Способ абразивной обработки заготовки

Иллюстрации

Показать все

Изобретение относится к области абразивной обработки и может быть использовано при обработке металлических заготовок. Осуществляют контакт постоянно вращающегося связанного абразивного круга диаметром как минимум 150 мм с металлической заготовкой, средняя температура которой не превышает 500°С. Упомянутый круг содержит керамические формованные абразивные частицы, удерживаемые в связующем веществе. Формируется металлическая стружка, как минимум 20 вес. % которой представляет собой волоконную металлическую стружку длиной по меньшей мере 3 мм. В результате повышается производительность обработки и срок службы абразивного круга. 13 з.п. ф-лы, 4 ил., 1 пр.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способам абразивной обработки заготовки с использованием шлифовального круга с абразивом на связке.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Связанные абразивные частицы, представляющие собой абразивные частицы, объединенные вместе связующей средой. Связанные абразивы, к которым относятся, например, точильные камни, шлифовальные бруски, шлифовальные круги и отрезные круги. Связующей средой обычно служит органическая смола, но может применяться и неорганический материал, такой, как керамика или стекло (т.е. стекловидные связки).

Распространенные отрезные операции производятся обычно тонкими отрезными кругами. Диаметр кругов, как правило, от 20 до 2500 миллиметров, толщина кругов от менее чем одного миллиметра (мм) до 16 мм. Как правило, толщина составляет около одного процента от диаметра. Круги обычно используют на скорости от 35 до 100 м/с для таких операций, как резка метала или камня, например, по номинальной длине. Отрезные круги также называются «абразивными отрезными пилами» и на некоторых производствах, таких, как литейные цеха, «обрубными пилами». В соответствии с их названием отрезные круги обычно используются для нарезки сырья (например, заготовки), такого, как металлические прутья, путем абразивного прорезания заготовки.

Отрезные круги могут использоваться для сухой резки, влажной резки, холодной резки и горячей резки. Тепло, выделяющееся в процессе резки за счет трения, может изменить физические свойства разрезаемого материала; например, углеродистая сталь может приобрести синеватый оттенок, нежелательный по механическим (т.е. синяя хрупкость) и/или по эстетическим причинам.

При оценке производительности абразивных кругов (т.е. шлифовальных и отрезных кругов) обычно используется пропорция, известна как G-пропорция. Известны следующие различные трактовки G-пропорции: отношение массы удаленной заготовки к массе израсходованного материала круга (в граммах), отношение удаленного объема заготовки к объему израсходованного материала круга, и отношение площади сечения среза заготовки к площади израсходованной части круглой стороны отрезного круга. В настоящей заявке термин «G-пропорция» используется только в последнем варианте (т.е. отношение площади сечения среза заготовки к площади израсходованной части круглой стороны отрезного круга).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Авторами настоящей заявки неожиданно было обнаружено, что в кругах, используемых в абразивном (т.е. в режущем) режиме могут возникать связанные абразивы, содержащие керамические формованные частицы, удерживаемые в связующем веществе, в отличие от стандартных Связанных абразивных кругов с дроблеными зернами. При использовании таких отрезных кругов в определенных условиях наблюдается волокнистая стружка, сопровождаемая большим снопом особо ярких искр, и хвосты искр значительно длиннее, чем от стандартных отрезных кругов из дробленых зерен при том же составе абразива (например, альфа-глинозем)

Кроме того, при холодной резке не наблюдается посинения стали.

В настоящей заявке излагается способ абразивной обработки заготовки, заключающийся в следующем:

наличие постоянно вращающегося связанного абразивного круга диаметром как минимум 150 миллиметров, причем связанный абразивный круг содержит керамические формованные абразивные частицы, удерживаемые в связующей среде; и

соприкосновение вращающегося связанного абразивного круга с металлической заготовкой таким образом, что заготовка подвергается абразивной обработке с непрерывным образованием металлической стружки, причем средняя температура металлической заготовки не превышает 500°C, и при этом 20 весовых процентов металлической стружки представляет собой волоконную металлическую стружку длиной по меньшей мере 3 миллиметра (мм).

По заявляемому способу средняя температура металлической заготовки не превышает 500°C, в некоторых реализациях не превышает 300°C, не превышает 100°C, или даже не превышает 50°C. Термин «средняя температура», используемый в настоящей заявке, относится к температуре зоны заготовки, достаточно удаленной от участка абразивной обработки/резки и существенно не подвергающейся нагреву, возникающему в процессе абразивной обработки/резки.

