Способ обработки скважины (варианты)

Иллюстрации

Показать все

Группа изобретений относится к обработке подземной формации в скважине. Технический результат - увеличение добычи углеводородов с помощью обрабатывающей текучей среды для воздействия на подземную формацию. По способу обеспечивают гидравлическое сообщение между скважиной и первой целевой зоной, а также между указанной скважиной и второй целевой зоной. При этом первая целевая зона и вторая целевая зона содержат зоны для обработки в подземной формации, пересеченной скважиной. Вторая целевая зона расположена выше первой целевой зоны. Размещают в скважине гибкую насосно-компрессорную трубу. Осуществляют первый этап обработки в первой целевой зоне. При этом первый этап обработки содержит осуществление контакта обрабатываемой зоны с обрабатывающим составом. Осуществляют второй этап обработки в первой целевой зоне, в соответствии с которым в обрабатываемую зону вводят отклоняющий агент, содержащий разлагающийся материал. Осуществляют первый этап обработки во второй целевой зоне. Обеспечивают разложение отклоняющего агента после осуществления первого этапа обработки во второй целевой зоне и измеряют скважинный параметр, который содержит измерение микросейсмической активности. 3 н. и 10 з.п. ф-лы, 8 ил.

Реферат

Предшествующий уровень техники изобретения

Настоящее изобретение относится в основном к способу и системе для обработки подземной формации с использованием отклонения.

Способы обработки скважин часто используются для увеличения добычи углеводородов с помощью обрабатывающей текучей среды для воздействия на подземную формацию с целью увеличения потока нефти или газа из формации в скважину для извлечения на поверхность. Гидравлический разрыв и химическая стимуляция являются общими способами обработки, используемыми в скважине. Гидравлический разрыв включает в себя нагнетание текучих сред в подземную формацию под давлением, достаточным для формирования разрывов в формации, которые увеличивают поток из формации в скважину. При химической стимуляции объем потока увеличивается путем использования химикатов для изменения свойств формации, таких как увеличение эффективной проницаемости путем растворения материалов или травления подземной формации. Скважина может быть необсаженной или обсаженной, при которой металлическая труба (обсадная колонна) размещается в пробуренной скважине и цементируется на месте. В необсаженной скважине может быть установлен хвостовик с щелевыми прорезями или сетчатый фильтр. В обсаженной скважине обсадная колонна (и цемент, если есть) обычно перфорируется в определенных местах для протекания углеводородной текучей среды в скважину или для протекания обрабатывающей текучей среды из скважины в формацию.

Для эффективного доступа к углеводороду желательно направлять обрабатывающую текучую среду в целевые интересующие зоны в подземной формации. Могут быть целевые интересующие зоны в различных подземных формациях или множество слоев в конкретной формации, которые предпочтительны для обработки. В таких ситуациях предпочтительно обрабатывать целевые зоны или множество слоев без неэффективной обработки зон или слоев, которые не представляют интереса. В основном, обрабатывающие флюиды текут по пути наименьшего сопротивления. Например, в больших формациях, имеющих несколько зон, обрабатывающая текучая среда будет стремиться рассеиваться в частях формации, которые имеют наименьший градиент давления, или частях формации, которые требуют наименьшей силы для инициирования разрыва. Подобным образом, в горизонтальных скважинах, и особенно в тех горизонтальных скважинах, которые имеют длинные ответвления, обрабатывающую текучую среду рассеивают в частях формации, требующих меньших сил для инициирования разрыва (часто около верхней точки боковой секции), и меньшее количество текучей среды поступает в другие части ответвления. Также требуется предотвратить стимулирование нетребующих зон, таких как водоносные или неуглеводородоносные зоны. Таким образом, полезно использовать способы отклонения обрабатывающей текучей среды в целевые интересующие зоны или от не представляющих интереса зон.

