Автономный пылесос

Иллюстрации

Показать все

Автономный пылесос, имеющий систему обнаружения столкновения и содержащий каркас, имеющий тяговое средство для поддержания каркаса на поверхности, и рабочую чистящую часть, образующую входное отверстие для загрязненного воздуха, и корпус, установленный на каркасе и выполненный с возможностью перемещения относительно него в ответ на столкновения с препятствием, причем корпус включает в себя, по меньшей мере, средство создания воздушного потока для создания воздушного потока вдоль пути воздушного потока от входного отверстия для загрязненного воздуха до выходного отверстия для очищенного воздуха, и отделительное устройство, расположенное на пути воздушного потока для отделения загрязнений от воздуха, при этом пылесос дополнительно содержит средство распознавания относительного перемещения между каркасом и корпусом. 2 н. и 51 з.п. ф-лы, 14 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к автономному пылесосу и, в более общем смысле, к мобильному робототехническому устройству, оснащенному средством для обнаружения столкновений с препятствиями.

Уровень техники

Мобильные роботы становятся все более обычным явлением и используются в таких разнообразных областях, как освоение космоса, стрижка газона и уборка полов. В последнее десятилетие наблюдается особенно быстрое продвижение в области робототехнических устройств для очистки пола, особенно пылесосов, основная цель которых, заключается в автономной ориентации в доме пользователя и ненавязчивость во время уборки пола.

Для выполнения этой задачи, робот-пылесос должен быть сориентирован в области уборки и необходимо не допустить столкновение пылесоса с препятствиями при выполнении уборки. Как правило, робот-пылесос будет включать в себя подвижный бампер, который образует часть корпуса робота, и один или несколько датчиков, выполненных с возможностью обнаруживать перемещение корпуса по отношению к каркасу робота. Примеры такого подхода описаны в документах ЕР 1997418 А2 и US 7647144 B2.

Хотя бамперы адекватно функционируют в качестве средства для обнаружения контакта робота с препятствиями, они значительно усложняют роботизированную систему в целом. Во-первых, бамперы обычно имеют форму расположенной по кругу защитной оболочки, которая закрывает, по меньшей мере, часть робота так, что робот не имеет способности обнаруживать препятствия в широком диапазоне углов. Кроме того, такой бампер обычно выступает от корпуса робота, чтобы обеспечить наличие пространства для перемещения в ответ на столкновения и инициировать механизм распознавания в результате этого перемещения. Это увеличивает размер робота и также добавляет вес.

Более того, на практике бампер в сборе, как правило, достаточно хрупок, что снижает эксплуатационную надежность.

Раскрытие изобретения

Именно на этом фоне было сделано данное изобретение. С этой целью изобретение представляет собой автономный пылесос, имеющий систему обнаружения столкновения, при этом пылесос содержит каркас, имеющий тяговое средство для поддержки каркаса на поверхности, и рабочую чистящую часть, образующую входное отверстие для загрязненного воздуха, и корпус, установленный на каркасе и имеющий возможность перемещения относительно него в ответ на столкновение с препятствием, причем корпус включает в себя, по меньшей мере, одно средство создания воздушного потока для создания воздушного потока вдоль пути воздушного потока от входного отверстия для загрязненного воздуха до выходного отверстия для очищенного воздуха, и отделительное устройство, расположенное на пути воздушного потока, чтобы отделять загрязнения от воздуха, при этом пылесос дополнительно содержит средство распознавания относительного перемещения между каркасом и корпусом.

Другими словами, данное изобретение относится к мобильному роботу, имеющему систему определения столкновений, при этом робот содержит каркас, включающий в себя приводной механизм, и корпус, установленный на каркасе и выполненный с возможностью перемещения относительно него в ответ на столкновения с объектом. Корпус дополнительно включает в себя систему управления, которая связана с источником питания, набором датчиков и приводным механизмом и, таким образом, оперативно осуществляет управление перемещением мобильного робота по поверхности. Робот дополнительно содержит средство распознавания для распознавания относительного перемещения между каркасом и корпусом из-за события столкновения и, в ответ, подачи сигнала в средство управления.

Таким образом, изобретение относится к мобильному роботу и, более конкретно, но не исключительно, автономному пылесосу, который не требует наличия громоздкого защитного бампера, обычно используемого в известных типах роботов-пылесосов. Вместо этого, робот согласно изобретению содержит два основных функциональных компонента - каркас и корпус - которые установлены таким образом, что корпус выполнен с возможностью перемещения относительно каркаса в ответ на столкновения, и систему управления, которая управляет относительным перемещением между корпусом и каркасом для индикации случившегося столкновения.

