Способ и система бурения скважины с автоматическим ответом на детектирование события

Иллюстрации

Показать все

Изобретение относится к способам и системам бурения скважины с автоматическим ответом на детектирование события. Техническим результатом является повышение эффективности бурения. Способ бурения скважины содержит детектирование события бурения путем сравнения сигнатуры параметров, созданной в процессе бурения, с сигнатурой события, сигнализирующей об указанном событии бурения, и автоматическое управление операцией бурения в ответ на, по меньшей мере, частичное совпадение по результатам сравнения указанной сигнатуры параметров с указанной сигнатурой события. Причем при сигнализации о событии резкого увеличения давления выполняется автоматическое переключение между (а) поддержанием требуемого давления в стволе скважины и (b) поддержанием требуемого давления в стояке. Система бурения скважины содержит систему управления, сравнивающую сигнатуру параметров для операции бурения с сигнатурой события, сигнализирующей об указанном событии бурения, и контроллер, автоматически управляющий операцией бурения в ответ на указанное событие бурения, о котором сигнализирует, по меньшей мере, частичное совпадение указанной сигнатуры параметров с указанной сигнатурой события. Причем указанная система управления выполнена с возможностью, при сигнализации о событии резкого увеличения давления, автоматического переключения между (а) поддержанием требуемого давления в стволе скважины и (b) поддержанием требуемого давления в стояке. 2 н. и 68 з.п. ф-лы, 5 ил.

Реферат

Область техники

Настоящее изобретение в целом относится к используемому оборудованию и выполняемым действиям, связанным с подземной скважиной и, в частности, согласно нижеописанному варианту осуществления изобретения к способам бурения скважины с автоматическим ответом на детектирование события.

Уровень техники

При выполнении операций бурения некоторые наступившие события желательно детектировать сразу, как только они наступили, чтобы как можно быстрее предпринять необходимые корректирующие действия. События также могут быть нормальными, ожидаемыми событиями, при этом желательно иметь возможность управлять операциями бурения на основе идентификации таких событий.

Таким образом, ясно, что усовершенствование решений уровня техники является актуальной задачей.

Осуществление изобретения

В своем первом аспекте настоящее изобретение заключается в том, что предложен способ бурения скважины, содержащий детектирование события бурения путем сравнения сигнатуры параметров, созданной в процессе бурения, с сигнатурой события, сигнализирующей о данном событии бурения; и автоматическое управление операцией бурения в ответ на, по меньшей мере, частичное совпадение по результатам сравнения указанной сигнатуры параметров с указанной сигнатурой события, причем при сигнализации о событии резкого увеличения давления выполняется автоматическое переключение между (а) поддержанием требуемого давления в стволе скважины и (b) поддержанием требуемого давления в стояке.

В своем втором аспекте настоящее изобретение заключается в том, что предложена система бурения скважины, содержащая систему управления, сравнивающую сигнатуру параметров для операции бурения с сигнатурой события, сигнализирующей о событии бурения; и контроллер, автоматически управляющий операцией бурения в ответ на событие бурения, о котором сигнализирует по меньшей мере частичное совпадение указанной сигнатуры параметров с указанной сигнатурой события, причем система выполнена с возможностью, при сигнализации о событии резкого увеличения давления, автоматического переключения между (а) поддержанием требуемого давления в стволе скважины и (b) поддержанием требуемого давления в стояке.

Краткое описание чертежей

На фиг. 1 показана схема скважинной системы, в которой могут быть осуществлены принципы настоящего изобретения.

На фиг. 2 показана блок-схема, представляющая способ, в котором осуществлены принципы настоящего изобретения.

На фиг. 3 показана блок-схема примера процесса создания сигнатуры параметров, который может быть использован в способе, проиллюстрированном на фиг. 2.

На фиг. 4 показана блок-схема примера процесса создания сигнатур событий и идентификации событий, который может быть использован в способе, проиллюстрированном на фиг. 2.

На фиг. 5 показана таблица событий и соответствующие сигнатуры событий, которые могут быть использованы в способе, проиллюстрированном на фиг. 2.