Известны способы отклонения обрабатывающей текучей среды для облегчения обработки конкретного интервала или интервалов. Шариковые уплотнители являются механическими устройствами, которые часто используются для изоляции перфораций в некоторых зонах, отклоняя тем самым жидкости к другим перфорациям. Теоретически, использование шариковых уплотнителей для изоляции перфораций позволяет обрабатывать зону за зоной в зависимости от давления прорыва или проницаемости. Но часто шариковые уплотнители преждевременно перекрывают одну или более открытых перфораций, приводя к одновременной обработке двух или более зон одновременно. Также, когда перфорированные зоны расположены близко друг к другу, шариковые уплотнители становятся неэффективными. В дополнение, шариковые уплотнители являются полезными только тогда, когда обсадная колонна зацементирована на месте. Без цемента между обсадной колонной и стенкой скважины обрабатывающая текучая среда может протекать через перфорацию без шарикового уплотнителя и попадать через кольцевое пространство позади обсадной колонны в любую формацию. Шариковые уплотнители имеют ограниченное использование в горизонтальных скважинах по причине эффектов давления формации, давления нагнетания и гравитации в горизонтальных секциях, а также из-за того, что, возможно, ответвления в горизонтальных скважинах могут быть не зацементированы на месте.

Изменения в давлениях закачивания могут быть использованы для определения размещения шариковых уплотнителей в перфорации, что, по существу, предполагает, что правильное количество шариковых уплотнителей было размещено для изоляции всех нужных перфораций, и шарики размещены в правильных местах для отклонения обрабатывающих текучих сред в желаемые зоны. Другие механические устройства, известные для использования при отклонении, включают в себя мостовые пробки, пакеры, скваженные клапаны, скользящие муфты и комбинации дефлектора/пробки, и размещение частиц. Совместное использование таких механических устройств для отклонения обрабатывающей текучей среды требует много времени и является дорогостоящим, что может сделать их в рабочем отношении неудовлетворительными, особенно в ситуации, где присутствует много целевых интересующих зон. Известно использование химически составленных флюидных систем для способов отклонения, включающих в себя вязкие текучие среды, гели, пены и другие текучие среды. Многие из известных химически составленных отклоняющих агентов являются постоянными (не обратимыми) и некоторые из них могут повреждать формацию. В дополнение, некоторые химические способы могут разрушать физическую структуру и прочность для эффективного отклонения текучих сред, закачиваемых при высоком давлении, или они могут оказать нежелательное воздействие на свойства формации. Термин «отклоняющий агент» здесь подразумевает механические устройства, химические флюидные системы, их комбинации и способы для использования для блокирования потока в или из конкретной зоны или заданный набор перфораций.

При работе предпочтительно, чтобы обрабатывающая жидкость попадала в подземную формацию только в целевых интересующих зонах. Более предпочтительно, чтобы обрабатывающая жидкость попадала в подземную формацию поэтапно. Но известные недостатки существующих способов отклонения обрабатывающих жидкостей не обеспечивают степень уверенности или определенности в том, где размещается отклоняющий агент, выполняются ли отдельные этапы обработки, обрабатываются ли целевые интересующие зоны, а также каков порядок обработки целевых интересующих зон. Требуется надежный способ для избирательной и эффективной обработки целевых интересующих зон в подземной формации с использованием отклоняющего агента и контроль во время обработки.

Сущность изобретения

В варианте осуществления изобретения способ обработки содержит этапы, на которых обеспечивают гидравлическое сообщение между скважиной и, по меньшей мере, одной целевой интересующей зоной для обработки в подземной формации, которая пересекается скважиной, размещают насосно-компрессорную трубу и вводят обрабатывающий состав в скважину, осуществляют контакт целевой зоны в подземной формации с обрабатывающим составом, вводят отклоняющий агент через насосно-компрессорную трубу в интервал в скважине и повторяют введение обрабатывающего состава, контакт целевой зоны с обрабатывающим составом и введение отклоняющего агента для одной или более целевых зон.

В другом варианте осуществления изобретения способ для обработки более одной целевой интересующей зоны в подземной формации включает в себя этапы, на которых закачивают обрабатывающий состав для приведения в контакт с, по меньшей мере, одной целевой интересующей зоны с обрабатывающим составом, контролируют закачивание обрабатывающего состава и измеряют параметр характерный для обработки, закачивают отклоняющий агент в требуемый интервал отклонения в скважине, осуществляют мониторинг закачивания отклоняющего агента и измерение параметра, характерного для отклонения, закачивают обрабатывающий состав для приведения в контакт с, по меньшей мере, одной другой целевой интересующей зоной скважины. По меньшей мере, одно из закачивания обрабатывающего состава и закачивания отклоняющего агента модифицируется на основании, по меньшей мере, одного из измеряемых параметров.