Предпочтительно, изобретение исключает необходимость в оснащении отдельным бампером, установленном на передней части робота, который снижает надежность функционирования и вызывает увеличение веса и стоимости.

Для установки корпуса на каркасе для относительного перемещения, часть корпуса соединена с частью каркаса, так что корпус может линейно перемещаться относительно каркаса. С этой целью, может быть предусмотрен удлиненный паз в передней части корпуса, смежной с соответствующей частью каркаса, при этом стопорный элемент, связанный с каркасом, вставлен в паз так, что стопорный элемент может скользить вперед и обратно в пазу, тем самым предотвращая разъединение корпуса и каркаса.

Хотя такая компоновка паза обеспечивает относительное линейное перемещение между корпусом и каркасом, в альтернативном варианте осуществления корпус выполнен с возможностью перемещения на угол по отношению к продольной оси каркаса, чтобы обнаруживать столкновения, происходящие под углом относительно направления движения пылесоса. С этой целью, стопорный элемент может иметь округлую форму, таким образом, имея возможность линейно перемещаться в пазу и перемещаться на угол относительно паза.

Хотя предпочтительным является факт того, что корпус выполнен с возможностью перемещаться как линейно, так и на угол относительно каркаса, в некоторых случаях необходимо обеспечить только линейное или угловое перемещение. В этом случае, паз и стопорный элемент могут быть выполнены так, что корпус может только скользить или поворачиваться вокруг стопорного элемента.

Чтобы поддерживать корпус на каркасе и обеспечивать относительное перемещение, корпус может быть установлен на удлиненных опорных элементах, связанных с каркасом и имеющих возможность наклоняться, когда корпус перемещается в поперечном направлении относительно каркаса. Средство также может быть предусмотрено для центрирования корпуса на каркасе после столкновения, и с этой целью, опорные элементы могут представлять собой один или несколько трубчатых элементов, вставленных в соответствующие углубления в каркасе. Более того, один или каждый трубчатый элемент может быть снабжен пружинной проходящей через него, которая прикреплена к соответствующей части корпуса так, чтобы оказывать самоцентрирующееся воздействие на корпус.

Чтобы регулировать линейное и/или угловое перемещение корпуса относительно каркаса в заранее заданных пределах, один или несколько направляющих элементов могут быть предусмотрены либо на корпусе, либо на каркасе, направляющие элементы, входят в зацепление с соответствующей направляющей канавкой, предусмотренной, соответственно, либо на каркасе, либо на корпусе. Направляющие элементы, следовательно, имеют возможность перемещаться только в пределах заданной области канавки, тем самым разграничивая перемещение корпуса относительно каркаса.

Удобно то, что один или несколько из направляющих элементов, опорных элементов и направляющая канавка расположены в корпусной части, связанной с каркасом. Корпусная часть может отделяться от робота как модульный элемент, что способствует легкой замене. Предпочтительно, направляющие элементы образуют часть корпуса, а направляющая канавка формируется в корпусной части.

Для обеспечения плавного перемещения между корпусом и каркасом, один или несколько роликовых элементов могут быть предусмотрены между корпусом и каркасом. Предпочтительно, роликовые элементы представляют собой цилиндрические ролики, которые прикреплены к нижней части корпуса и имеют возможность поворачиваться. Также могут быть предусмотрены два роликовых элемента, по одному с каждой стороны удлиненного паза на корпусе.

Средство распознавания определяет относительное перемещение между корпусом и каркасом и обеспечивает наличие соответствующего электрического сигнала, который может принимать различные формы. Тем не менее, в одном варианте осуществления средство распознавания содержит исполнительный элемент, выполненный с возможностью активизации механизма датчика. Чтобы средство распознавания могло обеспечивать информацией как о линейном, так и угловом перемещении корпуса по отношению к каркасу, средство распознавания может включать в себя первый и второй переключатели, расположенные по обе стороны от исполнительного элемента. Одним подходящим типом переключателя является переключатель мгновенного действия (также известный как микровыключатель), в этом случае, исполнительный элемент может иметь клиновидную форму и может быть расположен между переключателями таким образом, чтобы активировать один или оба переключателя, когда корпус перемещается относительно каркаса линейно, под углом или при комбинации того и другого.