Подробное описание изобретения

На фиг. 1 наглядно и схематично проиллюстрирована система 10 бурения скважины и соответствующий способ, в которых могут быть осуществлены принципы настоящего изобретения. В системе 10 бурение ствола 12 скважины осуществляют посредством вращающегося бурового долота 14, установленного на конце трубчатой буровой колонны 16. Буровая текучая среда 18, известная как буровой раствор, циркулирует вниз через буровую колонну 16, из бурового долота 14 и вверх через кольцевое пространство 20, образованное между буровой колонной и стволом 12 скважины, для охлаждения бурового долота, смазывания буровой колонны, удаления бурового шлама и измерения давления на забое скважины. Обратный клапан 21 (обычно невозвратный клапан с заслонкой) предотвращает течение буровой текучей среды 18 вверх по буровой колонне 16 (например, при выполнении соединений в буровой колонне).

Управление забойным давлением является очень важным аспектом при бурении с контролем давления, а также в других типах буровых операций. Предпочтительно забойным давлением управляют с высокой точностью для предотвращения чрезмерных утечек текучей среды в земляной пласт, окружающий ствол 12 скважины, образования нежелательных разрывов пласта и создания нежелательного притока пластовых текучих сред в ствол скважины и так далее.

В типичном варианте бурения с контролем давления требуется поддерживать забойное давление просто выше порового давления пласта, но не выше давления разрыва пласта.

В типичном бурении с отрицательным дифференциальным давлением необходимо поддерживать забойное давление чуть ниже порового давления, получая тем самым управляемый приток текучей среды из пласта.

Для управления давлением в буровую текучую среду 18 может быть добавлен азот, или другой газ, или другая более легкая по массе текучая среда. Данная технология полезна, например, в буровых операциях с отрицательным дифференциальным давлением.

В системе 10 дополнительное управление забойным давлением осуществляют путем закрытия кольцевого пространства 20 (например, путем изолирования его от связи с атмосферой на поверхности и обеспечения возможности повышения давления кольцевого пространства на поверхности или вблизи нее) с использованием вращающегося превентора 22 (RCD - от англ. rotating control device). Вращающийся превентор 22 герметизирует пространство вокруг буровой колонны 16 над устьем 24 скважины. Хотя это не показано на фиг. 1, буровая колонна 16 будет проходить вверх через вращающийся превентор 22 для соединения с, например, роторным столом (не показан), линией 26 стояка, приводом ведущей трубы (не показан), верхним приводом и/или другим типичным буровым оборудованием.

Буровая текучая среда 18 вытекает из устья 24 скважины через боковую задвижку 28, связанную с кольцевым пространством 20 ниже вращающегося превентора 22. Текучая среда 18 затем протекает через линии 30, 73 возврата текучей среды к дроссельному манифольду 32, который содержит резервированные дроссели 34 (одновременно может быть использован только один). Противодавление прикладывают к кольцевому пространству 20 путем переменного ограничения потока текучей среды 18 через задействованный дроссель (дроссели) 34.

Чем больше ограничение потока через задействованный дроссель 34, тем больше противодавление, приложенное к кольцевому пространству 20. Таким образом, давление в забое скважины можно удобным образом регулировать, изменяя противодавление, прикладываемое к кольцевому пространству 20. Для определения давления, прикладываемого к кольцевому пространству 20 на поверхности или вблизи нее, можно использовать гидравлическую модель, чтобы получить требуемое давление в забое скважины так, что оператор (или автоматическая система управления) может без труда определить, как регулировать давление, приложенное к кольцевому пространству, на поверхности или вблизи нее (которое можно легко измерить) для достижения требуемого давления в забое скважины.

Давление, приложенное к кольцевому пространству 20, может быть измерено на поверхности или близи поверхности посредством различных датчиков 36, 38, 40 давления, каждый из которых имеет связь с указанным кольцевым пространством. Датчик 36 давления измеряет давление ниже вращающегося превентора 22, но выше блока 42 противовыбросовых превенторов (ВОР - от англ. blowout preventer stack). Датчик 38 давления измеряет давление в устье скважины ниже блока 42 противовыбросовых превенторов. Датчик 40 давления измеряет давление в линиях 30, 73 возврата текучей среды выше по потоку от дроссельного манифольда 32.