В еще одном варианте осуществления изобретения способ обработки скважины включает в себя этап, на котором вводят в интервал скважины текучую среду, содержащую агент управления потерей текучей среды, и, в присутствии указанной текучей среды осуществляют струйное перфорирование интервала с помощью абразивной суспензии.

Преимущества и другие признаки изобретения станут понятны из следующих чертежей, описания и формулы изобретения.

Краткое описание чертежей

Фиг. 1, 5 и 6 являются схематическими видами скважин в соответствии с вариантами осуществления изобретения.

Фиг. 2, 3, 4А и 4В являются блок-схемами способов для обработки более чем одной целевой интересующей зоной в соответствии с другими вариантами осуществления изобретения.

Фиг.7 является блок-схемой комбинированного способа стимуляции и струйного перфорирования в соответствии с вариантом осуществления изобретения.

Подробное описание

Настоящее изобретение будет описано в связи с его различными вариантами осуществления. Следующее описание является специфическим для конкретного варианта осуществления, оно предназначено только для иллюстрации и не должно ограничивать объем изобретения. Наоборот, оно предназначено для включения всех альтернатив, модификаций и эквивалентов, которые включены в сущность и объем изобретения, как это определено приложенной формулой изобретения.

На фиг. 1 показан вариант осуществления скважины 10 в соответствии с изобретением, включающей в себя систему, которая позволяет обрабатывать более чем одну целевую интересующую зону с использованием введения отклоняющего агента для направления обрабатывающей текучей среды в целевую интересующую зону. В общем, скважина 10 включает в себя ствол 12 скважины, который пересекает одну или несколько подземных формаций и образует, в общем, несколько целевых интересующих зон, таких как, например, зоны 40. Ствол 12 скважины может быть обсажен обсадной колонной 14, несмотря на то, что раскрытые здесь системы и способы могут быть использованы с необсаженными скважинами в соответствии с другими вариантами осуществления изобретения.

Как изображено на фиг. 1, в соответствии с некоторыми вариантами осуществления изобретения, насосно-компрессорная труба 20 опускается вниз с поверхности скважины 10 в ствол 12 скважины. На своем нижнем конце насосно-компрессорная труба 20 имеет компоновку 30 низа бурильной колонны. В других вариантах осуществления изобретения насосно-компрессорная труба 20 может быть заменена другой колонной, такой как, в виде не ограничивающего примера, составная трубчатая колонна или любая структура, хорошо известная специалисту в данной области техники, которая выполнена с возможностью или служащая в виде подходящего средства для перемещения текучих сред между поверхностью и одной или несколькими обрабатываемыми зонами в скважине.

Фиг.1 изображает состояние скважины 10, в которой установлено гидравлическое сообщение между стволом 12 скважины и зоной 40 посредством перфораций 42, выполненных в обсадной колонне 14 и проходящих в окружающую формацию для того, чтобы обойти любое близкое повреждение формации вблизи ствола скважины. Следует отметить, что перфорация зоны 40 может быть выполнена, например, с помощью гидромониторных наконечников, также как с помощью других известных перфорирующих устройств, таких как трубчатые или канатные кумулятивные перфораторы, скользящие муфты, или краны, например.

Для вариантов осуществления изобретения, в которых используется гидромониторное перфорирование, скважина 10 может включать в себя источник 65 режущей текучей среды (резервуары режущей жидкости, управляющие клапаны, и так далее), который расположен на поверхности скважины. Источник режущей текучей среды, в определенное время, поставляет абразивную режущую текучую среду, или суспензию в центральный канал насосно-компрессорной трубы 20, так что она направляется радиально с помощью гидромониторных наконечников (содержащихся в компоновке 30 насосно-компрессорной трубы 20) для проникновения в обсадную колонну 14 (если скважина 10 является обсаженной) и любые окружающие формации.

Для введения обрабатывающей текучей среды в скважину 10, скважина 10 может включать в себя источник 60 обрабатывающей текучей среды (источник, который содержит резервуар обрабатывающей текучей среды, насос, управляющие клапаны и так далее), который расположен на поверхности скважины 10 и обычно соединен с кольцевым пространством 16 скважины 10.