Средство распознавания может быть связано с системой управления, установленной на корпусе робота для того, чтобы робот мог выполнить соответствующие действия при обнаружении столкновения.

Во втором аспекте настоящее изобретение относится к мобильному роботу, имеющему систему определения столкновений, при этом робот содержит каркас, включающий в себя механизм привода, и корпус, установленный на каркасе и выполненный с возможностью перемещения относительно него, в ответ на столкновение с объектом, причем корпус включает в себя, по меньшей мере, один дополнительный электронный компонент, при этом робот дополнительно включает в себя средство распознавания для распознавания относительного перемещения между каркасом и корпусом из-за события столкновения и, в ответ, подачи сигнала во встроенную систему управления. По меньшей мере, один дополнительный электронный компонент может представлять собой систему управления, или источник питания, или внешнюю систему датчиков, например.

Предпочтительные и/или необязательные признаки первого аспекта настоящего изобретения могут быть объединены со вторым аспектом настоящего изобретения.

Краткое описание чертежей

Для более легкого понимания изобретения будут сделаны ссылки только в качестве примера на прилагаемые чертежи.

На фиг. 1 показан фронтальный вид в перспективе мобильного робота в соответствии с вариантом осуществления настоящего изобретения;

на фиг. 2 - вид снизу мобильного робота, показанного на фиг. 1;

на фиг. 3 - вид в перспективе мобильного робота в разобранном состоянии согласно изобретению, показывающий его основные узлы;

на фиг. 4 - фронтальный вид в перспективе каркаса мобильного робота;

на фиг. 5а и 5b - виды в перспективе каждой стороны тягового блока мобильного робота;

на фиг. 6 - вид сбоку тягового блока, показанного на фиг. 5а и фиг. 5b, и показана его ориентация относительно поверхности, по которой он перемещается;

на фиг. 7 - вид в разрезе тягового блока, показанного на фиг. 6, по линии А-А;

на фиг. 8 - вид в перспективе тягового блока, показанного на фиг. 5а, 5b и 6, в разобранном виде;

на фиг. 9 - вид сбоку тягового блока, показанного на фиг. 6, но показан в трех положениях поворотного кронштейна;

на фиг. 10 - вид спереди каркаса мобильного робота;

на фиг. 11 - вид снизу основного корпуса мобильного робота;

на фиг. 12 - вид сзади каркаса мобильного робота;

на фиг. 13а, 13b, 13с и 13d - схематические изображения робота в различных ситуациях "столкновения"; и

на фиг. 14 - схематический вид систем мобильного робота.

Осуществление изобретения

Как показано на фиг. 1, 2, 3 и 4, автономное приспособление для обработки поверхности в виде робота-пылесоса 2 (здесь и далее «робот») содержит основной корпус, имеющий четыре основных узла: каркас (или опорную пластину) 4, корпус 6, который устанавливается на каркас 4, наружный кожух 8 обычно круглой формы, который устанавливается на каркас 4, что и придает роботу 2 типовой круглый профиль, и отделительное устройство 10, которое устанавливается на передней части корпуса 6 и которое выступает через комплементарной формы вырез 12 наружного кожуха 8.

Для целей данного описания, термины "вперед" и "назад" в контексте описания робота, будут использоваться в смысле указания направления его перемещения вперед и в обратном направлениях во время работы с отделительным устройством 10, установленным в передней части робота. Аналогично, термины «влево» и «вправо» будут использоваться со ссылкой на направление поступательного движения робота. Как будет понятно из фиг. 1, основной корпус робота 2 имеет типовую форму относительно короткого кругового цилиндра, в основном по причинам обеспечения маневренности, и поэтому имеет цилиндрическую ось 'С', которая проходит, по существу, вертикально по отношению к поверхности, по которой перемещается робот. Соответственно, ось С цилиндра проходит, по существу, по нормали к продольной оси 'L' робота, которая ориентирована по направлению вдоль оси робота 2 и таким образом проходит через центр отделительного устройства 10. Величина диаметра основного корпуса, предпочтительно, находится между 200 мм и 300 мм и более предпочтительно между 220 мм и 250 мм. Наиболее предпочтительно, основной корпус имеет диаметр 230 мм, данная величина была определена как компромисс между способностью обеспечения маневренности перемещения и эффективностью очистки.

