Способ и система телекоммуникаций

Иллюстрации

Показать все

Изобретение относится к системе беспроводной связи, использующей назначение ресурсов связи и передачи как больших объемов данных, так и небольших объемов, передаваемых сравнительно редко. Согласно первому аспекту настоящего изобретения предложена базовая станция для приема данных в восходящей линии, передаваемых от мобильных терминалов первого типа и мобильных терминалов второго типа через радиоинтерфейс с использованием нескольких поднесущих, мобильные терминалы первого типа передают данные в восходящей линии на первой группе поднесущих из совокупности нескольких поднесущих в первой полосе частот, и мобильные терминалы второго типа передают данные в восходящей линии на второй группе поднесущих из совокупности нескольких поднесущих в пределах первой группы поднесущих, так что вторая группа поднесущих занимает вторую полосу частот уже первой полосы, базовая станция предоставляет радиоресурсы восходящей линии в ответ на сообщения запроса произвольного доступа, передаваемые мобильными терминалами первого типа в первом канале произвольного доступа, и предоставляет радиоресурсы восходящей линии в ответ на сообщения запроса произвольного доступа, передаваемые мобильными терминалами второго типа во втором канале произвольного доступа, сообщения запроса произвольного доступа, передаваемые во втором канале произвольного доступа, передают на поднесущих из второй группы. 2 н. и 8 з.п. ф-лы, 19 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам, системам и аппаратуре для назначения ресурсов связи и передачи данных в мобильных телекоммуникационных системах.

Уровень техники

Мобильные телекоммуникационные системы третьего и четвертого поколения, такие как системы на основе разработанных группой 3GPP архитектур UMTS и LTE («Долгосрочное развитие» (Long Term Evolution)), способны поддерживать более сложные виды связи, чем простые службы голосовой связи и передачи сообщений, предлагаемые мобильными телекоммуникационными системами предшествующих поколений.

Например, благодаря усовершенствованному радиоинтерфейсу и повышенным скоростям передачи данных, обеспечиваемым системами стандарта LTE, пользователь может наслаждаться приложениями, требующими высоких скоростей передачи данных, такими как мобильное потоковое видео и мобильные видеоконференции, что раньше было бы доступно только при использовании стационарных соединений для передачи данных. Таким образом, потребность в развертывании сетей третьего и четвертого поколений очень велика, и можно ожидать, что зона обслуживания этих сетей, т.е. географические области, где возможен доступ к таким сетям, будет быстро расширяться.

Ожидаемое широкое развертывание сетей третьего и четвертого поколений привело к параллельной разработке устройств и приложений, которые, вместо того чтобы использовать преимущества доступных высоких скоростей передачи данных, делают упор на использовании выгод от более устойчивого и надежного радиоинтерфейса и увеличения зоны обслуживания до уровня, когда такое обслуживание станет повсеместным. Примеры включают приложения так называемой «связи машинного (компьютерного) типа» (machine type communication (МТС)), реализуемые обычно посредством полуавтономных или автономных устройств радиосвязи (т.е. устройств МТС), передающих небольшие объемы данных сравнительно редко. Примеры включают так называемые интеллектуальные счетчики, которые, например, расположены у потребителя дома и периодически передают информацию центральному серверу системы МТС, чтобы сообщить данные о потреблении коммунальных услуг, таких как газ, вода, электроэнергия и т.п.

Хотя для терминала, такого как терминал МТС, может быть удобно использовать преимущества большой зоны обслуживания, предоставляемые мобильной телекоммуникационной сетью третьего или четвертого поколения, на сегодня здесь есть ряд недостатков. В отличие от обычного мобильного терминала третьего или четвертого поколения, такого как смартфон, терминал типа МТС предпочтительно является относительно простым и недорогим. Характер функций, выполняемых терминалом МТС-типа (например, сбор и передача данных), не требует для выполнения какой-либо особо сложной обработки данных. Однако мобильные телекоммуникационные сети третьего и четвертого поколения обычно используют самые передовые способы модуляции данных в своих радиоинтерфейсах, что может потребовать более сложных и дорогостоящих радиоприемопередатчиков для реализации. Обычно оправдано применение таких сложных приемопередатчиков в смартфонах, поскольку типовой смартфон нуждается в мощном процессоре для осуществления характерных функций, присущих смартфонам. Однако, как указано выше, сегодня есть желание применять относительно недорогие и менее сложные устройства для связи с использованием сетей типа LTE.

