Системы и способы аспирации с трубками малого диаметра

Иллюстрации

Показать все

Группа изобретений относится к области медицины. Узел для факоэмульсификационной хирургической системы включает в себя аспирационную систему, выполненную с возможностью аспирации жидкости из операционного поля. Аспирационная система включает в себя аспирационный канал внутри рукоятки для факоэмульсификации и включает в себя гибкую аспирационную трубку малого диаметра, сообщающуюся по текучей среде с аспирационным каналом. Аспирационная трубка малого диаметра имеет номинальный внутренний диаметр меньше чем около 0,050 дюйма для снижения уровней окклюзионной волны в хирургической системе. Высокопроизводительный перистальтический насос сообщается с аспирационной трубкой малого диаметра и выполнен с возможностью создания потока через аспирационную трубку малого диаметра. Применение данной группы изобретений обеспечит стабильные и прогнозируемые хирургические процессы. 5 н. и 9 з.п. ф-лы, 9 ил.

Реферат

Настоящая заявка испрашивает приоритет по предварительной заявке на патент США № 61/423752 «Small Bore Aspiration System», поданной 16 декабря 2010 г., авторами которой являются Gary P. Sorensen и Eric Lee.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к аспирационным системам, применяемым в процедурах факоэмульсификации, и, в частности, к аспирационным системам, использующим элементы малого диаметра для совершенствования операции.

Типичные хирургические инструменты, пригодные для процедур факоэмульсификации на катарактальных хрусталиках, включают в себя приводимую в действие ультразвуком рукоятку для факоэмульсификации с режущей иглой и ирригационной муфтой и пультом управления. Рукоятка прикреплена к пульту управления электрическим кабелем и гибкой трубкой. Гибкая трубка подает ирригационную жидкость к операционному полю и проводит аспирационную жидкость из операционного поля в емкость для выделений или отходов.

Во время процедуры факоэмульсификации наконечник режущей иглы и конец ирригационной муфты вставлены в передний сегмент глаза через небольшой разрез во внешней ткани глаза. Хирург приводит наконечник режущей иглы в контакт с хрусталиком глаза таким образом, чтобы вибрирующий наконечник фрагментировал хрусталик. Полученные фрагменты аспирируются из глаза через внутренний канал режущей иглы вместе с ирригационной жидкостью, обеспеченной глазу во время процедуры.

В течение всей процедуры в глаз вливают ирригационную жидкость, протекающую между ирригационной муфтой и режущей иглой и вытекающую в глаз около наконечника ирригационной муфты и/или из по меньшей мере одного канала или отверстия, сформированного в ирригационной муфте вблизи его конца. Данная ирригационная жидкость крайне необходима, так как данная жидкость препятствует разрушению глаза во время удаления эмульсифицированного хрусталика, защищает ткань глаза от тепла, создаваемого вибрацией ультразвуковой режущей иглы, и суспендирует фрагменты эмульсифицированного хрусталика для аспирации из глаза.

Во время хирургической процедуры пульт управляет расходами ирригационных потоков и расходами аспирационных потоков, чтобы поддерживать надлежащий баланс внутриглазной камеры для сохранения относительно постоянного давления жидкости в операционном поле внутри глаза.

Расходы аспирационных потоков жидкости из глаза обычно регулируют аспирационным насосом, который создает вакуум в аспирационной линии. Аспирационный поток и/или вакуум устанавливают для достижения требуемого рабочего эффекта для удаления хрусталика. Хотя во время процедуры факоэмульсификации необходимо постоянное давление жидкости внутри глаза, обычные явления или осложнения создают флуктуации или резкие изменения потока жидкости и давления в глазу. Одна из распространенных причин упомянутых флуктуаций или резких изменений состоит в окклюзиях или преградах потоку, которые блокируют наконечник иглы. Данное распространенное и иногда необходимое явление приводит к резкому нарастанию вакуума в аспирационной линии. Когда окклюзию устраняют, то создавшаяся в результате потребность в большом количестве жидкости из глаза для сброса вакуума может вызвать резкое уменьшение глубины передней камеры, так как аспирационный поток мгновенно резко превысит ирригационный поток.

Степень уменьшения глубины в глазу зависит от уровня вакуума в аспирационном канале, когда окклюзия прорывается, а также от характеристик сопротивления и податливости канала для жидкости. Повышенное сопротивление в аспирационном канале уменьшает расход потока, связанный с прорывом окклюзии, и тем самым уменьшает перепад давления от ирригационного источника до глаза и приводит к уменьшению глубины передней камеры.