Скважина 10 может также иметь источник 62 отклоняющей жидкости, который расположен на поверхности скважины 10. Во время этапа отклонения (обсужденного ниже), отклоняющая текучая среда, или агент, проходит вниз через центральный канал насосно-компрессорной трубы 20 и выходит из колонны 20 на ее нижнем конце в область скважины 10, подлежащую изоляции для дальнейшей обработки. Источник 62 отклоняющей текучей среды представляет собой, например, резервуар отклоняющей жидкости, насос и подходящие управляющие клапаны для целей доставки отклоняющей текучей среды в центральный канал насосно-компрессорной трубы 20.

Скважина 10 может также включать в себя наземную систему 64 мониторинга обработки, которая соединена со скважинной системой контроля обработки для контроля одного или более параметров скважины, касающихся проведения отклоняющего агента или проведения обрабатывающей жидкости вниз так, что доставка обрабатывающей жидкости/отклоняющего агента может регулироваться на основании проконтролированных параметров, как описано ниже.

Со ссылкой на фиг. 2 в сочетании с фиг.1, в соответствии с вариантами осуществления изобретения, ниже описан способ 100 для обработки целевых зон 40. Согласно способу 100, насосно-компрессорная труба размещается в скважине на стадии 104. Далее, способ 100 включает в себя повторяющийся цикл для обработки зон 40, по одной за раз. Это может быть применимо там, например, где зона может включать в себя один или несколько кластеров перфораций. Этот цикл включает в себя обработку на стадии 108 следующей зоны 40. Если определено на стадии 112, что скважина 10 содержит другую зону 40 для обработки, то способ 100 включает в себя введение отклоняющего агента через насосно-компрессорную трубу в интервал скважины для облегчения этой обработки на стадии 106.

Более конкретно, в соответствии с некоторыми варианты осуществления изобретения, целевые интервалы 40 могут быть обработаны следующим образом. Во-первых, в соответствии с вариантами осуществления изобретения, устанавливается гидравлическое сообщение между стволом скважины и целевыми зонами 40 для обработки. Подразумевается, что целевая зона для обработки в подземной формации широко интерпретируется как любая зона, такая как проницаемый слой в многослойной формации, зона в мощной формации, которая отличается характеристиками давления или градиента давления более чем стратиграфическими или геологическими характеристиками или зона, которая отличается типом или относительным содержанием текучей среды (например, нефти, газа, воды) в ее поровых пространствах.

Несмотря на то, что на фиг.1 изображена вертикальная скважина, раскрытые здесь способы могут быть эффективно применены для обработки скважинных конфигураций, включающих в себя, но не ограниченных ими, вертикальные скважины, полностью обсаженные скважины, горизонтальные скважины, не обсаженные скважины, скважины, включающие в себя множество ответвлений, и скважины, которые имеют большую часть из этих признаков. Скважина может иметь вертикальные, наклонные или горизонтальные части или их комбинацию. Обсадная колонна может быть вцементирована в скважину, при этом способ цементирования обычно включает в себя нагнетание цемента в кольцевое пространство между обсадной колонной и пробуренной стенкой скважины. Однако следует отметить, что в некоторых вариантах осуществления изобретения, обсадная колонна 14 может не быть зацементированной, как для случая, в котором обсадная колонна облицовывает ответвляющуюся скважину. Таким образом, понятно, что обсадная колонна 14 может быть облицовкой, широко понимаемой здесь как любая форма обсаживания, которая не выходит на поверхность сверху скважины или даже на определенном интервале вдоль горизонтальной скважины.

Целевые интересующие зоны 40 для обработки могут иметь различные градиенты напряжения, которые могут препятствовать эффективной обработке зон 40 без использования отклоняющего агента.

Целевые зоны 40 могут быть обозначены любым количеством способов, которые могут быть оценены специалистом в данной области техники, таких как каротаж в обсаженной и необсаженной скважине. Как упоминалось ранее, целевые зоны 40 могут быть перфорированы с использованием обычных перфорирующих устройств в целях установления гидравлического сообщения между стволом 12 скважины и окружающей формацией(ями).

Например, перфорации могут быть образованы во всех целевых интересующих зонах 40 для обработки за один проход с использованием перфоратора, который опускается в ствол 12 скважины на кабеле. В случае необсаженной скважины с естественными разрывами может не потребоваться дополнительного действия или операции для установления гидравлического сообщения между стволом 12 скважины и целевыми интересующими зонами 40.