Сущность изобретения

Согласно первому аспекту настоящего изобретения предложена базовая станция для приема данных в восходящей линии, передаваемых от мобильных терминалов первого типа и мобильных терминалов второго типа через радиоинтерфейс с использованием нескольких поднесущих. Мобильные терминалы первого типа передают данные в восходящей линии на первой группе поднесущих из совокупности нескольких поднесущих в первой полосе частот, и мобильные терминалы второго типа передают данные в восходящей линии на второй группе поднесущих из совокупности нескольких поднесущих в пределах первой группы поднесущих, так что вторая группа поднесущих занимает вторую полосу частот уже первой полосы. Базовая станция предоставляет радиоресурсы восходящей линии в ответ на сообщения запроса произвольного доступа, передаваемые мобильными терминалами первого типа в первом канале произвольного доступа, и предоставляет радиоресурсы восходящей линии в ответ на сообщения запроса произвольного доступа, передаваемые мобильными терминалами второго типа во втором канале произвольного доступа. Сообщения запроса произвольного доступа, передаваемые во втором канале произвольного доступа, передают на поднесущих из второй группы.

В обычных мобильных телекоммуникационных сетях, таких как мобильные телекоммуникационные сети LTE, данные восходящей линии могут быть назначены для передачи от мобильного терминала в сеть с применением радиоресурсов на несущей восходящей линии в любой подходящей позиции в пределах всей полосы несущей восходящей линии. Это включает сигнализационные данные управления в восходящей линии, такие как сообщения запроса произвольного доступа, передаваемые мобильным терминалом, когда этот мобильный терминал хочет установить связь с сетью или когда имеются данные восходящей линии, ожидающие передачи. Соответственно в обычных сетях связи мобильный терминал должен быть способен передавать данные во всей полосе несущей восходящей линии.

Согласно первому аспекту настоящего изобретения мобильные терминалы, например, с уменьшенными функциональными возможностями могут передавать данные в сеть на уменьшенном числе поднесущих, занимающих уменьшенную полосу. Это позволяет кодировать и передавать данные восходящей линии посредством мобильного терминала, оснащенного приемопередающим модулем пониженной сложности. Уменьшенное число поднесущих, передаваемых в уменьшенной полосе, составляют «виртуальную несущую» в пределах полосы обычной несущей восходящей линии (т.е. «главной несущей»). Чтобы можно было передавать данные восходящей линии на виртуальной несущей, выделяют второй канал произвольного доступа, находящийся в пределах самой виртуальной несущей.

Устройства, оснащенные приемопередающими модулями пониженной сложности (в дальнейшем именуемые «терминалы с виртуальной несущей»), менее сложны и менее дороги, чем обычные устройства стандарта LTE (в дальнейшем именуемые, в общем случае, LTE-терминалы). Соответственно развертывание таких устройств для работы с приложениями типа МТС в сети связи типа LTE может оказаться более привлекательным, поскольку организация виртуальной несущей позволяет использовать мобильные терминалы с менее дорогостоящими и менее сложными приемопередающими модулями. Как должно быть понятно, мобильный терминал с приемопередатчиком с уменьшенными функциональными возможностями может, в общем случае, быть менее дорогостоящим, чем обычный LTE-терминал.

Более того, в некоторых примерах виртуальная несущая, «вставленная» в пределы главной несущей, может быть использована для создания логически отдельной «сети в сети». Иными словами, данные, передаваемые на виртуальной несущей, можно рассматривать в качестве данных, логически отдельных от данных, передаваемых в сети главной несущей. Виртуальная несущая может быть, таким образом, использована для создания так называемой выделенной сети передачи сообщений (dedicated messaging network (DMN)), которая «наложена поверх» обычной сети связи и используется для передачи сообщений DMN-устройствам (т.е. терминалам с виртуальной несущей).

Согласно второму аспекту настоящего изобретения предложена базовая станция для приема данных восходящей линии, передаваемых мобильными терминалами первого типа и мобильными терминалами второго типа через радиоинтерфейс с использованием нескольких поднесущих. Мобильные терминалы первого типа передают данные восходящей линии на поднесущих первой группы, занимающих первую полосу частот, из всей совокупности поднесущих, а мобильные терминалы второго типа передают данные восходящей линии на занимающих вторую полосу частот поднесущих второй группы из состава поднесущих первой группы, причем вторая полоса меньше первой полосы. Базовая станция предоставляет радиоресурсы восходящей линии в ответ на сообщения запроса произвольного доступа, передаваемые мобильными терминалами первого типа по первому каналу произвольного доступа, и предоставляет радиоресурсы восходящей линии в ответ на сообщения запроса произвольного доступа, передаваемые мобильными терминалами второго типа по второму каналу произвольного доступа. Сообщения запроса произвольного доступа во втором канале произвольного доступа передают на частотах вне второй группы поднесущих, но в пределах оставшейся части первой группы поднесущих.