В некоторых реализациях, по критериям массы, как минимум 20, 30, 40, 50 или даже 60 процентов металлической стружки имеет волоконную структуру. Длина волоконной стружки может равняться как минимум 3 миллиметрам (мм), как минимум 10 мм, как минимум 15 мм, как минимум 20 мм или даже 25 мм. В некоторых реализациях формат как минимум части волоконной стружки (отношение длины к ширине) может равняться как минимум 5, 10, 20, 50 или даже 100. Заявляемый способ обладает как минимум одним из следующих преимуществ над стандартными связанными абразивными кругами: a) повышенной абразивной производительностью при заданной температуре и b) пониженной температурой при заданной абразивной производительности, благодаря чему продляется срок службы инструмента.

Отличительные особенности и преимущества настоящей заявки будут раскрыты далее в описании изобретения, а также в прилагаемых ссылках на другие заявки.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

ФИГ. 1 представляет собой изометрическое изображение иллюстративного связанного абразивного отрезного круга, как реализацию настоящей заявки;

ФИГ. 2 представляет собой боковое сечение иллюстративного связанного абразивного отрезного круга, показанного на ФИГ. 1 по линии 2-2;

ФИГ. 3A представляет собой схематический вид сверху иллюстративной керамической формованной абразивной частицы 320;

ФИГ. 3B представляет собой схематический вид сбоку иллюстративной керамической формованной абразивной частицы 320;

ФИГ. 3C вид сверху сечения плоскости 3-3 на ФИГ. 3B;

ФИГ. 3D представляет собой увеличенный вид боковой кромки 327a на ФИГ. 3C;

ФИГ. 4 представляет собой микрофотографию металлической стружки, образовавшейся в примере 1 в результате резания стали ST52 во влажной среде.

На перечисленных выше иллюстрациях показано несколько реализаций настоящей заявки; также рассматриваются другие реализации, как указано в обсуждении. Иллюстрации могут быть не в масштабе. На иллюстрациях могут использоваться одинаковые справочные номера для обозначения одинаковых частей.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Для абразивной обработки заявляемыми способами используются связанные_абразивные отрезные круги, содержащие керамические формованные абразивные частицы.

Обратимся к ФИГ. 1, на которой изображен иллюстративный связанный отрезной круг 100, как практическая реализация заявляемых способов; в центре круга имеется отверстие 112, используемое для крепления отрезного круга 100 например, к инструменту с приводом. Отрезной круг 100 сдержит керамические формованные абразивные частицы 20, дополнительно раздробленные распространенным способом и формованные абразивные частицы 30, и связующую среду 25.

ФИГ. 2 представляет собой сечение отрезного круга 100 с ФИГ. 1 по линии 2-2, показывающее керамические формованные абразивные частицы 20, дополнительно раздробленные распространенным способом и формованные абразивные частицы 30, и связующую среду 25. В отрезном круге 100 имеется дополнительный первый усилительный элемент 115 и дополнительный второй усилительный элемент 116, расположенные на противоположных главных плоскостях отрезного круга 100. На практике ориентация керамических формованных частиц может отличаться от идеальной ориентации, показанной здесь. Также могут быть введены один или более усилительных элементов.

Как правило, связанные отрезные круги изготовляются литьем. В процессе литья исходный материал связующей среды, либо жидкая органика, порошковый неорганический материал, порошковый органический материал, либо их сочетание, смешиваются с органическими частицами. Порой жидкая среда (смола или растворитель) первой наносится на абразивные частицы, чтобы смочить их наружную поверхность, а затем увлажненные частицы смешиваются с порошкообразной средой. Связанные абразивные круги по настоящей заявке могут быть изготовлены при помощи технологии литья под давлением, литьевого прессования, трансферного формования или аналогичной. Процедура литья может выполняться холодным или горячим прессованием, или любым подходящим способом, известным специалистам.

Связующая среда содержит, как правило, стекловидный неорганический материал (как, например, в случае остеклованных абразивных кругов), металл или органическую смолу (как, например, в случае связанных смолой абразивных кругов).