Проблема окклюзионной волны решалась прежде множеством способов. Один способ содержит добавление отверстия с уменьшенным поперечным сечением для создания препятствия, ослабляющего поток. Хотя упомянутая уменьшенная площадь ослабляет эффекты окклюзионной волны, уменьшение поперечного сечения аспирационного канала может также повысить вероятность закупорки во время процедуры. Применялись или предлагались другие способы, которые предусматривают извилистые каналы с поворотами, углами и ограничителями жидкости, которые также подвержены закупорке. Некоторые прежние решения содержат элемент сопротивления на насосе или вблизи него. Однако эффективность данных решений ограничена вследствие сравнительной большой податливости трубок между элементом сопротивления и глазом. Другое решение состояло в применении увеличенных длин гибкой аспирационной трубки для увеличения общего сопротивления трубки. Данное решение по увеличению длины гибкой трубки сопровождалось нежелательным эффектом дополнительного повышения податливости аспирационного канала. Дополнительная податливость увеличивает потребность в жидкости из глаза во время прорыва окклюзии, что иногда полностью нейтрализует преимущества, получаемые вследствие увеличения длины трубки.

Способы с аспирационными линиями малого диаметра, например линиями с диаметром 0,050 дюйма или менее, обычно избегали, так как линии малого диаметра могут легко закупориваться, что может создавать непостоянство расходов потока, вызывать повышение уровней окклюзионных волн и, возможно, приводить к нежелательным тяжелым травмам во время хирургической процедуры. Кроме того, способы с аспирационными линиями малого диаметра обычно избегали, потому что в результате применения малого диаметра канала с увеличенным сопротивлением стенок может осложняться нагнетание, которое обеспечивает требуемый расход потока.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩЕСТВА ИЗОБРЕТЕНИЯ

В соответствии с одним примерным аспектом, настоящее изобретение относится к узлу для факоэмульсификационной хирургической системы. Узел включает в себя рукоятку для факоэмульсификации, выполненную с возможностью подачи ирригационной жидкости в операционное поле. Рукоятка для факоэмульсификации содержит ультразвуковой наконечник, имеющий просвет, выполненный по размеру и по конфигурации с возможностью аспирации аспирационной жидкости из операционного поля. Узел включает в себя также ирригационную систему, выполненную с возможностью обеспечения ирригационной жидкости в рукоятку для факоэмульсификации для ирригации операционного поля, и включает в себя аспирационную систему, выполненную с возможностью аспирации аспирационной жидкости из операционного поля. Аспирационная система содержит аспирационный канал внутри рукоятки для факоэмульсификации. Аспирационный канал продолжается от ультразвукового наконечника и выполнен и сконфигурирован с возможностью пропускания потока аспирационной жидкости через рукоятку. Аспирационная система содержит также гибкую аспирационную трубку малого диаметра, сообщающуюся по текучей среде с аспирационным каналом. Аспирационная трубка малого диаметра имеет номинальный внутренний диаметр меньше чем около 0,050 дюйма (другие диаметры также предполагаются) для снижения уровней окклюзионной волны в хирургической системе. Внутренний диаметр является, по существу, постоянным по длине аспирационной трубки малого диаметра. Высокопроизводительный перистальтический насос сообщается с аспирационной трубкой малого диаметра и выполнен с возможностью создания потока приблизительно 60 см3/мин через аспирационную трубку малого диаметра.

В соответствии с некоторыми аспектами, аспирационная трубка малого диаметра включает в себя расширенный участок на внутреннем диаметре по меньшей мере одного конца, при этом в ненагруженном состоянии расширенный участок имеет внутренний диаметр больше номинального внутреннего диаметра аспирационной трубки малого диаметра. В соответствии с дополнительными аспектами, узел включает в себя соединитель, выполненный с возможностью приема по меньшей мере участка расширенного участка аспирационной трубки малого диаметра. Соединитель может быть выполнен такого размера, чтобы прикладывать радиальное сжатие на расширенном участке, когда расширенный участок вставлен в соединитель, так, что, когда аспирационная трубка малого диаметра расположена внутри соединителя, внутренний диаметр расширенного участка является приблизительно таким же диаметром, как диаметр поперечного сужения и номинальный диаметр аспирационной трубки малого диаметра.