Другой датчик 44 давления измеряет давление в линии 26 ввода буровой текучей среды (стояка). Еще один датчик 46 давления измеряет давление ниже по потоку от дроссельного манифольда 32, но выше по потоку от сепаратора 48, вибросита 50 и резервуара 52 бурового раствора. К дополнительным датчикам относятся термометры 54, 56, кориолисов расходомер 58 и расходомеры 62, 64, 66.

Не все указанные датчики являются необходимыми. К примеру, система 10 может содержать только два из трех расходомеров 62, 64, 66. Однако входные сигналы с указанных датчиков полезны для гидравлической модели при определении того, каким должно быть давление в кольцевом пространстве 20 в процессе выполнения буровых операций.

Кроме того, буровая колонна 16 может быть оснащена своими собственными датчиками 60, например, для прямого измерения давления в забое скважины. Такие датчики 60 могут быть такого известного специалистам данной области техники типа, как системы измерения давления в процессе бурения (PWD - от англ. pressure while drilling), скважинных измерений в процессе бурения (MWD - от англ. measurement while drilling) и/или каротажа в процессе бурения (LWD - от англ. logging while drilling). Данные системы датчиков буровой колонны по существу обеспечивают по меньшей мере измерение давления, но могут также обеспечивать измерение температуры, детектирование характеристик буровой колонны (например, вибрации, крутящий момент, количества оборотов в минуту, нагрузки на долото, прилипания-проскальзывания и так далее), характеристик пласта (сопротивления, плотности и так далее), характеристик текучей среды и/или производить другие измерения. Для передачи измерений скважинных датчиков на поверхность можно применять различные виды телеметрии (акустическую, на основе импульсов давления, электромагнитную и так далее).

При необходимости в систему 10 могут быть введены дополнительные датчики. Например, еще один расходомер 67 можно использовать для измерения расхода потока текучей среды 18, вытекающей через устье 24 скважины, другой кориолисовый расходомер (не показан) может быть напрямую подключен выше по потоку или ниже по потоку от насоса 68 бурового раствора буровой установки и так далее. Вместе с сепаратором 48 могут быть использованы датчики давления и уровня, причем датчики уровня могут быть использованы для индикации объема буровой текучей среды в резервуаре 52 бурового раствора и т.д.

При необходимости в систему 10 может быть установлено и меньшее количество датчиков. Например, вместо применения расходомера 62 или каких-либо других расходомеров производительность насоса 68 бурового раствора буровой установки может быть определена путем подсчета числа ходов поршня насоса.

Необходимо иметь в виду, что сепаратор 48 может быть как трехфазным, так и четырехфазным или газовым сепаратором бурового раствора (иногда называемым «буровым дегазатором»). Однако применение сепаратора 48 в системе 10 не является обязательным.

Буровую текучую среду 18 перекачивают через линию 26 стояка внутрь буровой колонны 16 посредством насоса 68 бурового раствора буровой установки. Насос 68 забирает текучую среду 18 из резервуара 52 бурового раствора и через манифольд 70 стояка перекачивает его в стояк 26. Затем текучая среда циркулирует вниз сквозь буровую колонну 16, наверх через кольцевое пространство 20 по линиям 30, 73 возврата буровой текучей среды через дроссельный манифольд 32, а затем через сепаратор 48 и вибросито 50 в резервуар 52 бурового раствора для обработки и рециркуляции.

Необходимо иметь в виду, что в системе 10, как до сих пор описывалось выше, дроссель 34 не может быть использован для управления противодавлением, прикладываемым к кольцевому пространству 20, с целью управления давлением в забое скважины, если текучая среда 18 не течет через указанный дроссель. В обычном бурении с положительным дифференциальным давлением такая ситуация возникнет, например, при выполнении соединений в буровой колонне 16 (например, при добавлении отрезка буровой трубы к буровой колонне при бурении ствола скважины 12 глубже), и недостаток циркуляции потребует регулирования давления в забое скважины только путем изменения плотности текучей среды 18.

Однако в системе 10 может быть сохранен поток текучей среды 18 через дроссель 34 даже при отсутствии циркуляции текучей среды через буровую колонну 16 и кольцевое пространство 20 во время выполнения соединения в буровой колонне. Таким образом, к кольцевому пространству 20 все еще может быть приложено давление путем ограничения потока текучей среды 18 через дроссель 34, даже если отдельный насос противодавления не используют.