Стекловидные неорганические связующие вещества могут быть изготовлены из окислов различных металлов. Примерами таких металл-оксидных остеклованных связующих веществ являются диоксид кремния, альфа-глинозем, диоксид кальция, оксид железа, диоксид титана, окись магния, оксид натрия, оксид калия, оксид лития, оксид марганца, оксид бора, оксид фосфора и подобные. Конкретные примеры остеклованных связующих сред на основе массы: 47,61 процент SiO2; 16,65 процентов Al2O3; 0,38 процента Fe2O3; 0,35 процента TiO2; 1,58 процент CaO; 0,10 процента MgO; 9,63 процента Na2O; 2,86 процента K2O; 1,77 процента Li2O; 19,03 процента B2O3; 0,02 процента MnO2 и 0,22 процента P2O5; и 63 процента SiO2, 12 процентов Al2O3; 1,2 процента CaO; 6,3 процента Na2O; 7,5 процентов K2O; и 10 процентов B2O3.

В процессе изготовления остеклованных цементированных абразивных кругов стекловидное связующее вещество в форме порошка можно смешивать с временным связующим веществом, обычно органического происхождения. Остеклованные связующие вещества можно также формовать из стеклоцемента, например, до 100 стеклоцемента, однако обычно доля стеклоцемента составляет от 20 до 100 процентов. Некоторые примеры распространенных материалов, используемых в стеклоцементных связках: полевой шпат, тетраборнокислый натрий, кварц, кальцинированная сода, оксид цинка, мел, триоксид сурьмы, диоксид титана, кремнефтористый натрий, кремень, криолит, ортоборная кислота и их сочетания. Как правило, эти материалы перемешиваются в виде порошка, обжигаются для сплавления, затем сплавленная смесь остужается. Охлажденная смесь подвергается дроблению и просеиванию до очень мелких фракций для последующего использования в качестве стеклоцементной связки. Температура, при которой происходит схватывание этих стеклоцементных связок, зависит от химического состава, однако может изменяться от 600°C до 1800°C.

Весовая доля связки, цементирующей круг, составляет обычно от 5 до 50 процентов, более типично от 10 до 25, и гораздо более характерно от 12 до 24 процентов, относительно общей массы цементированного абразивного круга

Примерами металлических связок могут служить олово, медь, алюминий, никель и их сочетания.

Связка может содержать отвердевшую органическую связующую смолу, наполнитель и шлифовальные элементы. Чаще всего в качестве органической связующей смолы используется фенольная смола, как в виде порошка, так и в жидком состоянии. Несмотря на широкое использование фенольной смолы, в настоящей заявке рассматривается использование других органических связующих смол, включая, например, эпоксидные смолы, полиимидные смолы, полиэфирные смолы, мочевино-формальдегидные смолы, каучуки, шеллаки и акриловые связки. Допускается также модификация связки с другими связками для улучшения или изменения свойств связки. Весовая доля органической связующей смолы может составлять, например, от 15 до 100 процентов относительно общей массы связки.

К используемым фенольным смолам относятся новолачные и резольные фенольные смолы. Новолачные фенольные смолы характеризуются способностью катализироваться кислотами при соотношении формальдегида к фенолу менее единицы, как правило, между 0,5:1 и 0,8:1. Резольные фенольные смолы характеризуются способностью катализироваться щелочью при соотношении формальдегида к фенолу более или равном единице, как правило, между 1:1 и 3:1. Новолачные и резольные фенольные смолы допускают химическую модификацию (например, реакцией с эпоксидными компаундами), или могут оставаться немодифицированными. К иллюстративным кислотным катализаторам, подходящим для отверждения фенольных смол, относятся серная, соляная, фосфорная, щавелевая и p-толуолсульфоновая кислоты. К иллюстративным щелочным катализаторам, подходящим для отверждения фенольных смол, относятся едкий натр, едкий барий, едкий калий, гидроокись кальция, органические амины или углекислый натрий.

Фенольные смолы хорошо известны и доступны из коммерческих источников. Примеры коммерчески доступных новолачных смол: DUREZ 1364, двухкомпонентная, порошкообразная фенольная смола (поступает на рынок от компании Durez Corporation of Addison, Texas, под торговым названием VARCUM (а именно 29302), или HEXION AD5534 RESIN (поступает на рынок от компании Hexion Specialty Chemicals, Inc. of Louisville, Kentucky).