Согласно этому второму аспекту настоящего изобретения вместо того, чтобы передавать сообщения запроса произвольного доступа в полосе виртуальной несущей, как описано выше со ссылками на первый аспект настоящего изобретения, такие сообщения запроса произвольного доступа передают вне полосы виртуальной несущей, но в пределах полосы главной несущей. Это может быть предпочтительно в некоторых сценариях, поскольку ресурсы восходящей линии, которые в противном случае потребовались бы для канала произвольного доступа, вместо этого остаются доступными для передачи других данных, таких как данные управления и данные пользователей.

Согласно одному из примеров второго аспекта настоящего изобретения сообщения запроса произвольного доступа, передаваемые по второму каналу произвольного доступа, передают на той же группе поднесущих и в то же самое время, как сообщения запроса произвольного доступа, передаваемые по первому каналу произвольного доступа. Такой подход может оказаться предпочтительным, поскольку требует внесения меньшего числа изменений в процедуры произвольного доступа на базовой станции и тем самым позволяет уменьшить объем работ по адаптации обычной сети связи с целью реализации примеров настоящего изобретения.

Разнообразные дополнительные аспекты и варианты настоящего изобретения предложены в прилагаемой Формуле изобретения.

Краткое описание чертежей

Варианты настоящего изобретения будут теперь описаны только на примерах со ссылками на прилагаемые чертежи, на которых одинаковые компоненты имеют соответствующие цифровые позиционные обозначения и на которых:

фиг.1 представляет упрощенную схему, иллюстрирующую пример обычной мобильной телекоммуникационной сети;

фиг.2 представляет упрощенную схему, иллюстрирующую обычный радиокадр в нисходящей линии в системе LTE;

фиг.3 представляет упрощенную схему, иллюстрирующую обычный радиосубкадр в нисходящей линии в системе LTE;

фиг.4 представляет упрощенную схему, иллюстрирующую обычную процедуру регистрации и вхождения в связь в ячейке сети LTE;

фиг.5 представляет упрощенную схему, иллюстрирующую радиосубкадр в нисходящей линии в системе LTE, в который вставлена виртуальная несущая согласно одному из вариантов настоящего изобретения;

фиг.6 представляет упрощенную схему, иллюстрирующую адаптированную процедуру регистрации и вхождения в связь в ячейке сети LTE для установления связи на виртуальной несущей;

фиг.7 представляет упрощенную схему, иллюстрирующую радиосубкадры в нисходящей линии в системе LTE согласно одному из вариантов настоящего изобретения;

фиг.8 представляет упрощенную схему, иллюстрирующую структуру физического вещательного канала (physical broadcast channel (PBCH));

фиг.9 представляет упрощенную схему, иллюстрирующую радиосубкадр в нисходящей линии в системе LTE согласно одному из вариантов настоящего изобретения;

фиг.10 представляет упрощенную схему, иллюстрирующую радиосубкадры в нисходящей линии в системе LTE, в которые вставлена виртуальная несущая согласно одному из вариантов настоящего изобретения;

фиг.11A-11D представляют упрощенные схемы, иллюстрирующие местонахождение сигналов позиций в субкадре в нисходящей линии в системе LTE согласно одному из вариантов настоящего изобретения;

фиг.12 представляет упрощенную схему, иллюстрирующую группу субкадров, в которой две виртуальные несущие изменяют свои позиции в полосе главной несущей согласно одному из вариантов настоящего изобретения;

фиг.13A-13C представляют упрощенную схему, иллюстрирующую субкадры в восходящей линии в системе LTE, в которые вставлена виртуальная несущая восходящей линии согласно одному из вариантов настоящего изобретения, и

фиг.14 представляет упрощенную схему, иллюстрирующую часть адаптированной мобильной телекоммуникационной сети стандарта LTE, организованной согласно одному из примеров настоящего изобретения.

Подробное описание изобретения

Обычная сеть

На фиг.1 представлена упрощенная схема, иллюстрирующая базовые функциональные возможности обычной мобильной телекоммуникационной сети.