В соответствии с другим примерным аспектом, настоящее изобретение относится к аспирационной системе малого диаметра, выполненной с возможностью получения аспирационной жидкости из ультразвукового наконечника, применяемого в факоэмульсификационном хирургическом узле. Система включает в себя аспирационный канал внутри рукоятки для факоэмульсификации, который продолжается от ультразвукового наконечника и выполнен и сконфигурирован с возможностью пропускания потока аспирационной жидкости через рукоятку. Данная система содержит также гибкую аспирационную трубку малого диаметра, сообщающуюся по текучей среде с аспирационным каналом. Аспирационная трубка малого диаметра имеет номинальный внутренний диаметр меньше чем приблизительно 0,050 дюйма (предполагаются также другие диаметры) для снижения уровней окклюзионной волны в хирургической системе, и внутренний диаметр является, по существу, постоянным по длине аспирационной трубки малого диаметра. Система содержит также высокопроизводительный перистальтический насос, сообщающийся с аспирационной трубкой малого диаметра.

В соответствии с еще одним примерным аспектом, настоящее изобретение относится к способу аспирации операционного поля с аспирационной системой факоэмульсификационной хирургической системы. Способ содержит этап создания вакуума в аспирационной системе факоэмульсификационной системы, этап направления жидкости через иглу рукоятки для факоэмульсификации и этап направления жидкости через аспирационный проход внутри рукоятки, имеющей отношение размеров менее чем около 10 между каналом иглы и каналом аспирационного прохода. Способ содержит также этап направления жидкости по гибкой аспирационной трубке малого диаметра, продолжающейся от рукоятки до кассеты для жидкости. Гибкая аспирационная трубка малого диаметра имеет, по существу, постоянный номинальный диаметр по ее длине, который меньше чем около 0,050 дюйма (предполагаются также другие диаметры). Способ содержит также этап направления жидкости в кассету и насос, выполненный с возможностью создания вакуума в аспирационной системе.

Следует понимать, что как вышеприведенное общее описание, так и нижеследующее подробное описание являются всего лишь примерными и не предполагают предоставления полного объяснения заявленного изобретения. Нижеприведенное описание, а также практическое применение изобретения выявляют и предлагают дополнительные преимущества и цели изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Прилагаемые чертежи, которые включены в настоящее описание и составляют его часть, поясняют некоторые варианты осуществления.

Фиг.1 - изображение примерного факоэмульсификационного хирургического пульта в соответствии с вариантом осуществления, реализующим принципы, описанные в настоящей заявке.

Фиг.2 - блок-схема факоэмульсификационного пульта, представленного на фиг.1, с изображением различных подсистем, включающая подсистему для работы с жидкостями, которая проводит аспирацию в соответствии с принципами настоящего изобретения.

Фиг.3 - схема примерной подсистемы для работы с жидкостями, применимой с факоэмульсификационным хирургическим пультом, показанным на фиг.1 и 2, в соответствии с вариантом осуществления.

Фиг.4 - вид поперечного сечения гибкой трубки, применимой с подсистемой для работы с жидкостями, показанной на фиг.3, в соответствии с вариантом осуществления.

Фиг.5 - вид поперечного сечения концевого участка гибкой трубки, показанной на фиг.4, в соответствии с вариантом осуществления.

Фиг.6 - вид поперечного сечения соединителя, применимого для соединения гибких трубок, показанных на фиг.4 и 5, к дополнительным аспирационным компонентам системы для работы с жидкостями, показанной на фиг.3, в соответствии с одним аспектом настоящего изобретения.

Фиг.7 - вид поперечного сечения соединителя, показанного на фиг.6, с концевым участком, показанным на фиг.5, гибкой трубки в соответствии с одним аспектом настоящего изобретения.

Фиг.8 - вид поперечного сечения другого соединителя, применимого для соединения гибких трубок, показанных на фиг.4 и 5, к дополнительным аспирационным компонентам системы для работы с жидкостями, показанной на фиг.3, в соответствии с одним аспектом настоящего изобретения.

Фиг.9 - вид поперечного сечения соединителя, показанного на фиг.8, с концевым участком, показанным на фиг.5, гибкой трубки в соответствии с одним аспектом настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ НЕСКОЛЬКИХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Дальнейшее подробное описание приведено со ссылками на несколько примерных вариантов осуществления, которые изображены на прилагаемых чертежах. По возможности, на всех чертежах используются одинаковые ссылочные позиции для обозначения одинаковых или сходных частей.

Настоящее раскрытие направлено на аспирационную систему, которая может достигать более низких уровней окклюзионной волны, чем известные на данный момент системы, в одинаковых условиях. Данные более низкие уровни получают благодаря новой аспирационной линии малого диаметра, которая обеспечивает повышенное сопротивление жидкости, в сравнении с известными системами. Упомянутое повышенное сопротивление гасит или снижает уровни окклюзионной волны в аспирационной линии с возможностью обеспечения в результате более стабильных и прогнозируемых хирургических процессов.