Примеры коммерчески доступных резольных фенольных смол, используемых для реализации настоящей заявки: поставляемая компанией Durez Corporation под торговым названием VARCUM (а именно 29217, 29306, 29318, 29338, 29353); поставляемая компанией Ashland Chemical Co. of Bartow, Florida под торговым названием AEROFENE (а именно AEROFENE 295); и поставляемая компанией Kangnam Chemical Company Ltd. of Seoul, South Korea под торговым названием «PHENOLITE» (а именно PHENOLITE TD-2207).

Температуры отвердевания органических исходных связок будут различаться в зависимости от выбранного материала и конструкции круга. Выбор подходящих условий вполне доступен обычному специалисту. Иллюстративные условия для фенольной связки: прикладываемое давление около 20 тонн на диаметр 4 дюйма (224 кг/см2) при комнатной температуре с последующим нагреванием до температур около 190°C для достаточного отвердевания исходного органического материала связки.

В некоторых реализациях связанные абразивные круги сдержат от 10 до 80 весовых процентов формованных абразивных частиц; как правило, от 30 до 60 весовых процентов, более характерно от 40 до 60 весовых процентов от совокупной массы связки и абразивных частиц.

Керамические формованные абразивные частицы, содержащие кристаллические блоки альфа-глинозема, магниевый корундовый шпинель и редкоземельный шестигранный алюминат могут быть изготовлены с использованием альфа-глиноземных частиц золь-гельного исходного материала по способам, изложенным, например, в патенте США No. 5,213,591 (Келикайя и соавторы) и заявках на патент США №№2009/0165394 AI (Каллер и соавторы) и 2009/0169816 AI (Эриксон и соавторы).

Керамические формованные абразивные частицы на основе альфа-глинозема могут быть изготовлены многоэтапным процессом. Вкратце, способ заключается в следующих этапах: приготовление золь-гельной, отобранной или не отобранной, альфа-глиноземной взвеси исходного материала, которую можно преобразовать в альфа-глинозем; заполнение золь-гелем одной или более литейных полостей, имеющих форму желаемых формованных абразивных частиц, высушиванием золь-геля для образования керамических формованных абразивных частиц; удаление исходных керамических формованных абразивных частиц из литейных полостей; обжигание исходных керамических формованных абразивных частиц для создания отожженных исходных керамических формованных абразивных частиц и затем спекание отожженных исходных керамических формованных абразивных частиц для создания керамических формованных абразивных частиц. Ниже приводится более подробное описание процесса.

На первом этапе процесса происходит приготовление золь-гельной, отобранной или не отобранной, альфа-глиноземной взвеси исходного материала, которую можно преобразовать в альфа-глинозем. Альфа-глиноземная взвесь исходного материала часто сдержит жидкость, являющуюся летучим компонентом. Известна реализация, где летучим компонентом является вода. Взвесь должна содержать достаточное количество жидкости, обеспечивающее достаточно низкую вязкость взвеси для заполнения литейных полостей и повторения формы из поверхности, однако не столь много жидкости, чтобы не привести к неприемлемому удорожанию процедуры извлечения жидкости из литейных полостей. Известна реализация, где исходная альфа-глиноземная взвесь содержит от 2 до 90 весовых процентов частиц, которые могут быть превращены в альфа-глинозем, таких, как частицы моногидрата оксида алюминия (бемит), и как минимум 10 весовых процентов, или от 50 до 70 весовых процентов, или от 50 до 60 весовых процентов летучего компонента, такого, как вода. И наоборот, в некоторых реализациях исходная альфа-глиноземная взвесь содержит от 30 до 50 весовых процентов, или от 40 до 50 весовых процентов твердых веществ.

Допускается использование гидратов оксида алюминия, отличающихся от бемита. Бемит может быть приготовлен по известным технологиям, или приобретен на рынке. К имеющимся на рынке бемитам относятся продукты под торговыми названиями «DISPERAL» и «DISPAL», оба поставляются компанией Sasol North America, Inc. of Houston, Texas, или «HiQ-40», поставляемый компанией BASF Corporation of Florham Park, New Jersey. Эти моногидраты алюминия являются относительно химически чистыми, то есть включают относительно небольшие фазы гидратов, отличающихся от моногидратов, и обладают большой площадью поверхности.

Физические свойства получающихся керамических формованных абразивных частиц будут в основном зависеть от типа материала, использованного в исходной альфа-глиноземной дисперсии. Известна реализация, где исходная альфа-глиноземная дисперсия находится в гельном состоянии. В настоящей заявке термином «гель» обозначается объемная структура твердых веществ, взвешенных в жидкости.