Каркас 4 предназначен для закрепления на нем нескольких компонентов робота и предпочтительно изготовлен из высокопрочного материала методом инжекционного литья пластмасс, таких как ABS (акрилонитрил-бутадиен-стирол), хотя каркас также может быть изготовлен из соответствующих металлов, таких как алюминий или сталь, или композитных материалов, таких как композиционный материал из углеродного волокна. Как будет объяснено, основной функцией каркаса 4 является обеспечение платформы привода и обеспечения перемещения устройства очистки для осуществления очистки поверхности, по которой перемещается робот.

Как показано на фиг. 3 и фиг. 4, передняя часть 14 каркаса 4 является относительно плоской, имеющей форму поддона, и определяет изогнутую выступающую часть 15, которая образует переднюю часть робота 2. Каждая сторона передней части 14 каркаса имеет вырез 16, 18, в который устанавливаются соответствующий тяговый блок 20. Заметим, что на фиг. 2 и 3 показан каркас 4 с установленными тяговыми блоками 20, а на фиг. 4 показан каркас 4 без тяговых блоков 20.

Пара тяговых блоков 20 расположена на противоположных сторонах каркаса 4 и функционирует независимо, обеспечивая перемещение робота в прямом и в обратном направлениях, движение по изогнутой траектории влево или вправо или разворот на месте для перемещения в любом направлении, в зависимости от скорости и направления вращения тяговых блоков 20. Такая конфигурация устройства иногда называется дифференциальным приводом, и подробное описание тяговых блоков 20 будет приведено позже в описании.

Относительно узкая передняя часть 14 каркаса 4 расширяется в тыльной части 22, которая включает в себя устройство 24 обработки поверхности в сборе или «рабочую чистящую часть», которая имеет в основном цилиндрическую форму и простирается в поперечном направлении относительно его продольной оси "L", по существу, по всей ширине каркаса 4.

Со ссылкой также на фиг. 2, на которой представлена нижняя часть робота 2, рабочая чистящая часть 24 образует прямоугольное всасывающее отверстие 26, которое обращено к опорной поверхности и в которое втягивается грязь и мусор во время работы робота 2. Удлиненная стержневая щетка 26 установлена внутри рабочей чистящей части 24 и приводится в действие электродвигателем 30 через редуктор и приводной ремень 32 обычным образом, хотя другие конфигурации привода такие, как зубчатая передача, также предусматриваются.

В нижней части каркаса 4 находится секция 25 удлиненной опорной пластины, протирающаяся вперед от всасывающего отверстия 26 и включающая в себя множество каналов 33 (только два из которых обозначены для краткости), которые обеспечивают канал всасывания загрязненного воздуха в направлении всасывающего отверстия 26. Нижняя часть каркаса 4 также имеет множество (четыре в показанном варианте) пассивных колесиков или роликов 31, которые обеспечивают дополнительные точки опоры для каркаса 4, когда он находится в состоянии покоя или перемещается по поверхности пола.

В этом варианте осуществления рабочая чистящая часть 24 и каркас 4 являются единым элементом, изготовленным из пластмассы способом литья под давлением, при этом рабочая чистящая часть 24 является неотъемлемой частью каркаса 4. Тем не менее, эти два компонента могут быть разделены, рабочая чистящая часть 24 может быть соответствующим образом прикреплена к каркасу 4 винтами или с использованием соответствующей технологии склеивания, как будет понятно специалисту в данной области техники.

Рабочая чистящая часть 24 имеет первую и вторую торцевые поверхности 27, 29, которые проходят до кромки каркаса 4, и которые согласуются с кожухом 8 робота. Вид сбоку, как показано на фиг. 2 и 3, иллюстрирует торцевые поверхности 27, 29 рабочей чистящей части 24, которые являются плоскими и проходят по касательной (обозначены как "Т") к кожуху 8 на диаметрально противоположных точках вдоль поперечной оси 'X' робота 2. Преимущество этого состоит в том, что рабочая чистящая часть 24 может работать, находясь очень близко к стенам комнаты, в случае, если робот функционирует в режиме «работа у стены», робот в состоянии очистить поверхность вплоть до стены. Более того, поскольку торцевые поверхности 27, 29 рабочей чистящей части 24 проходят по касательной к обеим сторонам робота 2, то он способен очистить поверхность, прилегающую вплотную к стене, независимо от того, находится ли стена справа или слева от робота 2. Следует отметить также, что усиление способности осуществлять очистку прилегающей к стене поверхности, что является крайне важным признаком с практической точки зрения, обеспечивается размещением тяговых блоков 20 внутри кожуха 8 и, по существу, на поперечной оси X, означая, что робот может маневрировать таким образом, что кожух 8 и, следовательно, торцевые поверхности 27, 29 рабочей чистящей части 24 находятся практически в контакте со стеной во время работы у стены.