Аспирационная трубка малого диаметра снижает уровни окклюзионной волны по меньшей мере двумя способами. Во-первых, меньший диаметр канала малого диаметра для жидкости делает уровень сопротивления стенок выше, чем в каналах большего диаметра для жидкости. Данное сопротивление стенок уменьшает величину колебаний жидкости в течение коротких периодов времени, что делает поток более постоянным, с более низкими уровнями и большей управляемостью волны, когда волны возникают. Во-вторых, аспирационная трубка малого диаметра, благодаря ее меньшей площади поверхности в сравнении с аспирационными трубками большего диаметра, подвергается меньшей деформации, обусловленной податливостью, (радиальному смятию) в результате высоких уровней вакуума внутри трубки, в сравнении с деформацией, которая может происходить, когда аспирационный поток ограничен или блокируется окклюзией.

Однако, как указано выше, ранее полагали, что аспирационная трубка малого диаметра обычно легко закупоривается. Поэтому аспирационные трубки малого диаметра, имеющие диаметр меньше чем около 0,050 дюйма обычно не использовали в аспирационных линиях. Однако аспирационные трубки малого диаметра, раскрытые в настоящей заявке, могут достигать подходящие постоянные расходы потоков с уменьшенным закупориванием благодаря использованию соединительных компонентов с постоянным потоком и подходящими относительными размерами между компонентами. Следовательно, применение аспирационных трубок малого диаметра возможно при приемлемых тенденциях изменения потока, чтобы снизить уровень окклюзионных волн и обеспечить большую управляемость во время хирургических процедур.

На фиг.1 изображен примерный факоэмульсификационный хирургический пульт, обозначенный в общем позицией 100. На фиг.2 приведена блок-схема пульта 100, показывающая различные подсистемы, которые функционируют для выполнения факоэмульсификационной процедуры. Пульт 100 включает в себя корпус 102 основы с компьютерным блоком 103 и связанным дисплейным экраном 104, показывающим данные, относящиеся к работе и рабочим характеристикам системы во время факоэмульсификационной хирургической процедуры. Пульт 100 включает в себя также несколько подсистем, которые применяются совместно для выполнения факоэмульсификационной хирургической процедуры. Например, подсистемы включают в себя ножную педальную подсистему 106, включающую в себя, например, ножную педаль 108, подсистему 110 для работы с жидкостями, включающую в себя ирригационную систему и аспирационную систему, которые подают жидкость в глаз и аспирируют жидкость из глаза по гибкой трубке 112, подсистему 116 ультразвукового генератора, включающую в себя рукоятку 118 с ультразвуковыми колебаниями, с режущей иглой, и подсистему 120 пневматического витрэктомического ножа, содержащую рукоятку 122 для витрэктомии. Данные подсистемы частично совпадают и взаимодействуют для выполнения различных аспектов процедуры.

На фиг.3 приведена схема, представляющая подсистему 110 для работы с жидкостями и рукоятку 118. Подсистема 110 для работы с жидкостями включает в себя ирригационную систему 300 и аспирационную систему 302, каждая из которых сообщается с рукояткой 118. Ирригационная система 300 содержит ирригационный источник 304 в виде емкости со стерильным раствором, ирригационный клапан 306, который регулирует поток из емкости к операционному полю, гибкую ирригационную трубку 308, ирригационный канал 310 в рукоятке 118 и муфту 312, которую можно считать компонентом рукоятки 118.

Ирригационная система 300 продолжается между емкостью 304 со стерильным раствором и рукояткой 118 и подает жидкость к операционному полю (обозначенному на фиг.3 в виде глаза). В одном примере стерильная жидкость является солевой жидкостью, однако возможно использование других жидкостей. Гибкая ирригационная трубка 308 может быть сформирована в части гибкой трубки 112, показанной на фиг.2. В некоторых вариантах осуществления ирригационная трубка 308 сформирована из нескольких сегментов, при этом некоторые сегменты являются жесткими и другие являются гибкими. Кроме того, в некоторых вариантах осуществления по меньшей мере участок ирригационной системы 300 сформирован в кассете 314, которая взаимодействует с пультом 100, показанным на фиг.1, чтобы обеспечить сообщение по текучей среде между емкостью 304 со стерильным раствором и глазом пациента. Как показано выше, в некоторых вариантах осуществления ирригационная муфта 312 расположена вокруг режущей иглы, чтобы обеспечивать поток ирригационной жидкости в глаз во время хирургической процедуры.