Вместо этого, при выполнении соединительной операции в буровой колонне 16 буровую текучую среду 18 перекачивают от насоса 68 к дроссельному манифольду 32 по обводной линии 72, 75. Таким образом, текучая среда 18 может быть пущена в обход линии 26 стояка, буровой колонны 16 и кольцевого пространства 20 и может течь из насоса 68 напрямую к линии 30 возврата бурового раствора, которая сохраняет связь с кольцевым пространством 20. Ограничение указанного потока дросселем 34, таким образом, создаст давление в кольцевом пространстве 20.

Как показано на фиг. 1, и обводная линия 75, и линия 30 возврата бурового раствора имеют связь с кольцевым пространством 20 посредством единственной линии 73. Однако вместо этого, обводная линия 75 и линия 30 возврата бурового раствора могут быть соединены с устьем 24 скважины по отдельности, например, с использованием дополнительной боковой задвижки (к примеру, ниже вращающегося превентора 22), и в таком случае каждая из линий 30, 75 будет иметь прямую связь с кольцевым пространством 20. Хотя это может потребовать установки дополнительных трубопроводов на буровой площадке, воздействие на давление в кольцевом пространстве по существу будет таким же, как в случае подключения обводной линии 75 и линии 30 возврата бурового раствора к общей линии 73. Таким образом, следует учитывать, что можно применять различные конфигурации компонентов системы 10 без отступлений от принципов раскрытого изобретения.

Поток текучей среды 18 через обводную линию 72, 75 регулируют дросселем или устройством 74 управления потоком другого типа. Линия 72 расположена выше по потоку от устройства 74 управления обводным потоком, и линия 75 расположена ниже по потоку от устройства управления обводным потоком.

Потоком текучей среды 18 в стояке 26 по существу управляют посредством клапана или устройства 76 управления потоком другого типа. Следует иметь в виду, что устройства 74, 76 управления потоком выполнены с возможностью независимого управления, что обеспечивает значительные преимущества для системы 10, как более подробно описано ниже.

Поскольку расход текучей среды 18, протекающей через каждый стояк и обводные линии 26, 72 полезен при определении того, как указанные потоки влияют на забойное давление, расходомеры 64, 66 изображены на фиг. 1 подключенными в указанные линии. Однако расход потока, протекающего через стояк 26, можно определить даже при использовании только расходомеров 62, 64, а расход потока, проходящего через обводную линию 72, можно определить даже при использовании только расходомеров 62, 66. Таким образом, следует понимать, что система 10 необязательно должна содержать все датчики, изображенные на фиг. 1 и описанные здесь, а также, наоборот, что указанная система может содержать дополнительные датчики, различные их комбинации и/или типы и так далее.

Для заполнения стояка 26 и буровой колонны 16 после выполнения соединения и для уравнивания давления между стояком и линиями 30, 73 возврата бурового раствора перед открытием устройства 76 управления потоком может быть использовано устройство 78 управления обводным потоком и ограничитель 80 потока. В противном случае, резкое открытие устройства 76 управления потоком до заполнения линии 26 стояка и буровой колонны 16 текучей средой и создания в них давления может служить причиной нежелательного нестационарного давления в кольцевом пространстве 20 (например, по причине временного отсутствия потока на дроссельном манифольде 32 во время заполнения текучей средой стояка и буровой колонны и так далее).

Посредством открытия устройства 78 управления обводным потоком после выполнения соединения обеспечивается возможность заполнения стояка 26 и буровой колонны 16 текучей средой 18, в то время как по существу большая часть текучей среды продолжает течь через обводную линию 72, тем самым позволяя непрерывно осуществлять управляемое приложение давления к кольцевому пространству 20. После выравнивания давлений в линии 26 стояка, линиях 30, 76 возврата бурового раствора и обводной линии 75, устройство 74 управления потоком можно закрыть для того, чтобы медленно перенаправить большую часть текучей среды 18 из обводной линии 72 в линию 26 стояка.

Перед выполнением соединения в буровой колонне 16, такие же действия, только в обратном порядке, можно выполнить для постепенного перенаправления потока текучей среды 18 из линии 26 стояка в обводную линию 72 для подготовки к добавлению буровых труб к буровой колонне 16. То есть устройство 74 управления потоком может быть постепенно открыто для медленного перенаправления большей части текучей среды 18 из линии 26 стояка в обводную линию 72, и затем устройство 76 управления потоком может быть закрыто.