Грязь втягивается во всасывающее отверстие 26 во время чистки и удаляется из рабочей чистящей части 24 через патрубок 34, который проходит вверх от рабочей чистящей части 24 и закругляется примерно под углом 90° по направлению к передней части каркаса 4, до момента выпрямления. Патрубок 34 оканчивается прямоугольным раструбом 36, имеющим гибкий сильфон 38, форма которого позволяет ему взаимодействовать с воздуховодом 42 комплементарной формы, находящимся на корпусе 6.

Воздуховод 42 предусмотрен на передней части 46 корпуса 6 и открыт в направлении углубления 50, которое обычно имеет полуцилиндрическую форму и содержит базовую платформу 48 в основном круглой формы. Углубление 50 и платформа 48 образуют стыковочную часть, в которую устанавливается отделительное устройство 10 при использовании, и от которого оно может отсоединяться для опорожнения.

Следует отметить, что в этом варианте осуществления отделительное устройство 10 состоит из циклонного сепаратора такого, как описан в документе WO 2008/009886, содержание которого включено в качестве ссылки. Конфигурация такого отделительного устройства хорошо известна и не будет дополнительно здесь описана, за исключением случая, когда отделительное устройство 10 может быть съемным образом прикреплено к корпусу 6 с помощью соответствующего механизма, такого как быстроразъемное крепежное средство, обеспечивающее опорожнение устройства 10 при его заполнении. Отделительное устройство 10 не является сущностью изобретения, и циклонный сепаратор может взамен отделять пыль от воздушного потока с помощью других средств, известных в данной области техники, например, фильтром с пористой диафрагмой, пористым ящичным фильтром или некоторыми другими формами отделительного устройства. Для вариантов осуществления устройства, которые не являются пылесосами, в корпусе 6 можно установить оборудование, которое обеспечивает работу машины. Например, для паркетоотделочной машины основной корпус может иметь резервуар для хранения жидкости для полировки.

Когда отделительное устройство 10 зацепляется в стыковочной части 50, впускное отверстие 52 для загрязненного воздуха отделительного устройства 10 сопрягается с воздуховодом 42, и другой конец воздуховода 42 соединяется с раструбом 36 патрубка 34 стержневой щетки, таким образом, по воздуховоду 42 перемещается загрязненный воздух из рабочей чистящей части 24 к отделительному устройству 10. Сильфон 38 образует раструб 36 воздуховода 34 с определенной степенью эластичности, так что он может герметично сопрягаться с впускным отверстием 52 для забора загрязненного воздуха отделительного устройства 10, несмотря на некоторое угловое смещение. Хотя описанный здесь как сильфон, воздуховод 34 может быть также снабжен упругим уплотнением в качестве альтернативы, например, гибкой резиновой прокладкой с манжетой, которая входит в зацепление с впускным отверстием 52 для забора загрязненного воздуха.

Загрязненный воздух втягивается через отделительное устройство 10 с помощью средства создания воздушного потока, которое, в данном варианте осуществления, образовано электрическим двигателем и блоком вентилятора (не показан), расположенным в корпусе 60 двигателя на левой стороне корпуса 6. Корпус 60 двигателя включает в себя изогнутый вход 62 воздухозаборника, который открыт на стенке цилиндрической формы стыковочной части 50 таким образом, чтобы сопрягаться с цилиндрическим отделительным устройством 10. Хотя это и не показано на фиг. 3, отделительное устройство 10 включает в себя выходное отверстие для очищенного воздуха, которое стыкуется с входом 62 воздухозаборника, когда отделительное устройство 10 установлено в стыковочную часть 50. В рабочем состоянии всасывающий электродвигатель выполнен с возможностью создания низкого давления в области входа 62 воздухозаборника двигателя, тем самым втягивая загрязненный воздух по воздуховоду из всасывающего отверстия 26 рабочей чистящей части 24 через парубок 34 и воздуховод 42 и через отделительное устройство 10 из впускного отверстия 52 для загрязненного воздуха в выходное отверстие для очищенного воздуха. Очищенный воздух затем проходит через корпус 60 двигателя и выходит из тыльной части робота 2 через снабженное фильтром выходное отверстие 61 для очищенного воздуха.