Сеть содержит несколько базовых станций 101, соединенных с опорной сетью 102. Каждая базовая станция создает зону обслуживания (т.е. ячейку), в которой можно передавать данные к мобильным терминалам 104 и от них. Данные передают от базовой станции 101 мобильным терминалам 104 в зоне обслуживания 103 по нисходящей радиолинии. Данные передают от мобильного терминала 104 в адрес базовой станции 101 по восходящей радиолинии. Опорная сеть 102 осуществляет маршрутизацию данных к мобильным терминалам 104 и от них, а также выполняет такие функции, как аутентификация, управление мобильностью, учет использования, выставление счетов и т.п.

Мобильные телекоммуникационные системы, такие как системы, построенные в соответствии с разработанной группой 3GPP архитектурой «Долгосрочное развитие» (Long Term Evolution (LTE)), используют интерфейс на основе мультиплексирования с ортогональным частотным разделением каналов (orthogonal frequency division multiplex (OFDM)) для нисходящей радиолинии (так называемый OFDMA) и восходящей радиолинии (так называемый SC-FDMA). Данные в восходящей линии и в нисходящей линии передают на нескольких ортогональных поднесущих. На фиг.2 представлена упрощенная схема, иллюстрирующая радиокадр 201 в нисходящей линии системы LTE, использующей модуляцию OFDM. Этот радиокадр в нисходящей линии системы LTE передают от базовой станции системы LTE (известной как усовершенствованный узел В (enhanced Node В, далее eNB)), а продолжительность кадра составляет 10 мс. Радиокадр нисходящей линии содержит 10 субкадров. Продолжительность каждого субкадра 1 мс. В первом и шестом субкадрах стандарта LTE передают первичный синхросигнал (primary synchronisation signal (PSS)) и вторичный синхросигнал (secondary synchronisation signal (SSS)). В первом субкадре кадра стандарта LTE передают сигнал первичного вещательного канала (primary broadcast channel (PBCH)). Сигналы PSS, SSS и РВСН будут более подробно обсуждены ниже.

На фиг.3 представлена упрощенная схема, показывающая сетку, иллюстрирующую структуру примера субкадра нисходящей линии в обычной сети LTE. Этот субкадр содержит заданное число символов, передаваемых в общем периоде 1 мс. Каждый символ содержит заданное число ортогональных поднесущих, распределенных в полосе радионесущей нисходящей линии.

Пример субкадра, показанный на фиг.3, содержит 14 символов и 1200 поднесущих, распределенных в полосе шириной 20 МГц. Наименьшая единица, посредством которой можно передавать данные в стандарте LTE, содержит двенадцать поднесущих, передаваемых в одном субкадре. Для ясности на фиг.3 каждый индивидуальный ресурсный элемент не показан, вместо этого каждая индивидуальная ячейка в сетке субкадра соответствует двенадцати поднесущим, передаваемым в одном символе.

На фиг.3 показано назначение ресурсов для четырех LTE-терминалов 340, 341, 342, 343. Например, назначение 342 ресурсов для первого LTE-терминала (UE1) охватывает пять блоков по двенадцать поднесущих в каждом, назначение 343 ресурсов для второго LTE-терминала (UE2) охватывает шесть блоков по двенадцать поднесущих в каждом и т.д.

Данные канала управления передают в области 300 управления в составе субкадра, содержащей первые n символов этого субкадра, причем n может варьироваться от одного до трех символов при ширине полосы канала, равной 3 МГц или более, а также n может варьироваться от двух до четырех символов при ширине полосы канала, равной 1,4 МГц. Для ясностипоследующее описание относится к главным несущим с шириной полосы канала, равной 3 МГц или более, где максимальная величина n будет равна 3. Данные, передаваемые в области 300 управления, включают данные, передаваемые в физическом нисходящем канале управления (physical downlink control channel (PDCCH)), физическом канале индикации формата управления (physical control format indicator channel (PCFICH)) и физическом канале индикации гибридного автоматического запроса повторной передачи (physical HARQ indicator channel (PHICH)).

Канал PDCCH содержит данные управления, указывающие, какие поднесущие в каких символах субкадра были назначены конкретному LTE-терминалу. Таким образом, данные канала PDCCH, переданные в области 300 управления в составе субкадра, показанного на фиг.3, будут обозначать, что терминалу UE1 был назначен первый блок 342 ресурсов, терминалу UE2 был назначен второй блок 343 ресурсов и т.д. Канал PCFICH содержит данные управления, указывающие размер области управления (т.е. от одного до трех символов), и канал PHICH содержит данные HARQ (гибридный автоматический запрос повторной передачи (Hybrid Automatic Request)), указывающие, были ли переданные перед этим данные восходящей линии успешно приняты сетью.