Аспирационная система 302 содержит аспирационный канал 316 в рукоятке 118, гибкую аспирационную трубку 318 малого диаметра, датчик 320 давления, насос 322, выпускной клапан 324, емкость 326 дренажной линии и дренажную емкость 328. Соединитель 330 рукоятки соединяет аспирационный канал 316 в рукоятке 118 с гибкой аспирационной трубкой 318 малого диаметра. Соединитель 332 кассеты соединяет гибкую аспирационную трубку 318 с аспирационной линией кассеты в кассете 314. Как можно видеть, аспирационная система 302 продолжается от операционного поля (глаза) к дренажной емкости 328. Она отводит жидкость, использованную для промывания глаза, а также любые эмульсифицированные частицы. Как изложено выше со ссылкой на гибкую ирригационную трубку 308, по меньшей мере участок гибкой аспирационной трубки 318 малого диаметра может быть сформирован гибкой трубкой 112. В некоторых вариантах осуществления аспирационная система 302 сформирована из множественных сегментов, при этом некоторые сегменты являются жесткими, а другие являются гибкими. Кроме того, в некоторых вариантах осуществления по меньшей мере участок аспирационной системы 302 сформирован в кассете 314, которая взаимодействует с пультом 100, показанным на фиг.1, чтобы обеспечить сообщение по текучей среде между рукояткой 118 и дренажной емкостью 328. Следует понимать, что дренажная емкость 328 может быть, фактически, дренажем вместо замкнутой емкости. Как показано выше, в некоторых вариантах осуществления аспирационная система 302, содержащая аспирационный канал 316 для жидкости, сообщается по текучей среде с каналом режущей иглы (обозначенным позицией 334 на фиг.3) рукоятки 118 и служит для аспирации жидкости и эмульсифицированных частиц через канал иглы и в аспирационную систему 302 во время хирургической процедуры.

Для удобства пояснения, далее первым приведено описание гибкой трубки 112, затем приведено описание дополнительных компонентов аспирационной системы 302.

На фиг.4 изображен примерный вариант осуществления гибкой трубки 112 в поперечном сечении, составленный из гибкой ирригационной трубки 308 и гибкой аспирационной трубки 318 малого диаметра. Как показано выше и на фиг.3, гибкая ирригационная трубка 308 соединяет рукоятку 118 с ирригационной линией в кассете 314, и гибкая аспирационная трубка 318 малого диаметра соединяет рукоятку 118 с аспирационной линией в кассете 314.

Гибкая трубка 112 продолжается от проксимального конца 400, выполненного с возможностью соединения с кассетой 314, к дистальному концу 402, выполненному с возможностью соединения с рукояткой 118 посредством соединителя 330 рукоятки. В данном варианте осуществления гибкие ирригационная и аспирационная трубки 308, 318 соединены на дистальном конце 402 с формированием двухпросветного дистального конца. Данное решение облегчает подсоединение к рукоятке 118, что упрощает сборку хирургических компонентов перед хирургической процедурой. Однако в других вариантах осуществления ирригационная и аспирационная трубки 308, 318 являются совершенно независимыми трубками, и в еще одних других вариантах осуществления ирригационная и аспирационная трубки 308, 318 соединены полностью в виде двухпросветных систем. Предполагаются другие схемы расположения, в том числе схемы расположения, в которых гибкие трубки 112 сформированы в виде двухпросветной системы между дистальным и проксимальным концами, но каждый из проксимального и дистального концов разделен на две независимые линии.

Как видно из фиг.4, гибкая ирригационная трубка 308 имеет внутренний диаметр большего, первого размера, и гибкая аспирационная трубка 318 малого диаметра имеет внутренний диаметр меньшего, второго размера. В некоторых примерах внутренний диаметр гибкой ирригационной трубки 308 составляет приблизительно 0,25 дюйма, хотя размеры могут быть как больше, так и меньше.