Кожух 8 показан отдельно от корпуса 6 на фиг. 3 и, так как на каркасе 4 и корпусе 6 установлена большая часть функциональных компонентов робота 2, то кожух 8 содержит внешнюю оболочку, служащую в основном в качестве защитного покрытия, на котором размещен интерфейс 70 управления пользователя.

Кожух 8 содержит в целом цилиндрическую боковую стенку 71 и плоскую верхнюю поверхность 72, которая образует, по существу, круглый профиль, соответствующий боковому профилю корпуса 6, за исключением части, имеющей круговой вырез 12, ответный по форме для стыковочной части 50 и цилиндрического отделительного устройства 10. Более того, можно видеть, что плоская верхняя поверхность 72 кожуха 8 находится в одной плоскости с верхней поверхностью 10а отделительного устройства 10, которое, следовательно, находится на одном уровне с кожухом 8, когда оно установлено на основном корпусе.

Как показано особенно четко на фиг. 1 и фиг. 3, круговой вырез 12 кожуха 8 и полуцилиндрическое углубление 50 в корпусе 6 обеспечивают стыковочную часть в форме подковы, формируя две выступающие части или ответвления 73, которые примыкают к стороне отделительного устройства 10 и выступают от фронта стыковочной части 50 примерно на 5%-40%, предпочтительно на 20% от устройства 10. Таким образом, часть отделительного устройства 10 остается открытой, даже когда кожух 8 установлен на место на основном корпусе робота 2, который обеспечивает пользователю свободный доступ к отделительному устройству 10 для опорожнения.

Противоположные части боковой стенки 71 включают в себя дугообразную выемку 74 (показана только одна на фиг. 3), которая насаживается на соответствующие концы 27, 29 рабочей чистящей части 24, когда кожух 8 соединен с корпусом 6. Как можно видеть на фиг. 1, существует зазор между концами рабочей чистящей части 24 и соответствующими дугами 74, что обеспечивает наличие относительного перемещения между ними в случае столкновения с объектом.

На верхнем краю боковой стенки 71 кожух 8 содержит полукруглую ручку 76 для переноски, которая может поворачиваться вокруг двух диаметрально противоположных выступов 78 между первым, убранным положением, в котором ручка 76 вставляется в выемку 80 комплементарной формы на верхнем периферийном краю кожуха 8, и рабочим положением, в котором она поднята вверх (показано пунктирными линиями на фиг. 1). В убранном положении ручка 76 образует "чистый" круглый профиль кожуха 8 и ненавязчива для пользователя во время нормальной работы робота 2. Кроме того, в этом положении ручка 76 служит для блокировки задней крышки фильтра (не показана) робота 2 в закрытом положении, что предотвращает случайное удаление крышки фильтра при эксплуатации робота 2.

Во время работы робот 2 способен автономно перемещаться по поверхности, получая электропитание от аккумуляторной батареи (не показана). Чтобы добиться этого, робот 2 снабжен соответствующим средством управления, которое связано с аккумуляторной батареей, тяговые блоки 20 и соответствующий комплект 82 датчиков, содержащий, например, инфракрасные и ультразвуковые передатчики и приемники, установленные на передней части корпуса 6 слева и справа. Комплект 82 датчиков обеспечивает средство управления с информацией о расстоянии от робота до различных окружающих предметов и о размере и форме данных предметов. Кроме того, средство управления связано с электродвигателем всасывающего вентилятора и двигателем стержневой щетки в целях осуществления управления этими компонентами соответствующим образом. Средство управления, следовательно, выполнено с возможностью управлять тяговыми блоками 20 для ориентирования робота 2 при перемещении по комнате при уборке. Следует отметить, что конкретный способ работы и ориентирования робота-пылесоса не является существенным для изобретения и что известны несколько таких способов управления в данной области техники. Например, один конкретный способ работы описан более подробно в документе WO 00/38025, в котором навигационная система использует устройство обнаружения с применением светового потока. Это позволяет пылесосу сориентироваться в комнате посредством сравнения уровня света, детектированного световым детектором, в данный момент времени с уровнем света, детектированного световым детектором ранее.

После описания каркаса 4, корпуса 6 и кожуха 8, далее будет приведено подробное описание тяговых блоков 20 со ссылкой на фиг. 5-9, на которых показаны различные виды в перспективе, в разрезе и в разобранном состоянии для ясности одного тягового блока 20.