В некоторых субкадрах символы в центральной полосе 310 субкадра используются для передачи информации, включающей первичный синхросигнал (PSS), вторичный синхросигнал (SSS) и физический вещательный канал (РВСН). Эта центральная полоса 310 обычно имеет ширину 72 поднесущих (что соответствует полосе передачи 1,08 МГц). Сигналы PSS и SSS представляют собой синхросигналы, которые, будучи обнаружены, позволяют LTE-терминалу 104 осуществить синхронизацию кадров и определить идентификатор ячейки узла eNB, передающего нисходящий сигнал. Канал РВСН несет информацию относительно ячейки, содержащую блок главной информации (master information block (MIB)), включающий параметры, необходимые LTE-терминалу для доступа в ячейку. Данные, передаваемые индивидуальным LTE-терминалам по совместно используемому физическому нисходящему каналу (physical downlink shared channel (PDSCH)), могут быть переданы в остальных блоках ресурсных элементов субкадра. Дополнительные пояснения относительно этих каналов даны в последующих разделах.

На фиг.3 показана также область канала PDSCH, содержащая системную информацию и протяженная в полосе R344.

Число поднесущих в канале LTE может варьироваться в зависимости от конфигурации сети связи. Обычно это число варьируется в пределах от 72 поднесущих, содержащихся в полосе канала шириной 1,4 МГц, до 1200 поднесущих, заключенных в полосе канала шириной 20 МГц, как показано на фиг.3. Как известно, данные, передаваемые в каналах PDCCH, PCFICH и PHICH, обычно распределены по поднесущим во всей полосе субкадра. Поэтому обычный LTE-терминал должен быть способен принимать всю полосу субкадра, чтобы принять и декодировать область управления.

Обычная процедура регистрации и вхождения в связь в ячейке

Фиг.4 иллюстрирует процедуру регистрации и вхождения в связь в ячейке в системе LTE, т.е. процедуру, следуя которой терминал может декодировать передачи в нисходящей линии, передаваемые базовой станцией по нисходящему каналу в полосе несущей. Используя эту процедуру, терминал может идентифицировать фрагменты передач, которые включают системную информацию для ячейки, и, таким образом, декодировать информацию конфигурации для этой ячейки.

Как можно видеть на фиг.4, в ходе выполнения обычной процедуры регистрации и вхождения в связь в ячейке системы LTE терминал сначала синхронизируется с базовой станцией (этап 400) с использованием синхросигналов PSS и SSS в центральной полосе 310 несущей, как описано выше. Как можно видеть, обратившись к фиг.3, центральная полоса 310 имеет ширину R310, причем эта полоса находится в центре всей полосы несущей (т.е. охватывает центральные поднесущие).

Терминал находит эту центральную полосу и выделяет синхросигналы PSS и SSS, указывающие продолжительность циклического префикса и идентификатор ячейки (Cell ID). В системе LTE синхросигналы PSS и SSS передают только в первом и шестом субкадрах каждого кадра. Безусловно, в другой системе, например системе не-LTE, полоса 310 может находиться не в центре полосы несущей и может быть шире или уже, чем 72 поднесущие или 1,08 МГц. Аналогично, субкадры могут иметь другой размер или размеры.

Затем терминал декодирует сигнал канала РВСН (этап 401), также передаваемый в центральной полосе 310, здесь этот сигнал канала РВСН включает, в частности, блок главной информации (Master Information Block (MIB)). Блок MIB указывает, в частности, ширину R320 полосы несущей нисходящей линии, номер системного кадра (System Frame Number (SFN)) и конфигурацию канала РHIСН. Используя блок MIB, передаваемый в канале РВСН, терминал может получить сведения о ширине R320 полосы несущей. Поскольку терминал знает также, где находится центральная полоса, он знает точное местонахождение диапазона R320 несущей нисходящей линии.

Для каждого субкадра терминал затем декодирует сигнал канала PCFICH, распределенный по всей ширине полосы несущей 320 (этап 402). Как обсуждается выше, ширина полосы несущей нисходящей линии в системе LTE может достигать 20 МГц (1200 поднесущих), так что LTE-терминал должен быть способен принимать и декодировать передачи в полосе шириной 20 МГц, чтобы декодировать сигнал канала PCFICH. На этой стадии при ширине полосы несущей 20 МГц терминал работает в намного более широкой полосе (ширина полосы R320), чем на этапах 400 и 401 (ширина полосы R310), относящихся к синхронизации и к декодированию сигнала канала РВСН.