Следует отметить, что устройство 78 управления потоком и ограничитель 80 потока могут быть встроены в единый элемент (например, в устройство управления потоком, содержащим ограничитель потока), а устройства 76, 78 управления потоком могут быть встроены в единое устройство 81 управления потоком (например, в один дроссель, который может быть постепенно открыт для медленного заполнения и нагнетания давления в линии 26 стояка и буровой колонне 16 после выполнения соединения буровой трубы и затем открыт полностью для обеспечения максимального потока во время бурения). Однако, поскольку типичные буровые установки оборудованы устройством 76 управления потоком в виде клапана в нагнетательном манифольде 70, и применение клапана стояка внедрено в обычную практику бурения, в настоящее время предпочтительно использование индивидуально функционирующих устройств 76, 78 управления потоком. Дальше по тексту устройства 76, 78 управления потоком упоминаются как единое устройство 81 управления потоком, однако следует понимать, что устройство 81 управления потоком может содержать отдельные устройства 76, 78 управления потоком.

Следует отметить, что для создания давления в кольцевом пространстве 20 и в линии 30 возврата буровой текучей среды выше по потоку от дроссельного манифольда 32 система 10 при необходимости может содержать насос противодавления (не показан). Указанный насос противодавления может быть использован вместо обводной линии 72 и устройства 74 управления потоком или в дополнение к ним для обеспечения гарантированного продолжения течения буровой текучей среды через дроссельный манифольд 32 при таких событиях, как выполнение соединительных операций в буровой колонне 16. В этом случае могут быть использованы дополнительные датчики, например, для мониторинга давления и расхода потока на выходе насоса противодавления.

Применение насоса противодавления описано в международной заявке №PCT/US10/38586, поданной 15 июня 2010 года. В указанной заявке также описан способ корректировки заданного значения давления в кольцевом пространстве при бурении.

В других примерах, в буровой колонне могут не выполнять соединительные операции при бурении, например, если буровая колонна содержит гибкие трубы. Буровая колонна 16 может содержать провода и/или другие линии (например, устанавливаемые на боковой стенке или внутри буровой колонны), предназначенные для передачи данных, команд, давления и так далее между забоем скважины и поверхностью (например, для связи с датчиками 60).

Способы управления давлением и потоком при выполнении буровых операций, в том числе использование устройства валидации данных и прогнозирования, описаны в международной заявке №PCT/US10/56433, поданной 12 ноября 2010 года.

На фиг. 2 показана схема, иллюстрирующая способ 90 бурения скважины, в котором может использоваться система 10, приведенная на фиг. 1. Однако следует четко понимать, что способ 90 можно использовать вместе с другими системами без отклонения от принципов раскрытого изобретения.

Способ 90 содержит процесс детектирования события, который можно использовать для оповещения оператора о произошедшем событии, например, путем приведения в действие оповещения об опасности или отображения предупреждения в случае нежелательного события (например, при недопустимой утечке текучей среды в пласт, недопустимом притоке текучей среды из пласта в скважину и так далее), а также путем отображения информации об этом событии в случае нормального, прогнозируемого или желательного события и так далее. Способы бурения скважины, содержащие детектирование событий, описаны в международной заявке №PCT/US09/52227, поданной 30 июля 2009 года.

Одно событие может быть предвестником наступления другого события, при этом детектирование первого события может быть использовано в качестве сигнализации о высокой вероятности наступления второго события или на то, что второе событие уже происходит. Кроме того, о высокой вероятности наступления другого события может сигнализировать серия событий. Таким образом, в качестве источника данных, на основе которых определяют возможность наступления другого события, может быть использовано одно или более предшествующих событий.

В рамках способа 90 может быть детектировано множество различных событий и различные типы событий. Указанные события могут содержать следующие события, но не только: резкое увеличение давления (приток), частичная утечка текучей среды, полная утечка текучей среды, падение давления в стояке, закупорка дросселя, размыв дросселя, неудовлетворительная очистка ствола скважины (закупорка ствола скважины вокруг буровой колонны), переток в забое скважины, размыв ствола скважины, потеря диаметра ствола скважины, резкое увеличение скорости проходки при бурении, выпучивание при циркуляции, выпучивание при выключенном буровом насосе, прихват труб, повреждение трубы вследствие скручивания, развинчивание, закупорка насадки долота, размыв насадки долота, утечка в наземном обрабатывающем оборудовании, отказ насоса буровой установки, отказ насоса противодавления, отказ скважинного датчика 60, размыв буровой колонны, отказ обратного клапана, начало присоединения буровой трубы, завершение присоединения буровой трубы и так далее.