В общих чертах, тяговый блок 20 содержит коробку 90 передачи, соединительный элемент 92 или «поворотный кронштейн», первое и второе колесо 94, 96 и трек-ленту или непрерывную ленту 98, которая установлена вокруг колес 94, 96.

Коробка 90 передачи вмещает систему передач, которая простирается между входным модулем 100 приводного двигателя, установленным на внутренней стороне одной оконечности коробки 90 передачи, и вторичным приводным валом 102, который выступает от стороны привода коробки 90 передачи, то есть, от другой стороны коробки 90 передачи, на которой установлен модуль 100 двигателя. Модуль 100 двигателя в этом варианте осуществления представляет собой бесколлекторный двигатель постоянного тока, так как такой двигатель является надежным и эффективным, хотя это не исключает применение других типов двигателей, например щеточных двигателей постоянного тока, шаговых двигателей или даже гидравлических приводов. Как уже упоминалось, модуль 100 двигателя связан со средством управления для получения электропитания и приема сигналов управления и снабжен встроенным электрическим соединителем 104 для этой цели. Система передач в этом варианте осуществления представляет собой конструкцию шестерен, которая снижает скорость вращения модуля 100 двигателя, при этом увеличивая крутящий момент, таким образом, такая система является надежной, компактной и легкой. Однако другие конструкции зубчатых передач предусмотрены в рамках настоящего изобретения, такие как механизмы ременной или гидравлической передачи.

Таким образом, тяговый блок 20 реализовывает приводную функцию, трансмиссионную функцию и напольное сцепление в самодостаточном и независимом блоке привода, который легко устанавливается на каркасе 4 посредством множества крепежных элементов 91 (четыре крепежных элемента в данном варианте), например, винтами или болтами, которые вставляются в соответствующие монтажные приливы 93, находящиеся вокруг выемки каркаса 4.

Тяговый блок 20 может устанавливаться на каркасе так, чтобы первый шкив 94 находился в ведущей позиции при перемещении робота 2 вперед. В этом варианте осуществления, ведущее колесо 94 является ведомым шкивом и включает в себя центральное отверстие 104, в которое вставляется приводной вал 102 путем прессовой посадки. Ведущее колесо 94 можно также рассматривать как звездочку, так как оно является ведомым колесом в паре. Чтобы улучшить передачу движущей силы с приводного вала 102 на ведущее колесо 94, центральное отверстие 104 шкива может изнутри сцепляться так, чтобы сопрягаться с соответствующей внешней шпонкой на приводном валу. Альтернативные способы крепления шкива к валу также предусмотрены, такие как реализованные с помощью частично кругового зажима («пружинное разрезанное кольцо»), прикрепленного к валу.

Поворотный кронштейн 92 включает в себя переднюю кромку, которая устанавливается на коробке 90 передачи между ним и ведущим колесом 94 и устанавливается с возможностью поворачиваться вокруг приводного вала 102. Втулка 106 расположена в монтажном отверстии 108 поворотного кронштейна 92, в которую вставляется выступающая наружу цапфа 110 коробки 90 передачи, через которую выступает ведущий вал 102. Втулка 106, следовательно, обеспечивает опорную поверхность промежуточной цапфы 110 и поворотного кронштейна 92, чтобы обеспечить возможность плавного поворота поворотного кронштейна 92 и предотвратить нежелательное перемещение относительно коробки 90 передачи. Втулка 106 выполнена предпочтительно из подходящих конструкционных пластмасс, таких как полиамид, который обеспечивает требуемую поверхность с низким коэффициентом трения с высокой прочностью. Тем не менее, втулка 106 также может быть изготовлена из металла, такого как алюминий, сталь, или их сплавов, которые также обеспечивают необходимые фрикционные и прочностные характеристики.

Как показано на видах в сборе, поворотный кронштейн 92 установлен на цапфе 110, а ведущее колесо 94 установлено на приводном валу 102 на передней кромке поворотного кронштейна 92. Ось 112 запрессована в отверстие, расположенное на противоположной или "тыльной" кромке поворотного кронштейна 92 и ограничивает собой установочный вал для заднего колеса 96 или «поддерживающего колеса» вдоль оси вращения, параллельной оси приводного вала 102. Поддерживающее колесо 96 включает в себя центральное отверстие 113, в которое вставляется и запрессовывается втулка 114. Втулка 114 вставляется на ось 112 скользящей посадкой, так что втулка 114 и, следовательно, поддерживающее колесо 96 могут вращаться относительно поворотного кронштейна 92. Стопорное кольцо 116 фиксирует поддерживающее колесо на оси 112.