Далее терминал определяет позиции информации канала PHICH (этап 403) и декодирует сигнал канала PDCCH (этап 404), в частности, для идентификации передач системной информации и для идентификации своих персональных грантов назначения. Эти гранты назначения используются терминалом для обнаружения позиций системной информации и для обнаружения позиций своих данных в канале PDSCH. И системную информацию, и персональные назначения передают в канале PDSCH и распределяют в пределах полосы 320 несущей. Этапы 403 и 404 также требуют, чтобы терминал работал по всей ширине R320 полосы несущей.

На этапах с 402 по 404 терминал декодирует информацию, содержащуюся в области 300 управления в субкадре. Как поясняется выше, в системе LTE, во всей области 300 управления в полосе несущей можно найти три упомянутых выше канала управления (PCFICH, PHICH и PDCCH), причем эти области управления проходят по всему диапазону R320 и занимают первый, второй и третий OFDM-символы в каждом субкадре, как обсуждалось выше. В каждом субкадре эти каналы управления обычно не используют все ресурсные элементы в пределах области 300 управления, но они рассеяны по всей области, так что LTE-терминал должен быть способен принимать всю область 300 управления одновременно, чтобы декодировать каждый из указанных трех каналов управления.

Затем терминал может декодировать сигнал канала PDSCH (этап 405), который содержит системную информацию или данные, переданные для этого терминала.

Как описано выше, в субкадре системы LTE канал PDSCH, в общем случае, занимает группы ресурсных элементов, которые не располагаются ни в области управления, ни в совокупности ресурсных элементов, занятых синхросигналами PSS, SSS или каналом РВСН. Данные в блоках 340, 341, 342, 343 ресурсных элементов, показанных на фиг.3, имеют меньшую полосу, чем полоса всей несущей, хотя для декодирования этих блоков терминал сначала принимает сигнал канала PDCCH во всем частотном диапазоне R320 и, если канал PDCCH указывает, что ресурс канала PDSCH декодировать нужно, когда он уже принят во всем субкадре, затем декодирует только сигнал канала PDSCH и только в соответствующем частотном диапазоне, обозначенном в канале PDCCH. Таким образом, например, терминал UE 1, обсуждавшийся выше, декодирует всю область 300 управления и затем данные в ресурсном блоке 342.

Виртуальная несущая нисходящей линии

Некоторые классы устройств, такие как устройства МТС (например, полуавтономные или автономные устройства радиосвязи, такие как интеллектуальные счетчики, обсуждавшиеся выше), поддерживают приложения связи, отличающиеся передачей небольших объемов данных через относительно большие интервалы, и потому могут быть значительно менее сложными, чем обычные LTE-терминалы. Во многих сценариях применение в качестве терминалов с уменьшенными функциональными возможностями, таких терминалов, как терминалы, оснащенные обычными высококачественными приемными модулями стандарта LTE, способными принимать и обрабатывать данные из состава кадра нисходящей линии в системе LTE во всей полосе несущей, может быть слишком сложным для устройства, которое должно всего лишь передавать небольшие объемы данных. Это может, таким образом, ограничить практическую целесообразность широкого развертывания устройств типа МТС, обладающих уменьшенными функциональными возможностями, в сети стандарта LTE. Вместо этого предпочтительно создать терминалы с уменьшенными функциональными возможностями, такие как устройства типа МТС с более простыми приемными модулями, какие в большей степени соразмерны объемам данных, которые, вероятно, будут передаваться терминалу. Как определено ниже, согласно примерам настоящего изобретения в обычную несущую нисходящей линии OFDM-типа (т.е. в "главную несущую") вставляют "виртуальную несущую". В отличие от данных, передаваемых на обычной несущей нисходящей линии OFDM-типа, данные, переданные на виртуальной несущей, можно принимать и декодировать, не требуя для этого обработки полной полосы главной OFDM-несущей нисходящей линии. Соответственно, данные, передаваемые на виртуальной несущей, могут быть приняты и декодированы с использованием приемного модуля уменьшенной сложности.

На фиг.5 представлена упрощенная схема, иллюстрирующая субкадр нисходящей линии в системе LTE, содержащий виртуальную несущую, вставленную в полосу главной несущей согласно одному из примеров настоящего изобретения.