В исходной альфа-глиноземной дисперсии может содержаться модифицирующая присадка или исходный материал модифицирующей присадки. Модифицирующая присадка может способствовать улучшению некоторого желаемого свойства абразивных частиц или повышать эффективность последующего этапа спекания. Модифицирующие присадки или исходный материал модифицирующих присадок могут существовать в форме частиц, взвесей частиц, золей или растворимых солей, как правило, растворимых в воде. Обычно они состоят из металлсодержащего компаунда и могут быть исходным материалом оксида марганца, цинка, железа, кремния, кобальта, никеля, циркония, гафния, хрома, иттрия, празеодима, самария, иттербия, неодима, лантана, гадолиния, церия, диспрозия, эрбия, титана, циркония и их смесей. Конкретная концентрация этих присадок исходной альфа-глиноземной взвеси может регулироваться специалистом.

Как правило, ввод модифицирующей присадки или исходного материала модифицирующей присадки будет способствовать превращению исходной альфа-глиноземной взвеси в гель. Превращению исходной альфа-глиноземной взвеси в гель может также способствовать нагревание определенной продолжительности. В исходной альфа-глиноземной взвеси вероятно также присутствие агента кристаллизации (затравка) для улучшения превращения гидратированного или кальцинированного оксида алюминия в альфа-глинозем. К агентам кристаллизации в целях настоящей заявки относятся: мелкозернистые частицы альфа-глинозема, альфа оксид железа или его исходный материал, оксиды титана и титанаты, оксиды хрома или любой другой материал, который будет кристаллизовать превращение. Количество агента кристаллизации (если таковой используется) должно быть достаточным для преобразования альфа-глинозема. Кристаллизация подобных исходных альфа-глиноземных взвесей раскрыта в патенте США №4,744,802 (Швабел).

К исходной альфа-глиноземной взвеси может быть добавлен агент пептизации с целью формирования более устойчивого гидрозоля или коллоидной исходной альфа-глиноземной взвеси. В число подходящих агентов пептизации входят монопропионовые кислоты или кислотные компаунды, такие, как уксусная кислота, соляная кислота и азотная кислота. Допускается использование также мультипропионовых кислот, однако они способны стремительно превращать в гель исходную альфа-глиноземную взвесь, затрудняя обращение с ней или ввод дополнительных компонентов. Некоторые коммерческие источники бемита содержат кислотный титр (такой, как абсорбированная муравьиная или азотная кислота), который будет способствовать созданию устойчивой исходной альфа-глиноземной взвеси.

Исходная альфа-глиноземная взвесь может быть приготовлена любыми подходящими средствами, такими, например, как простое смешивание моногидрата оксида алюминия с водой, содержащей агент пептизации, или созданием шлама моногидрата оксида алюминия, в который вводится агент пептизации.

Допускается добавка пеногасителей или других подходящих химикатов для снижения тенденции образования пузырей или попадания воздуха при перемешивании. При желании возможен ввод дополнительных химикатов, таких, как увлажнители, спирты или связующие агенты. Альфа-глиноземные абразивные частицы могут содержать диоксид кремния и оксид железа согласно патенту США №5,645,619 (Эриксон и соавторы). Альфа-глиноземные абразивные частицы могут содержать цирконий согласно патенту США №5,551,963 (Лерми). В качестве альтернативного варианта, альфа-глиноземные абразивные частицы могут обладать микроструктурой или содержать присадки согласно патенту США №6,277,161 (Кастро).

Второй этап процесса включает в себя обеспечение изложницы с хотя бы одной литейной полостью, предпочтительно наличие множества полостей. Дно изложницы может быть в общем случае плоским, в изложнице множество литейный полостей. Множество полостей может быть создано с помощью производственного инструмента. В качестве производственного инструмента допускается ремень, лист, непрерывная сеть, валик для нанесения покрытия, такой, как ролик для глубокой печати, муфта, надетая на ролик для нанесения покрытия или пуансон. Известна реализация, где производственный инструмент включает в себя полимерный материал. Примеры подходящих полимерных материалов включают в себя термопластики, такие, как полиэфиры, поликарбонаты, поли-(эфирный сульфон), поли-(метилметакрилат), полиуретаны, поливинилхлорид, полистирен, полипропилен, полиэтилен или их сочетания, или термоусадочные материалы. Известна реализация с инструментом, изготовленным целиком из полимерного или термопластичного материала. В другой реализации поверхности инструмента, находящаяся в контакте с золь-гелем при высыхании, а именно поверхности множества полостей, содержат полимерные или термопластичные материалы, а другие части инструмента могут быть изготовлены из других материалов. К примеру, на металлический инструмент может быть нанесено подходящее полимерное покрытия для изменения его свойств поверхностного натяжения.