В некоторых вариантах осуществления изобретения, гидравлическое сообщение может быть установлено с использованием заранее перфорированной обсадной колонны и скользящей муфты для открытия каналов между стволом скважины и обсадной колонной, выполнения щели или щелей в обсадной колонне или любым другим подобным известным способом для обеспечения каналов между стволом 12 скважины и целевыми зонами 40 для обработки. Альтернативные способы, такие как лазерная перфорация или химическое растворение, предполагаются и находятся в объеме прилагаемой формулы изобретения. Следует понимать, что преимущества раскрытых способов и составов могут быть реализованы с обработкой, проведены при давлении ниже, равном или большем давления разрыва формации.

Как показано на фиг.1, после установления гидравлического сообщения насосно-компрессорная труба 20 размещается в стволе 12 скважины на необходимой глубине с использованием техник, которые могут быть оценены специалистами в данной области техники. В некоторых вариантах осуществления изобретения действия по установлению гидравлического сообщения и размещению насосно-компрессорной трубы 20 в стволе 12 скважины могут быть совмещены с размещением перфорирующего устройства, такого как гидромониторная насадка (часть компоновки низа бурильной колонны, через которую абразивная режущая текучая среда или суспензия закачивается в скважину через центральный канал в насосно-компрессорной трубе. Следует отметить, что гидромониторная насадка может быть использована для прорезывания окружающей обсадной колонны 14 и формирования перфораций в окружающей формации(ях).

После размещения насосно-компрессорной трубы в скважине 10, устройство или система для измерения или контроля, по меньшей мере, одного параметра, характерного для обработки, может быть размещена в стволе 12 скважины. При этом наземная система 64 контроля обработки подсоединена к размещенному устройству или системе для целей контролирования обработки, а также возможности размещения отклоняющего агента в скважине 10. Например, при использовании для обработки гидравлического разрыва, может быть размещена система контроля гидравлического разрыва, которая способна определять и контролировать микросейсмические колебания в подземной формации, являющиеся следствием гидравлического разрыва.

Примеры известных систем и способов для контроля гидравлического разрыва ветвящихся скважин раскрыты в патенте США № 5771170, который полностью включен в данное описание посредством ссылки. В качестве альтернативы в соответствии с другими вариантами осуществления изобретения устройство или система измерения или контроля, по меньшей мере, одного параметра, характерного для обработки, может быть размещена в стволе 12 скважины. Система и способ для контроля гидравлического разрыва с использованием наклономера в обрабатываемой скважине раскрыты, например, в патенте США № 7028772, который полностью включен в данное описание путем ссылки.

В некоторых вариантах осуществления изобретения, наземная система 64 контроля обработки может быть подсоединена к устройству контроля, которое размещено внутри насосно-компрессорной трубы 20. Например, как изображено на фиг.1, оптоволоконный датчик 50 может быть размещен внутри насосно-компрессорной трубы 20, как описано в заявке на патент США № 11/111,230, опубликованной как заявка на патент США № 2005/0236161, которая полностью включена в данное описание путем ссылки.

Другие устройства измерения и контроля, подходящие для использования в скважине 10, включают в себя, например, устройства, используемые для определения скважинных параметров, такие как измерители забойного давления или измерители забойной температуры. Другой пример систем и способов, известных для контроля, по меньшей мере, одного параметра, характерного для обработки (такого, как температура или давление) раскрыт в патенте США № 7055604, который полностью включен в данное описание путем ссылки. Примеры измерения, которые могут быть проконтролированы, включают в себя натяжение или сжатие, действующие на скважинное устройство (такое, как насосно-компрессорная труба), как индикатор трения потока текучих сред. Измерения могут также включать в себя скважинные измерения интенсивности или скорости потока текучих сред.

После размещения в скважине 10 системы или устройства для измерения или контроля, по меньшей мере, одного параметра, характерного для обработки, и возможного размещения отклоняющего агента начинается обработка целевой интересующей зоны 40. В частности, в соответствии с некоторыми вариантами осуществления изобретения, обработка зоны 40 начинается с закачки обрабатывающей текучей среды (с помощью источника 60) в кольцевое пространство 16 между насосно-компрессорной трубой 20 и обсадной колонной 14 (в случае обсаженной скважины) или между насосно-компрессорной трубой 20 и стенкой скважины (в случае необсаженной скважины). В качестве альтернативы, обрабатывающая текучая среда может быть закачана в ствол скважины через насосно-компрессорную трубу. Обработка целевой зоны 40 путем закачки обрабатывающей текучей среды рассматривается здесь как стадия обработки.