Для детектирования указанных событий «сигнатуры» параметров бурения, создаваемые в реальном времени, сравнивают с набором «сигнатур» событий, чтобы определить, происходят ли события, представленные указанными сигнатурами событий. Таким образом, то, что происходит в текущий момент в операции бурения (сигнатуры параметров бурения) сравнивают с набором сигнатур, соответствующих событиям бурения, и наличие совпадений указывает на то, что событие, соответствующее совпавшей сигнатуре события, происходит.

Характеристики бурения (например, давление, температура, расход потока и так далее) считывают посредством датчиков, а выходные сигналы датчиков используют для поступления данных, указывающих на характеристики бурения. Указанные данные о характеристиках бурения используют для определения интересующих параметров бурения.

Данные могут представлять собой данные из соседних скважин (например, других скважин, пробуренных поблизости или в породах сходного литологического типа, в сходных условиях и так далее). Предыдущий опыт бурильщиков также может служить источником необходимых данных. Данные могут быть введены оператором до операции бурения или во время операции бурения.

Параметр бурения может содержать данные, относящиеся к одной характеристике бурения, или параметр может содержать отношение, произведение, разность, сумму или другую функциональную зависимость данных, относящихся ко множеству характеристик бурения. Например, во время операций бурения полезно осуществлять мониторинг разности между расходом потока буровой текучей среды, вводимой в скважину (например, через линию 26 стояка с установленным в ней расходомером 66), и расходом потока буровой текучей среды, возвращаемой из скважины (например, через линию 30 возврата буровой текучей среды, измеренным расходомером 67). Таким образом, интересующий параметр, который может быть использован для определения части или сегмента сигнатуры, может представлять собой указанную разность характеристик бурения (расход входного потока - расход выходного потока).

В процессе операции бурения считывают характеристики бурения с течением времени, непрерывно или через промежутки времени. Таким образом, данные, относящиеся к характеристикам бурения, доступны в динамике и можно оценить поведение каждого параметра бурения в реальном времени. В частности, особый интерес в рамках выполнения алгоритма способа 90 представляет изменение параметров бурения с течением времени, то есть увеличивается ли каждый параметр, уменьшается, остается по существу неизменным, остается в определенном диапазоне, превышает максимум, падает ниже минимума и так далее.

Указанным поведениям параметра присваивают соответствующие значения и объединяют эти значения для создания сигнатур параметров, указывающих на то, что происходит в реальном времени во время операции бурения. Например, один сегмент сигнатуры параметров может указывать на увеличение давления в стояке (например, измеряемого датчиком 44), а другой сегмент сигнатуры параметров может указывать на снижение давления выше по потоку от дроссельного манифольда (например, измеряемого датчиком 40).

Сигнатура параметров может содержать множество (предположительно 20 или более) указанных сегментов. Таким образом, сигнатура параметров может обеспечивать «снимок» того, что происходит в реальном времени в процессе операции бурения.

С другой стороны, сигнатура события не дает представления о том, что происходит в реальном времени в процессе операции бурения. Напротив, сигнатура события представляет то, какими будут поведения параметров бурения, когда соответствующее событие наступит. Сигнатура каждого события является отличительной, так как каждое событие характеризуется своим отличительным сочетанием характеров изменения параметров.

Как сказано выше, одно событие может быть предвестником другого события. В этом случае сигнатура первого события может являться отличительным сочетанием поведений параметров, которые указывают, что второе событие вскоре (или по меньшей мере в итоге) произойдет.

События могут представлять собой параметры, например при вышеуказанных обстоятельствах, в которых серия событий может указывать на то, что другое событие собирается произойти. В этом случае соответствующее поведение параметра может указывать на то, наступило или не наступило событие-предвестник (события-предвестники).