Внутренний диаметр гибкой аспирационной трубки 318 малого диаметра составляет приблизительно не более 0,050 дюйма (предполагаются также другие диаметры). В представленном примере гибкая трубка 318 малого диаметра имеет средний внутренний диаметр в пределах около 0,040-0,050 дюйма и в некоторых вариантах осуществления - около 0,045 дюйма (предполагаются также другие диаметры). Соответственно, внутренний диаметр приблизительно на 27% ((0,062-0,045 дюйма)/0,062 дюйма) меньше, чем в аспирационных трубках, применяемых в обычных системах. В других примерах средний внутренний диаметр находится в пределах 0,035-0,045 дюйма (предполагаются другие диаметры). Внутренний диаметр является, по существу, постоянным по осевой длине гибкой аспирационной трубки 318 без отверстий или узких мест, которые увеличивали бы сопротивление трубки. Кроме того, стенки являются, по существу, гладкими, чтобы поток по трубке был ламинарным, без нарушающих препятствий.

Внутренний диаметр гибкой аспирационной трубки 318 значительно меньше, чем внутренний диаметр обычных аспирационных трубок, применяемых в факоэмульсификационных системах. Из-за проблем, сопровождающих применение меньших аспирационных трубок, в обычных системах применяются трубки с внутренним диаметром в пределах, например, около по меньшей мере 0,060 дюйма, обычно около 0,062 дюйма. Однако в настоящем случае применяют трубки малого диаметра, то есть трубки с внутренним диаметром около не более 0,050 дюйма, для управляемого снижения уровней окклюзионной волны до значения, которое невозможно получить с обычными большими гибкими трубками.

Уменьшенный диаметр аспирационной трубки 318 малого диаметра обеспечивает сопротивление трубки больше, чем в аспирационных системах, использующих аспирационные линии большего диаметра. Как изложено выше, упомянутое более высокое сопротивление трубки снижает уровни окклюзионной волны, возникающей, когда наконечник 334 закупоривается во время хирургической процедуры, что обеспечивает хирургу больше возможностей управления. Кроме того, так как гибкая аспирационная трубка 318 малого диаметра имеет меньшую площадь поверхности на внутреннем диаметре и имеет, по существу, такой же внешний диаметр, как ирригационная линия, то гибкая аспирационная трубка 318 малого диаметра является менее податливой радиальному сжатию из-за вакуумных волн, чем аспирационные трубки больших диаметров. Данная уменьшенная податливость приводит к снижению уровней окклюзионной волны, как поясняется выше.

Аспирационная система 302 выполнена также с возможностью уменьшения предрасположенности к закупориванию в соединении гибкой аспирационной трубки 318 малого диаметра и аспирационного канала 316 и в соединении гибкой аспирационной трубки 318 малого диаметра и кассеты 314. Данное свойство обеспечивает объединение с соединителями 330, 332, обеспечивающими плавный переход от рукоятки 118 и к кассете 314. Например, гибкая аспирационная трубка 318 малого диаметра имеет расширенный внутренний диаметр в областях дистального конца 402 и проксимального конца 400. Для удобства пояснения, упомянутый расширенный внутренний диаметр будет рассмотрен только со ссылкой на проксимальный концевой участок 404 на проксимальном конце 400 трубки малого диаметра. Следует понимать, что дистальный конец 402 может содержать такую же или сходную конструкцию. Описание упомянутого проксимального концевого участка 404 приведено ниже со ссылкой на фиг.5.

Как показано на фиг.5, проксимальный концевой участок 404 содержит поверхность 406 с расширенным внутренним диаметром, увеличивающимся от номинального диаметра n аспирационной трубки 318 малого диаметра до расширенного диаметра nf на проксимальном конце 400. В некоторых примерах номинальный диаметр n находится в пределах около 0,040-0,050 дюйма, и расширенный диаметр nf находится в пределах около 0,060-0,070 дюйма (предполагаются также другие диаметры). В одном примере номинальный диаметр составляет около 0,045 дюйма. В других примерах номинальный диаметр находится в пределах 0,035-0,045 дюйма. Данный расширенный внутренний диаметр допускает соединение аспирационной трубки 318 малого диаметра с охватывающими соединителями при сохранении малой предрасположенности к закупориванию. В приведенном примере расширенный диаметр увеличивается линейно от номинального диаметра n на расстоянии L вдоль аспирационной трубки 318 к концу 400 до номинального расширенного диаметра nf. Хотя на фиг.5 не заметно, внешний диаметр аспирационной трубки 318 также уменьшается на длине L. В одном примере номинальный внешний диаметр трубки 318 составляет приблизительно 0,155 дюйма, и внешний диаметр уменьшается по длине L до диаметра 0,152 дюйма на конце 400 (предполагаются также другие диаметры). Данные особенности приводят к толщине t стенки на конце 400, которая меньше толщины стенки на удалении от концов трубок. Цель вышеописанных изменений диаметров дополнительно поясняется ниже со ссылкой на фиг.6-9.