Непрерывная лента или трек-лента 98 обеспечивает сопряжение между роботом 2 и поверхностью пола и, в данном варианте осуществления, изготовлена из жесткого прорезиненного материала, который обеспечивает высокий уровень сцепления при перемещении робота по поверхности, и сглаживает вариации в текстуре поверхности и контурах. Хотя это не показано на чертежах, лента 98 может иметь рисунок протектора для увеличения сцепления при перемещении по неровной поверхности.

Аналогичным образом, хотя это не показано на чертежах, внутренняя поверхность 98а ленты 98 является рифленой или зубчатой, таким образом, обеспечивается зацепление с комплементарной зубчатой нарезкой 94а, предусмотренной на окружной поверхности ведущего колеса 94, что снижает вероятность схода ленты 98 с колеса 94. В этом варианте осуществления, поддерживающее колесо 96 не имеет комплементарной зубчатой нарезки, хотя это может быть обеспечено, при необходимости. Чтобы защитить ленту 98 от соскальзывания с поддерживающего колеса 96, предусмотрены кольцевые кромки 96а, 96b на своих внутренних и внешних дисках. Что. касается ведущего колеса 94, кольцевая кромка 94b предусмотрена только на его внешнем ободе, соответственно лента 98 не может соскользнуть с внутреннего обода из-за наличия смежной части поворотного кронштейна 92.

Как будет понятно, поворотный кронштейн 92 фиксирует ведущее и поддерживающее колеса 94, 96 разнесенные друг от друга, что позволяет поддерживающему колесу 96 поворачиваться на угол по отношению к ведущему колесу 94. Максимальные и минимальные величины углового перемещения поворотного кронштейна 92 определяются противоположными арочными верхними и нижними ограничителями 122а, 122b, которые выступают от стороны привода коробки 90 передач. Штырь или штифт 124, проходящий от внутренней стороны поворотного кронштейна 92, зацепляется за ограничители 122а, 122b, устанавливая границы перемещения поворотного кронштейна 92.

Тяговый блок 20 также содержит средство смещения поворотного кронштейна, которое представляет собой спиральную пружину 118, установленную в напряженном состоянии между монтажным кронштейном 126, проходящим вверх от передней части поворотного кронштейна 92, и штифтом 128, выступающим от приводной части коробки 90 передач. Пружина 118 смещает поддерживающее колесо 96 для зацепления с поверхностью пола при эксплуатации и, таким образом, улучшает тягу, когда робот 2 перемещается по неровной поверхности такой, как ковер с высоким ворсом, или при преодолении препятствия, такого как электрические кабели. На фиг. 9 показаны три примерные позиции тягового блока 20 во всем диапазоне перемещения поворотного кронштейна 92.

На фиг. 6 показаны относительное положение колес 94, 96 относительно поверхности F пола, когда робот 2 находится в состоянии покоя, и положение, в котором поворотный кронштейн 92 имеет минимальную величину перемещения, штифт 124 находится в зацеплении с верхним ограничителем 122а. В этом положении, часть ленты 98 вокруг поддерживающего колеса 96 определяет пятно 130 контакта с поверхностью пола, в котором часть ленты 98 направлена к пятну контакта, простираясь к ведущему колесу, наклоняется относительно поверхности F пола из-за большего радиуса поддерживающего колеса 96 по сравнению с ведущим колесом 94. Это обеспечивает тяговому блоку 20 способность перемещаться по наклонной поверхности, что улучшает способность робота 2 преодолевать препятствия, вызванные несовершенством поверхности пола, а также такие препятствия, как электрические кабели/загибы или края ковров, например.

В дополнение к улучшению способности преодолевать препятствия обеспечивается наклонная лента 98 по сравнению с простым колесом, тяговый блок 20 поддерживает небольшое по размеру пятно 130 контакта в силу наличия одного поддерживающего колеса 96, которое обеспечивает преимущество при маневрировании, в связи с тем, что отсутствует проскальзывание, так как значительная часть ленты 98 находится в контакте с поверхностью пола.

Дополнительное повышение тяги обеспечивается внешней кромкой 96b поддерживающего колеса 96, которая проходит радиально наружу дальше, чем кромка 96а на внутренней стороне колеса 96. Как ясно показано на фиг. 6, наружная кромка 96b выступает почти до того же радиуса, что и наружная поверхность ленты 98, и ее край снабжен зубчато