Сигнатуры событий могут быть созданы до начала операции бурения и могут быть основаны на опыте, полученном при бурении сходных скважин при сходных условиях и так далее. Сигнатуры событий могут быть уточнены по мере выполнения операции бурения и приобретения нового опыта в отношении пробуриваемой скважины.

Вкратце, используют датчики для считывания характеристик бурения в процессе операции бурения; используют данные, относящиеся к считанным характеристикам, для определения интересующих параметров бурения; объединяют значения, указывающие на поведение указанных параметров, в сигнатуры параметров; указанные сигнатуры параметров сравнивают с заданными сигнатурами событий для детектирования того, наступило ли какое-либо соответствующее событие или по существу вероятно наступит.

Этапы процесса детектирования события схематично показаны на фиг. 2 в виде блок-схемы. Однако следует понимать, что способ 90 может содержать дополнительные, альтернативные или опциональные этапы, и необязательно все показанные этапы должны быть выполнены для соответствия принципам раскрытого изобретения.

На первом этапе 92, показанном на фиг. 2, получают данные. В этом примере данные получают из центральной базы данных, такой как база данных INSITE™, применяемая компанией Halliburton Energy Services, Inc. (г.Хьюстон, шт. Техас, США), однако при необходимости могут быть использованы другие базы данных.

Указанные данные обычно имеют вид результатов измерений характеристик бурения, считанных различными датчиками в процессе операции бурения. Например, датчики 36, 38, 40, 44, 46, 54, 56, 58, 60, 62, 64, 66, 67, а также другие датчики производят показания различных характеристик (например, давления, температуры, массового или объемного расхода потока, плотности, удельного электрического сопротивления, количества оборотов в минуту, крутящего момента, веса, положения и так далее), которые будут храниться в базе данных. До получения указанных данных из базы данных указанные данные могут быть подвергнуты калибровке, преобразованию и/или другим операциям.

Указанные данные могут быть введены оператором вручную. В качестве альтернативы, данные могут быть получены непосредственно от одного или более датчиков или от другой системы сбора данных, независимо от того, получены ли данные по результатам измерения при помощи датчиков, и без предварительного их хранения в отдельной базе данных. Кроме того, как сказано выше, указанные данные можно взять с соседней скважины, из прошлого опыта и так далее. В соответствии с принципами раскрытого изобретения может быть использован любой источник данных.

На этапе 94 вычисляют различные значения параметра для дальнейшего использования в способе 90. Например, может потребоваться вычислить отношение значений данных, сумму значений данных, разность значений данных, произведение значений данных и так далее. Однако в некоторых случаях используют данные, как они есть, без каких-либо дополнительных вычислений.

На этапе 96 производят валидацию значений параметра и могут быть использованы методики сглаживания, чтобы гарантировать использование на дальнейших этапах способа 90 показательных значений параметров. Например, значение параметра может быть исключено, если данное значение является необоснованно высоким или низким для рассматриваемого параметра, и могут быть использованы методики сглаживания для предотвращения искажения результатов последующего анализа недопустимыми скачками значений параметров. Как сказано выше, значение параметра может соответствовать тому, что другое событие наступило или не наступило.

На этапе 98 определяют сегменты сигнатур параметров. Данный этап может содержать вычисление значений, указывающих на поведения параметров. Например, если параметр имеет тенденцию к увеличению, то соответствующему сегменту сигнатуры параметров может быть присвоено значение 1; если параметр имеет тенденцию к уменьшению, то сегменту сигнатуры параметров может быть присвоено значение 2; если параметр не изменяется, сегменту может быть присвоено значение 0 и так далее. Для определения характера изменения параметра можно применить статистические вычисления (алгоритмы) к значениям параметра, полученным на этапе 96.

Для определения конкретного сегмента сигнатуры параметров также могут быть выполнены сравнения между параметрами. Например, если один параметр больше другого параметра, то сегменту сигнатуры параметров может быть присвоено значение 1; если первый параметр меньше второго параметра, то сегменту сигнатуры параметров может быть присвоено значение 2; если указанные параметры по существу равны, то сегменту сигнатуры параметров может быть присвоено значение 0.

На этапе 100 сегменты сигнатур параметров комбинируют в сигнатуры параметров. Каждая сигнатура параметров представляет собой комбинацию сегментов сигнатуры параметров и представляет происходящее в реальном времени в процессе операции бурения.