Полимерный или термопластичный инструмент может являться копией металлического эталонного инструмента. Структура эталонного инструмента будет зеркальным отображением желаемой структуры производственного инструмента. Способ изготовления эталонного инструмента может совпадать со способом изготовления производственного инструмента. Известна реализация с эталонным инструментом из металла, то есть никеля с алмазной огранкой. Полимерный листовой материал допускается нагревать совместно с эталонным инструментом таким образом, что на полимерном материале получается оттиск структуры эталонного инструмента при сжатии листового материала и эталонного инструмента. Полимерный или термопластичный материал можно отформовать выпрессовкой или залить на эталонный инструмент с последующим прессованием. Термопластичный материал остужается для затвердевания и создания производственного инструмента. При использовании термопластичного производственного инструмента следует соблюдать осторожность, не создавая излишнего нагрева во избежание повреждения термопластичного производственного инструмента, сокращающего срок его службы. Более подробные сведения по конструкции и изготовлению производственной оснастки и эталонных инструментов приводятся в патентах США №№5,152,917 (Пипер и соавторы); 5,435,816 (Спаржен и соавторы); 5,672,097 (Хупман и соавторы); 5,946,991 (Хупман и соавторы); 5,975,987 (Хупман и соавторы); и 6,129,540 (Хупман и соавторы).

Доступ к полостям возможен через отверстие в верхней или нижней плоскости изложницы. В некоторых случаях полость может располагаться по всей толщине изложницы. В качестве альтернативы полости могут занимать только часть толщины изложницы. Известна реализация с верхней плоскостью, в основном параллельной нижней плоскости изложницы и полостями в основном одинаковой глубины.

По меньшей мере одна сторона изложницы, а именно та, на которой созданы полости, может оставаться открытой в окружающую атмосферу на этапе удаления летучего компонента.

Объемная форма полостей рассчитана на изготовления керамических формованных абразивных частиц. Глубина равняется длине перпендикуляра от верхней плоскости до самой нижней точки нижней плоскости. Глубина конкретной полости может быть равномерной или изменяться по длине и/или ширине. В конкретной изложнице допускаются полости как одной, так и разных форм.

Третий этап процесса включает в себя заполнение полостей изложницы исходной альфа-глиноземной взвесью (например, посредством общепринятых технологий). В некоторых реализациях можно воспользоваться ножевым роликом для нанесения покрытия или вакуумным щелевым пуансоном. При желании допускается удалять частицы из изложницы через ее выпуск. К типовым веществам, способствующим разгрузке изложницы, относятся арахисовое или минеральное масло, рыбий жир, кремнийорганические соединения, политетрафторэтилен, стеарат цинка и графит. Как правило, такое вещество для разгрузки изложницы, как арахисовое масло, как жидкость, например вода или спирт, наносится на поверхности производственной оснастки, находящиеся в контакте с золь-гелем из расчета от около 0,1 мг/дюйм2 (0,02 мг/см2) до примерно 3,0 мг/дюйм2 (0,46 мг/см2), или от примерно 0,1 мг/дюйм2 (0,02 мг/см2) до примерно 5,0 мг/дюйм2 (0,78 мг/см2), если желательна разгрузка изложницы. В некоторых реализациях верхняя плоскость изложницы покрывается исходной альфа-глиноземной взвесью. Исходная альфа-глиноземная взвесь может быть закачана на верхнюю плоскость.

Затем при помощи шпателя или выравнивателя можно принудительно целиком заполнить исходной альфа-глиноземной взвесью полость изложницы. Остаток исходной альфа-глиноземной взвеси, не вошедший в полость, можно удалить с верхней плоскости изложницы и использовать повторно. В некоторых реализациях незначительная часть исходной альфа-глиноземной взвеси может оставаться на верхней плоскости, в других реализациях верхняя плоскость в основном свободна от взвеси. Давление, прикладываемое посредством шпателя или выравнивателя обычно меньше 100 фунтов на кв. дюйм (0,7 МПа), меньше чем 50 фунтов на кв. дюйм (0,3 МПа), или даже меньше 10 фунтов на кв. дюйм (69 кПа). В некоторых реализациях за пределами верхней плоскости отсутствует открытая поверхность исходной альфа-глиноземной взвеси, чем обеспечивается равномерность толщины получающихся керамических формованных абразивных частиц.