Обрабатывающая текучая среда может быть любой подходящей обрабатывающей текучей средой, известной в данной области техники, включающей в себя, но не ограниченной ими, стимулирующие текучие среды, воду, обработанную воду, текучие среды на водной основе, азот, углекислый газ, любая кислота (такая, как соляная, плавиковая, уксусная кислотные системы, и так далее), дизельное топливо, или текучие среды на основе масла, гелированные масляные или водные системы, растворители, поверхностно-активные системы, и транспортируемые текучими средами твердые частицы для размещения, например, около или в целевой зоне. Обрабатывающая текучая среда может включать в себя компоненты, такие как ингибиторы отложений в добавление к или отдельно от стимулирующей текучей среды. В некоторых вариантах осуществления изобретения, обрабатывающая текучая среда может включать в себя расклинивающий наполнитель, такой как песок, для размещения в гидравлических разрывах в целевой зоне путем закачивания обрабатывающей текучей среды при достаточно высоких давлениях для образования разрывов. Оборудование (емкости, насосы, смесители, и так далее) и прочие подробности для выполнения стадий обработки известны в данной области техники и для простоты не описаны.

Модель обработки, подходящая для стимуляции породы и/или давления разрыва, может быть выполнена для моделирования спланированной обработки скважины в соединении с раскрытым способом. Такие модели хорошо известны в данной области техники, при этом многие из них пригодны для предсказания забойных давлений обработки. Данные, сгенерированные из такой модели, могут быть сравнены с забойным давлением обработки во время описанной выше фазы обработки скважины раскрытого способа.

Во время обработки осуществляется мониторинг, по меньшей мере, одного параметра скважины, который является характерным для обработки. Примеры способов контролирования параметра, характерного для стимуляции, раскрыты в заявке на патент США № 11/135,314, опубликованной как заявка на патент США № 2005/0263281, которая полностью включена в данное описание путем ссылки. Контроль микросейсмических колебаний, созданных гидравлическим разрывом и другими типами обработки, может осуществляться, например, с помощью контроля гидравлического разрыва.

Операция обработки может быть модифицирована на основании проконтролированных параметров в соответствии с некоторыми вариантами осуществления изобретения. Например, может осуществляться мониторинг такого параметра, как микросейсмическая активность, во время гидравлического разрыва для определения или подтверждения расположения и геометрических характеристик (например, азимута, высоты, длины и ассиметричности) разрывов в целевой интересующей зоне в подземной формации, и на основании указанного параметра может быть модифицирован график закачивания. В некоторых вариантах осуществления, микросейсмическая активность может быть использована для определения пространства разрыва в разрываемой зоне и соотнесена со смоделированным объемом стимулированного пространства разрыва в разрываемой зоне. Этот смоделированный объем может быть сравнен с объемом обрабатывающей текучей среды, закачанной в целевую интересующую зону, и сравнение может быть повторено на протяжении всего времени, пока происходит обработка. Если смоделированный объем пустого пространства прекращает расти со скоростью, аналогичной входному объему обрабатывающей текучей среды, это показывает, что уменьшается эффективность обработки. Микросейсмическая активность может также быть использована для определения того, когда обработка распространяется за пределы зоны или в водоносную зону, показывая тем самым что продолжение обработки является неэффективным. На основании указанного параметра и возможных сравнений с подвергшимися мониторингу параметрами с другой информацией, скорость закачки обрабатывающей текучей среды может быть изменена или остановлена и может быть закачан отклоняющий агент. Насосно-компрессорная труба может быть использована для точного размещения отклоняющего агента в скважине.

Как здесь описано, множество зон могут контролироваться на основании проконтролированных параметров. Проекты отдельных стадий обработки могут быть оптимизированы на основании проконтролированного параметра(ов). Например, различные параметры обработки, такие как график закачивания, скорость нагнетания, вязкость текучей среды или загрузка расклинивающего наполнителя, могут быть изменены во время обработки для обеспечения оптимальной и эффективной обработки в целевой зоне.

В качестве более специфического примера, допустим, что целевая зона 40а (фиг.1) сейчас обрабатывается. При завершении обработки, насосно-компрессорная труба 20 размещается так, что компоновка 30 на конце насосно-компрессорной трубы 20 располагается в месте, желательном для закачивания отклоняющего агента в интервал ствола скважины, выбранного для отклонения. В соответствии с некоторыми вариантами осуществления изобретения, местоположение для отклонения может быть ранее обработанной интересующей зоной, которая в этом примере является целевой зоной 40а.

