 1,6 | 3,8 | |
60 | 139,9 | 196,9 | 139,9 | 196,9 | GaAs:Cr детектор, In контактыd=682 мкм, U=69 В |
80 | 248,8 | 329,0 | 286,3 | 400,1 | |
120 | 339,6 | 401,2 | 421,0 | 545,7 | |
60 | 1,3 | 4,9 | 1,3 | 4,9 | GaAs:Cr детектор, Cr/Ni контакты, d=715 мкм, U=72 В |
80 | 1,8 | 4,2 | 1,3 | 2,7 | |
120 | 2,1 | 3,8 | 1,7 | 2,3 | |
60 | 12,8 | 44,2 | 12,8 | 44,2 | GaAs:Cr детектор, In контактыd=715 мкм, U=72 В |
80 | 25,9 | 70,5 | 31,5 | 80,4 | |
120 | 38,9 | 87,4 | 62,7 | 121,4 |
Анализ экспериментальных результатов, представленных в таблице 1, подтверждает расчетные данные квантовой эффективности; пропорциональность и тенденции изменения характеристик близки расчетным данным. Высокая квантовая эффективность объясняется эффектами усиления. В основе усиления лежит захват неравновесных дырок на отрицательно заряженные глубокие акцепторные центры в треке. Это приводит к резкой асимметрии времен жизни неравновесных носителей заряда. Асимметрия времени жизни электронов и дырок должна приводить к пространственному разделению электронно-дырочных пар и снижению темпа рекомбинации неравновесных носителей заряда. В том числе это проявляется и в наблюдаемых экспериментальных результатах по исследованию характеристик детекторов при облучении рентгеновскими квантами. Особенно это сказывается в области высокой энергии квантов, при которых достижима квантовая эффективность ηо>1.
Таким образом, доказано, что положительный эффект достигается в предложенном способе, формирующем предложенное устройство. Устройство и способ его реализации обладают новизной и позволяют достигнуть внутреннего квантового усиления, в сотни раз превышающего значения, достигнутые в прототипе.
Источники информации
1. Строкан Н.Б., Иванов А.М., Бойко М.Е. Карбид-кремниевые транзисторные структуры как детекторы слабоионизирующего излучения //Журнал технической физики. - 2003 г. - Том 37, №1. - С.65-69.
2. Резников Б. И., Царенков Г.В. Светоуправляемые электрические поля в высокоомной МПМ структуре при наличии глубоких примесных уровней //Физика и техника полупроводников. - 1994 г. Том 28, №5. - С.867-879.
3. Optimization of Electric Field Distribution by Free Carrier Injection in Silicon Detectors Operated at Low Temperatures /E. Verbitskaya, M. Abreu, V. Bartsch, et. All //IEEE Trans. Nucl. Sci.- 2002. - V.49, NO.1. - P.258-262.
4. Characterization of charge collection in CdTe and CZT using the transient current technique /J. Fink, H. Kruger, P. Lodomez, et. All //Nucl. Instr. and Meth. A. - 2006. - V.560. - P.435-443.
5. Haugen C., Kasap S.O., Rowlands J. /X-ray irradiation induced bulk space charge in stabilized a-Se x-ray photoconductors //JOURNAL OF APPLIED PHYSICS -1998, V.84, NO.10. - P.5495-5501.
6. Budnitsky, D.,Tyazhev, A.,Novikov, V.,Zarubin, A.,Tolbanov, O., Skakunov, M., Hamann, E., Fauler, A., Fiederle, M., Procz, S., Graafsma, H., Ryabkov, S. Chromium-compensated GaAs detector material and sensors. Journal of Instrumentation, Volume 9, Issue 7, 1 July 2014. Article number C07011.
7. Зи С.М. /Физика полупроводниковых приборов, в 2х книгах. - М.: Мир, 1984. - 912 с.
8. Gain mechanism in GaN Shottky ultraviolet detectors/O. Katz, V. Garber, B. Meyler et. all//APPLIED PHYSICS LETTERS. - 2001. - V.79. NO.10. - P.1417-1419.
8. Kasap S.O., Rowlands J.A. /Direct-conversion flat-panel X-ray image detectors //IEEE Proc.-Cirarits Devices Syst. - 2002. - V.149. - NO.2. - P.85-96.
9. Sun G. C., Bourgoin J. C. et all. /A Comparison Between GaAs and CdTe for X-Ray Imaging //IEEE Trans. Nucl. Sci. - 2004. - V.51. - NO.5. - P.2400-2404.
10. Ламперт М, Марк П. Инжекционные токи в твердых телах. - М.: Мир, -1973. - 416 с.
1. Полупроводниковый детектор рентгеновского излучения для получения цифрового изображения, включающий полуизолирующую i-область, которая выполнена на основе арсенида галлия, компенсированного хромом, и металлические контакты к ней, отличающийся тем, что между металлическими контактами и i-областью формируется слой полупроводника, например арсенид индия, понижающий высоту потенциального барьера контакта металл-GaAs до энергии теплового равновесия кристалла, kT, толщиной менее диффузионной длины электронов, инжектируемых из металлического контакта в i-область.
2. Способ изготовления полупроводникового детектора рентгеновского излучения по п.1, включающий нанесение слоя индия поверх металлических контактов к полуизолирующей i-области и последующий отжиг контактов в атмосфере молекулярного водорода при температуре 250-400°С в течение 10 минут.