Четвертый этап процесса включает в себя удаление летучего компонента для высушивания взвеси. Предпочтительно удалять летучий компонент быстрым испарением. В некоторых реализациях удаление летучего компонента испарением происходит при температурах выше точки кипения летучего компонента. Верхний предел температуры сушки зачастую зависит от материала изложницы. Температура для полипропиленовой оснастки должна быть ниже точки плавления пластика. Известна реализация с водной взвесью от 40 до 50 процентов твердых веществ и полипропиленовой изложницей, где температуры сушки находятся в диапазоне от 90°C до 165°C, или от 105°C до 150°C, или от 105°C до 120°C. Повышенные температуры способны привести к ускорению производства, одновременно они способны вызвать разрушение полипропилена, ограничивающее срок службы изложницы.

Пятый этап процесса включает в себя извлечение готовых исходных керамических формованных частиц из полостей изложницы. Исходные керамические формованные абразивные частицы можно извлечь из полостей посредством следующего процесса, реализуемого автономно или вместе с изложницей: сила гравитации, ультразвуковая вибрация, вакуум или сжатый воздух.

Затем исходные абразивные частицы можно высушить вне изложницы. Если исходная альфа-глиноземная взвесь высушивается до желаемого уровня в изложнице, этот дополнительный этап сушки не требуется. Тем не менее, в некоторых ситуациях может оказаться экономически выгодным использовать этап сушки для минимизации выдержки исходной альфа-глиноземной взвеси с изложнице. Обычно исходные керамические формованные абразивные частицы будут высыхать за 10…480 минут, или за 120…400 минут, при температуре от 50°C до 160°C, или от 120°C до 150°C.

Шестой этап процесса включает в себя кальцинирование исходных керамических формованных абразивных частиц. В процессе кальцинирования удаляются в основном весь летучий материал, и различные компоненты, присутствующие в исходной альфа-глиноземной взвеси преобразуются в металлические оксиды. Исходные керамические формованные частицы обычно нагреваются до температуры от 400°C до 800°C, и выдерживаются в этом температурном диапазоне вплоть до удаления воды и 90 весовых процентов любого связующего летучего материала. В качестве дополнительного этапа может оказаться желательным ввод модифицирующей присадки посредством процесса пропитки. В поры кальцинированных исходных керамических формованных частиц посредством пропитки моет быть введена водорастворимая соль. Затем производится повторный отжиг исходных керамических формованных абразивных частиц.. Описание этого дополнительного варианта приводится в патенте США №5,164,348 (Вуд).

Седьмой этап включает в себя спекание кальцинированных исходных керамических формованных абразивных частиц для получения альфа-глиноземных частиц. Перед спеканием кальцинированные исходные керамические формованные абразивные частицы отвердели не полностью, и поэтому отсутствие желаемой твердости следует использовать как керамические формованные абразивные частицы. Спекание происходит при нагревании кальцинированных исходных керамических формованных абразивных частиц до температуры от 1000°C до 1650°C с последующей выдержкой их в этом температурном диапазоне до преобразования практически всех моногидратов кремния (или их эквивалентов) в альфа-глинозем и до снижения пористости до уровня менее 15 процентов по объему. Продолжительность времени воздействия температуры спекания на кальцинированные исходные керамические формованные абразивные частицы для достижения этой степени преобразования зависит от различных факторов, однако обычно она составляет от пяти секунд до 48 часов.

Длительность этапа спекания может, например, занимать от одной до 90 минут. После спекания твердость, определяемая способом Виккерса, может достигать величины 10 гигапаскалей (ГПа), 16 ГПа, 18 ГПа, 20 ГПа, или больше.

Для модификации изложенного процесса допускается использовать другие этапы, такие, например, как стремительное нагревание материала от температуры кальцинирования до температуры спекания, обработка на центрифуге исходной альфа-глиноземной взвеси для удаления шлама и/или отходов.