Как и в обычном субкадре нисходящей линии в системе LTE, первые n символов (на фиг.5 n равно трем) составляют область 300 управления, зарезервированную для передачи нисходящих данных управления, таких как данные, передаваемые в канале PDCCH. Однако, как можно видеть на фиг.5, вне этой области 300 субкадр нисходящей линии в системе LTE содержит группу ресурсных элементов ниже центральной полосы 310, которые составляют виртуальную несущую 501. Как станет понятно, эта виртуальная несущая 501 организована таким образом, что данные, передаваемые на виртуальной несущей 501, можно обрабатывать как данные, логически отдельные от данных, передаваемых в остальных частях главной несущей, и можно декодировать без того, чтобы сначала декодировать все данные управления из области 300 управления. Хотя на фиг.5 показано, что виртуальная несущая занимает частотные ресурсы ниже центральной полосы, в общем случае эта виртуальная несущая может занимать частотные ресурсы выше центральной полосы или же частотные ресурсы, включающие центральную полосу. Если виртуальная несущая конфигурирована таким образом, чтобы накладываться на какие-либо ресурсы, используемые синхросигналами PSS, SSS или каналом РВСН главной несущей либо каким-нибудь другим сигналом, передаваемым на главной несущей, мобильный терминал, работающий на этой главной несущей, должен будет работать правильно, чтобы найти в известной заданной позиции соответствующие сигналы, при этом сигналы на виртуальной несущей могут быть организованы таким образом, чтобы сохранить перечисленные аспекты сигнала главной несущей.

Как можно видеть на фиг.5, данные, передаваемые на виртуальной несущей 501, передают в полосе ограниченной ширины. Это может быть любая полоса при условии, что ширина этой полосы меньше ширины полосы главной несущей. В примере, изображенном на фиг.5, виртуальную несущую передают в полосе, содержащей 12 блоков по 12 поднесущих в каждом (т.е. всего 144 поднесущих), что эквивалентно ширине полосы передачи 2,16 МГЦ. Соответственно терминалу, принимающему данные, передаваемые на виртуальной несущей, достаточно быть оснащенным приемником, способным принимать и обрабатывать данные, передаваемые в полосе 2,16 МГц. Это позволяет оснащать терминалы с уменьшенными функциональными возможностями (например, терминалы типа МТС) упрощенными приемными модулями и при этом сохранять способность работать в сети связи с модуляцией OFDM, для работы в которой, как поясняется выше, обычно необходимо, чтобы терминалы были оснащены приемниками, способными принимать и обрабатывать OFDM-сигнал во всей полосе этого сигнала.

Как поясняется выше, в системе мобильной связи на основе модуляции OFDM, такой как система LTE, данные нисходящей линии динамически назначают для передачи на разных поднесущих от одного субкадра к другому субкадру. Соответственно в каждом субкадре сеть должна сообщить, какие поднесущие в составе какого символа несут данные для каких терминалов (т.е. сообщить сигнализацию о грантах в нисходящей линии).

Как можно видеть на фиг.3, в обычном субкадре нисходящей линии в системе LTE эту информацию передают в канале PDCCH во время первого символа или символов этого субкадра. Однако, как уже пояснено ранее, информация, передаваемая в канале PDCCH, распределена во всей полосе этого субкадра и потому не может быть принята мобильным терминалом связи, имеющим упрощенный приемный модуль, способный принимать только виртуальную несущую с уменьшенной шириной полосы.

Соответственно, как можно видеть на фиг.5, последние символы виртуальной несущей могут быть зарезервированы в качестве области 502 управления виртуальной несущей, назначенной для передачи данных управления, указывающих, какие ресурсные элементы виртуальной несущей 501 были назначены. В некоторых примерах число символов, составляющих область 502 управления виртуальной несущей, фиксировано и равно, например, трем символам. В других примерах размер области 502 управления виртуальной несущей может варьироваться, например, от одного до трех символов.

Область управления виртуальной несущей может находиться в любой позиции в составе виртуальной несущей, например в первых нескольких символах виртуальной несущей. В примере, показанном на фиг.5, это могло бы означать расположение области управления виртуальной несущей в четвертом, пятом и шестом символах. Однако фиксация позиции области управления виртуальной несущей в последних символах субкадра может дать некоторое преимущество, поскольку в этом случае нет необходимости изменять позицию области управления виртуальной несущей, даже если число символов области управления главной несущей изменяется. Это упрощает обработку данных в мобильном терминале связи, принимающем данные на виртуальной несущей, поскольку уже нет необходимости определять расположение области управления виртуальной несущей в каждом субкадре, так как уже известно, что она всегда находится в последних символах каждого субкадра.

Еще в одном варианте символы управления виртуальной несущей могут быть привязаны к передачам канала PDSCH на виртуальной несущей в отдельном субкадре.