На этапе 102 сигнатуры параметров сравнивают с предварительно заданными сигнатурами событий для того, чтобы увидеть, есть ли совпадение. Поскольку в процессе операции бурения данные создаются непрерывно (или по меньшей мере через определенные промежутки времени) в реальном времени, в рамках способа 90 также можно создавать соответствующие сигнатуры параметров для сравнения с сигнатурами событий в реальном времени. Таким образом, в процессе операции бурения оператор может быть незамедлительно информирован о том, происходит ли событие.

Этап 104 представляет собой задание сигнатур событий, которое, как описано выше, может быть выполнено до операции бурения и/или в процессе операции бурения. На фиг. 5 показаны примеры сигнатур событий, подробнее рассмотренные ниже.

На этапе 106 если есть совпадение между сигнатурой события и сигнатурой параметра, то сигнализируют о событии. Сигнализация оператору может быть обеспечена, например, путем отображения информации, связанной с событием, на экране компьютера, путем отображения предупреждения об опасности, путем озвучивания сигнала тревоги и так далее. Сигнализация также может иметь вид записи данных о наступлении события в базе данных, запоминающем устройстве компьютера и так далее. Как подробнее описано ниже, дополнительно или альтернативно в ответ на сигнализацию о событии может реагировать система управления.

На этапе 108 сигнализируют о вероятности наступления события в случае частичного совпадения сигнатуры события с сигнатурой параметров. Например, если сигнатура события содержит сочетание из 30 поведений параметров, и в созданной сигнатуре параметров 28 или 29 поведений параметров совпадают с соответствующими поведениями в сигнатуре события, это может говорить о высокой вероятности того, что указанное событие происходит, даже если отсутствует полное совпадение между сигнатурой параметров и сигнатурой события. В такой ситуации может быть полезно сигнализировать оператору о высокой вероятности того, что указанное событие происходит.

Другой полезной сигнализацией может быть сигнализация о вероятности наступления события в будущем. Например, если, как в вышеописанном примере, в сигнатуре параметров и сигнатуре событий существенное большинство поведений параметров совпадает, а несовпадающие поведения параметров имеют тенденцию к совпадению, может быть полезным (в частности, в случае нежелательного события) сигнализировать оператору о том, что событие вероятно наступит, для обеспечения возможности предпринять необходимые корректирующие действия (например, предотвратить наступление нежелательного события).

На фиг. 3 показана блок-схема другого примера процесса создания сигнатур параметров в рамках способа 90. Процесс начинается с получения данных, как на вышеописанном этапе 92. Затем выполняют вычисления значений параметров, как на вышеописанном этапе 94.

На этапе 110 выполняют операции по предварительной обработке значений параметров. Например, в отношении некоторых параметров могут использовать ограничения по максимуму и по минимуму для исключения ошибочно высоких или низких значений указанных параметров.

На этапе 112 значения параметров, прошедшие предварительную обработку, сохраняют в буфере данных. Буфер данных используют для создания очереди значений параметров с целью их последующей обработки.

На этапе 114 со значениями параметров осуществляют подготовительные вычисления. Например, может быть использовано сглаживание (например, усреднение по методу скользящего окна, сглаживание по методу Савицкого-Голея и т.д.), как описано выше в отношении этапа 96.

На этапе 116 подготовленные значения параметров сохраняют в буфере данных.

На этапе 118 в отношении значений параметров выполняют статистические вычисления. Например, для описания характера изменения параметра можно использовать анализ тенденции изменения (например, аппроксимация прямой линией, определение направления тенденции изменения во времени, нахождение производной первого и второго порядков и так далее). Значения, присваиваемые характеристикам изменения параметров, становятся сегментами результирующих сигнатур параметров, как сказано выше в отношении этапа 98.

На этапе 120 сегменты сигнатуры параметров выдают в базу данных для хранения, последующего анализа и так далее. В данном примере сегменты сигнатуры параметра заносят в базу данных INSITE™ для операции бурения.

Как сказано выше, на этапе 100 сегменты сигнатуры параметров объединяют в сигнатуры параметров.

На фиг. 4 наглядно проиллюстрирована блок-схема примера процесса идентификации того, что событие наступило или наступи