На фиг.6 и 7 изображен соединитель 330, который соединяет аспирационную трубку 318 малого диаметра с аспирационным каналом 316 в рукоятке 118. На фиг.8 и 9 изображен соединитель 332, который соединяет аспирационную трубку 318 малого диаметра с каналом для жидкости в кассете 314.

Аспирационный канал 316 для жидкости (фиг.3) внутри рукоятки 118 обычно содержит жесткую трубку, выполненную с возможностью транспортировки аспирационной жидкости и эмульсифицированной ткани от ультразвукового наконечника 334 в операционном поле в гибкую аспирационную трубку 318 малого диаметра. В приведенном варианте осуществления аспирационный канал 316 для жидкости является, по существу, прямолинейным проходом от наконечника 334 до гибкой аспирационной трубки 318 малого диаметра. В обычной системе аспирационный канал рукоятки заканчивается в соединителе, например охватываемом люэровском соединителе, и аспирационная трубка заканчивается в сопрягающем соединителе, например охватывающем люэровском соединителе. Данная конфигурация обычно дает в результате расширенный диаметр канала для жидкости, когда два соединителя идут вместе. Данный расширенный диаметр может быть областью, в которой происходит закупорка из-за того, что частицы могут переориентироваться в данной расширенной области. Однако соединитель 330 помогает устранить вышеописанные недостатки.

Как можно видеть на фиг.6, соединитель 330 содержит первый конец 400 и второй конец 402. В первом и втором концах 400, 402 сформированы, соответственно, отверстие 404 с первым внутренним диаметром и отверстие 406 со вторым внутренним диаметром. Отверстие 404 с первым внутренним диаметром содержит открытый конец 410 с принимающим отверстием, коническую внутреннюю поверхность 412 отверстия, конец 414 отверстия и поперечное сужение 416. В данном варианте осуществления поперечное сужение 416 имеет диаметр, по существу, согласующийся с номинальным диаметром n аспирационной трубки 318 малого диаметра. Открытый конец 410 с принимающим отверстием имеет внутренний диаметр, по существу, согласующийся с номинальным внешним диаметром аспирационной трубки 318 малого диаметра. Глубина первого отверстия 404 может, по существу, согласоваться с расстоянием L аспирационной трубки, показанной на фиг.5. Аналогично, на конце 414 отверстия расстояние между внутренней поверхностью 412 отверстия и поперечным сужением 416 может быть, по существу, равно толщине t стенки аспирационной трубки 118 на ее суженном конце.

Отверстие 406 со вторым внутренним диаметром содержит открытый конец 420 с принимающим отверстием, внутреннюю поверхность 422 отверстия и колоколообразную криволинейную поверхность 424 отверстия, ведущую к поперечному сужению 416. Отверстие 406 со вторым внутренним диаметром выполнено такого размера, чтобы принять конец аспирационного канала 316 через рукоятку 118. Соответственно, отверстие 406 имеет диаметр такого размера, чтобы принимать конец аспирационного канала 316.

Поскольку в некоторых вариантах осуществления аспирационный канал 316 имеет размер около по меньшей мере 0,062 дюйма или более, то поток из аспирационного канала 316 входит, как в сопло, в поперечное сужение 416. Отверстие 406 имеет, в частности, колоколообразную криволинейную форму для устранения закупорок, при том что по-прежнему переносит жидкость и эмульсифицированные частицы через поперечное сужение 416. Соответственно, для минимизации предрасположенности к закупориванию длина отверстия 406 на его наибольшем диаметре сведена к минимуму, чтобы способствовать сохранению ориентации частиц вдоль линий потока. Кроме того, вместо ступенчатого или прямоугольного конца, как в обычных соединителях, соединитель 330 имеет колоколообразную изогнутую поверхность 424, которая обеспечивает непрерывающийся плавный переход от большего диаметра конца 420 отверстия к меньшему диаметру поперечного сужения 416, который, как поясняется выше, по существу, согласуется с номинальным диаметром n аспирационной трубки 318 малого диаметра. Колоколообразная форма способствует уменьшению длины, необходимой для перехода от большого диаметра к поперечному сужению, с обеспечением при этом плавного проточного канала. Данный канал может обеспечить лучший поток, чем длинный линейно сужающийся канал. Таким образом, соединитель 330 трубок обеспечивает эффективную работу аспирационной системы с малым диаметром с возможностью управления окклюзионной волной.