Кроме того, при желании, возможна модификация процесса путем сочетания двух и более этапов процесса. Стандартные этапы процесса, которые можно использовать для модификации заявляемого процесса, более полно изложены в патенте США №4,314,827 (Лейтейзер).

Дополнительные сведения относительно способов изготовления керамических формованных абразивных частиц изложены в заявке на патент США №2009/0165394 AI (Каллер и соавторы).

Несмотря на отсутствие конкретных ограничений на форму керамических формованных абразивных частиц, форма абразивных частиц предпочтительно должна быть заданной, т.е. формование исходных частиц, содержащих керамический исходный материал (например, бемитный золь-гель) следует производить в изложнице с последующим спеканием. В качестве формы керамических формованных абразивных частиц допускается использовать, например, опорные пирамиды, усеченные пирамиды (например, усеченные трехгранные пирамиды) и/или другие правильные или неправильные многоугольники. Абразивные частицы могут включать в себя единственный сорт абразивных частиц или абразивный состав из двух или более сортов абразивов, или абразивную смесь из двух или более сортов абразивов. В некоторых реализациях производится прецизионная формовка керамических формованных абразивных частиц, так, что отдельные керамические формованные абразивные частицы будут обладать формой, в точности повторяющей форму части полости изложницы или производственного инструмента, в котором производилась формовка исходного материала частиц перед дополнительным кальцинированием или спеканием.

На ФИГ. 3A-3B представлена иллюстративная керамическая формованная абразивная частица 320, ограниченная треугольным основанием 321, трехгранной вершиной 323 и множеством сторон 325a, 325b, 325с, соединяющих основание 321 с вершиной 323. В некоторых реализациях на основании 321 имеются боковые кромки 327a, 327b, 327c, со средним радиусом закругления менее 50 микрометров. ФИГ. 3C-3D представляет радиус закругления 329a для боковой кромки 327a. В общем, чем меньше радиус закругления, тем острее будет боковая кромка.

В некоторых реализациях радиус закругления керамических формованных абразивных частиц вдоль боковой кромки, соединяющей основание с вершиной керамических формованных абразивных частиц, может достигать 50 микрометров или меньше. Радиус закругления можно измерить от полированного среза, взятого между верхними и нижними плоскостями, пользуясь, например, программой анализа изображений CLEMEX VISION PE компании Clemex Technologies, Inc. of Longueuil, Quebec, Canada, получающей информацию с зеркального светового микроскопа, или с помощью другого подходящего программного обеспечения и оборудования анализа изображений. Радиус закругления для каждой точки формованной абразивной частицы можно определить, задав три точки на вершине каждой точки в процессе наблюдения сечения (например, при 100-кратном увеличении). Первая точка помещается в начале изгиба наконечника, где прямая кромка начинает переходить в кривую, вторая точка помещается в наивысшей точке наконечника, а третья точка помещается на переходе изогнутого наконечника назад к прямой кромке. Затем программой анализа изображений строится дуга, определяющая три точки (начало, середину и конец кривой) и производится вычисление радиуса закругления. Результаты измерений 30 наивысших точек усредняются, и выводится средний радиус наконечника.

Керамические формованные абразивные частицы настоящей заявки можно, как правило, изготовлять с использованием оснастки (например, изложниц), разрезать с помощью алмазных резцов, что обеспечивает повышенные свойства по сравнению с альтернативными способами производства, такими, как, например, штамповка или пробивка.

Обычно полости на поверхности инструмента выполняются с плоскими поверхностями, среди острых кромок, и образуют стороны и верх усеченной пирамиды. Номинальная средняя форма готовых керамических формованных абразивных частиц соответствуют форме полостей (например, усеченной пирамиды) на поверхности оснастки; однако в процессе производства возможны отклонения от номинальной средней формы (например, случайные отклонения), и керамические формованные абразивные частицы с такими отклонениям подпадают под определение керамических формованных абразивных частиц настоящей заявки.

В некоторых реализациях основание и верх керамических формованных абразивных частиц в основном параллельны, приобретая форму усеченной пирамиды (как показано на ФИГ. 3A-3B), хотя это не является обязательным требованием. Как видно, размеры сторон 325a, 325b, 325c одинаковы, и образуют двугранные углы с основанием 321 порядка 82 градусов. Однако, будет признано, что допускается использование других двугранных углов (включая 90 градусов). Например, двугранный угол между основанием и каждой из сторон может независимо принимать значения о