В некоторых примерах виртуальная несущая может находиться в пределах центральной полосы 310 в субкадре нисходящей линии. Это должно минимизировать степень уменьшения объема ресурсов канала PDSCH на главной несущей из-за того, что была вставлена виртуальная несущая, поскольку ресурсы, занятые синхросигналом PSS/SSS и каналом РВСН, будут находиться в области виртуальной несущей, а не в области канала PDSCGH главной несущей. Поэтому в соответствии с, например, планируемой пропускной способностью виртуальной несущей местонахождение этой виртуальной несущей может быть выбрано должным образом внутри или вне центральной полосы в зависимости от того, какая несущая - главная или виртуальная- выбрана в качестве носителя служебной информации - синхросигналов PSS, SSS и канала РВСН.

Процедура регистрации и вхождения в связь в ячейке на виртуальной несущей

Как поясняется выше, прежде чем обычный LTE-терминал сможет начать передачу и прием данных в ячейке, он должен сначала зарегистрироваться и войти в связь в этой ячейке. Адаптированная процедура регистрации и вхождения в связь должна быть выполнена прежде, чем терминалы смогут принимать данные на виртуальной несущей.

На фиг.6 представлена логическая схема, иллюстрирующая процедуру регистрации и вхождения в связь в ячейке согласно одному из примеров настоящего изобретения. Эта процедура регистрации и вхождения в связь в ячейке рассмотрена со ссылками на субкадр, показанный на фиг.5, где виртуальная несущая с шириной полосы, эквивалентной 144 поднесущим, вставлена в полосу главной несущей, ширина которой эквивалентна 1200 поднесущим. Как обсуждается выше, терминал, имеющий приемный модуль с шириной рабочей полосы меньше ширины полосы главной несущей, не в состоянии декодировать данные в области управления субкадра главной несущей. Однако если приемный модуль терминала имеет рабочую полосу шириной по меньшей мере в двенадцать блоков по двенадцать поднесущих в каждом блоке (т.е. всего 2,16 МГц), тогда он сможет принимать данные, переданные на примере виртуальной несущей 502.

В примере, показанном на фиг.6, первые этапы 400 и 401 являются такими же, как и в обычной процедуре регистрации и вхождения в связь в ячейке, изображенной на фиг.4, хотя терминал для виртуальной несущей может извлекать дополнительную информацию из блока MIB, как описано ниже. Оба терминала могут использовать синхросигналы PSS/SSS и канал РВСН для синхронизации с базовой станцией с применением информации, содержащейся в центральной полосе шириной, эквивалентной 72 поднесущим, в пределах полосы главной несущей. Однако там, где обычные LTE-терминалы продолжают выполнение процедуры посредством осуществления этапа 402 декодирования канала PCFICH, что требует наличия приемного модуля, способного принимать и декодировать область 300 управления главной несущей, терминал, регистрирующийся и входящий в связь в ячейке для приема данных на виртуальной несущей (именуемый далее «терминал с виртуальной несущей»), выполняет вместо этого этапы 606 и 607.

Еще в одном варианте настоящего изобретения для устройства с виртуальной несущей могут быть реализованы отдельные функции для синхронизации и использования сигнала канала РВСН вместо того, чтобы вновь осуществлять те же самые начальные операции этапов 400 и 401 обычной процедуры регистрации и вхождения в связь в ячейке, как в устройстве с главной несущей.

На этапе 606 терминал с виртуальной несущей находит виртуальную несущую, если она вставлена в полосу главной несущей, с использованием этапа, специфичного для виртуальной несущей. Различные возможные варианты этого этапа обсуждаются ниже. Когда терминал с виртуальной несущей обнаружил виртуальную несущую, он может получить доступ к информации на этой виртуальной несущей. Например, если виртуальная несущая использует обычный способ назначения ресурсов в системе LTE, терминал с виртуальной несущей может затем декодировать сегменты управления в составе виртуальной несущей, которые могут, например, указывать, какие ресурсные элементы в составе виртуальной несущей были назначены для конкретного терминала с виртуальной несущей или для системной информации. Например, на фиг.7 показаны блоки ресурсных элементов с 350 по 352, которые были назначены для субкадра SF2. Однако здесь не требуется, чтобы терминал с виртуальной несущей следовал обычной процедуре системы LTE (например, этапы 402-404) или зеркально отражал такую процедуру, так что в процедуре регистрации и вхождения в связь в ячейке на виртуальной несущей эти этапы могут сильно отличаться от обычной процедуры.

Независимо от того, следует ли терминал с виртуальной несущей процедуре типа процедуры для системы LTE или выполняет этапы другого типа в ходе осуществления этапа 607, этот терминал с виртуальной несущей может далее декодировать назначенные ему ресурсные элементы на этапе 608 и затем принимать данные, передаваемые базовой станцией. Данные, декодированные на этап