На фиг.7 изображен соединитель 330, прикрепленный к аспирационному каналу 316 в рукоятке 118 и дистальному концу 402 аспирационной трубки 318 малого диаметра. Коническая внутренняя поверхность 412 отверстия соединителя 330, в частности, выполнена с возможностью взаимодействия с расширенным концом аспирационной трубки 318 малого диаметра, как показано на фиг.7, чтобы сохранять номинальный диаметр n, даже когда конец 402 деформирован сжатием для вставки внутрь охватывающего соединителя 330. Как указано выше, дистальный конец 402 трубки 318 также содержит расширенный конец. Обычные нерасширенные трубки имеют внутренний диаметр, который может радиально деформироваться или сжиматься до диаметра меньше, чем номинальный диаметр n, при использовании в охватывающих соединителях, с возможным сужением прохода и увеличением предрасположенности к закупориванию. Однако соединитель 330, в частности, выполнен с возможностью приема конца 402 гибкой трубки и деформации концевого участка таким образом, чтобы не слишком ограничивать поток. В данном варианте осуществления упомянутый соединитель может деформировать концевой участок лишь до такой степени, чтобы либо сохранить номинальный диаметр n, либо формировать в результате диаметр больший, чем диаметр n. Сужение на внешнем диаметре, упомянутое в описании со ссылкой на фиг.5, допускает более удобную вставку в соединитель 330.

На фиг.8 изображен соединитель 332, который соединяет аспирационную трубку 318 малого диаметра с каналом для жидкости в кассете 314. Как можно видеть, соединитель 332 включает в себя первый конец 446 и второй конец 448. Первый конец 446, по существу, соответствует первому концу 400 в соединителе 330, и первый конец 446, в частности, конструктивно выполнен с возможностью взаимодействия с гибкой аспирационной трубкой 318 малого диаметра, чтобы выдерживать номинальный диаметр n, даже когда конец деформирован для вставки внутрь охватывающего соединителя 332. Поскольку первый конец 446 конструктивно подобен первому концу 400 соединителя 330, показанного на фиг.6, то он обозначен сходными ссылочными позициями. Первый конец 446 включает в себя отверстие 404a с открытым концом 410a с принимающим отверстием, конической внутренней поверхностью 412a отверстия, концом 414a отверстия и поперечным сужением 416a. Поперечное сужение 416a имеет диаметр, согласующийся с номинальным диаметром n аспирационной трубки 318 малого диаметра. Вышеприведенное описание первого конца 400, показанного на фиг.6, равным образом применимо к первому концу 446 и не повторяется в дальнейшем.

Второй конец 448 соединителя 332 выполнен с возможностью сопряжения с кассетой 314. В показанном варианте осуществления кассета 314 является традиционной кассетой и включает в себя проход для жидкости, соединяемый с соединителем 332. Проход 332 имеет внутренний диаметр с размером больше внутреннего диаметра аспирационной трубки 318 малого диаметра. Соответственно, соединитель 332, в частности, выполнен с возможностью приема прохода для жидкости из кассеты 314. Второй конец включает в себя открытый принимающий конец 440, коническую поверхность 442 и конец 444 отверстия, ведущий в поперечное сужение 416a.

На фиг.9 показан соединитель 332, соединенный с проксимальным концом 400 аспирационной трубки 318 малого диаметра и каналом 340 для жидкости из кассеты 314. Подобно отверстию 404 в соединителе 330, открытый конец 410a с принимающим отверстием имеет внутренний диаметр, по существу, согласующийся с номинальным внешним диаметром гибкой аспирационной трубки 318. Глубина первого отверстия 404a может, по существу, согласоваться с расстоянием L аспирационной трубки 318, показанной на фиг.5. Аналогично, на конце 414a отверстия расстояние между внутренней поверхностью 412 отверстия и поперечным сужением может быть, по существу, равно толщине t стенки аспирационной трубки 318 на ее сужающемся конце.

Так как соединитель 332, в частности, выполнен с возможностью приема конца аспирационной трубки и деформации концевого участка таким образом, чтобы не полностью ограничивать поток, то предрасположенность к закупориванию уменьшается, что обеспечивает в результате более плавный, более ламинарный переход через соединитель, чем в обычных аспирационных системах. Данное решение помогает использовать аспирационную трубку малого диаметра для более эффективного управления окклюзионной волной без недостатков закупорки. Кроме того, как поясняется выше, сужение внешнего диаметра аспирационной трубки 318 малого диаметра, описанное со ссылкой на фиг.5, позволяет упростить вставку в соединитель 332.

Насос 322 аспирационной системы 302 относится к кас