Отклонение текучей среды из ствола скважины 12 в подземную формацию или отклонение текучей среды из подземной формации в ствол скважины называется здесь стадией отклонения. В некоторых вариантах осуществления отклоняющий агент может быть закачан в перфорации обсадной колонны 14 для изолирования перфораций. В некоторых вариантах осуществления отклоняющий агент может быть закачан через перфорации и в простимулированную зону подземной формации. В вариантах осуществления, выполненных в необсаженных скважинах, отклоняющий агент может быть закачан непосредственно из насосно-компрессорной трубы через компоновку 30 в целевую зону в подземной формации. В качестве альтернативы, отклоняющий агент может также быть введен в кольцеобразный зазор, образованный между стволом скважины и насосно-компрессорной трубой. Отклоняющий агент предпочтительно является подходящим для действия в качестве отклоняющего агента в формации или перфорациях. В некоторых вариантах осуществления отклоняющий агент может быть текучей средой, который содержит волокна.

Известные способы для включения волокон в обрабатывающую текучую среду и подходящие волокна раскрыты в патенте США № 5501275, который полностью включен в данное описание путем ссылки. В некоторых вариантах осуществления отклоняющий агент может содержать разлагающиеся материалы. Известные составы и способы для использования суспензии, содержащей разлагающийся материал для отклонения, раскрыты в заявке на патент США № 11/294,983, опубликованной как заявка на патент США № 2006/0113077, который полностью включен в данное описание путем ссылки.

Один или несколько параметров могут быть проконтролированы в скважине 10 для определения или подтверждения размещения отклоняющего агента. Как только области целевого интервала (поровые просветы, естественные и созданные разрывы и пустоты, и так далее) закупорены отклоняющим агентом, давление обычно возрастает. Так, например, во время закачивания отклоняющего агента могут контролироваться наземное или забойное давление (с помощью датчиков компоновки 30, например) на предмет любого изменения давления по мере контакта отклоняющего агента с формацией, поскольку изменение давления может быть характерным для размещения отклоняющего агента. Растворяющая способность разлагающегося отклоняющего агента, если используется, предпочтительно калибруется для последующих стадий обработки для обеспечения отклонения от интервала, в котором он был размещен, на протяжении всех стадий обработки.

Показанный на фиг. 3 способ 150 может быть использован для обработки множества целевых интересующих зон. В соответствии со способом 150, гидравлическое сообщение устанавливается между стволом скважины и целевыми интересующими зонами на стадии 154. Затем, насосно-компрессорная труба размещается на стадии 158 в скважине; и, последовательно, скважинная система контроля обработки размещается в скважине 10 на стадии 162.

В соответствии со способом 150 начинается последовательность обработки зон, по одной за раз. В соответствии с последовательностью, начинается обработка следующей целевой зоны на стадии 166. Обработка контролируется и модифицируется на основании одного или более контролируемых скважинных параметров на стадии 170. Мониторинг и модификация обработки продолжаются до тех пор, пока не будет определено на стадии 174, что обработка текущей целевой зоны завершена. При возникновении этого, производится определение на стадии 178: имеются ли еще целевые интересующие зоны для обработки. Если так, то отклоняющий агент вводится в конкретный интервал скважины на стадии 182. Например, в соответствии с некоторыми вариантами осуществления изобретения, отклоняющий агент может быть введен в последнюю обработанную зону. Как только определяется на стадии 186, что размещение отклоняющего агента завершено, то управление переходит к стадии 166 для обработки следующей целевой зоны.

Другие варианты осуществления являются возможными и находятся в объеме приложенной формулы изобретения. Например, в соответствии с другими вариантами осуществления изобретения, обработка и перфорирования могут осуществляться без использования насосно-компрессорной трубы. В связи с этим, другая обрабатывающая техника в соответствии с вариантами осуществления изобретения включает в себя установление гидравлического сообщения между скважиной и целевыми зонами для обработки, где скважина пересекает одну или более подземных формаций, в которых имеются более одной целевой зоны для обработки.

В другом варианте осуществления данный способ может быть использован для стимуляции ранее стимулированной скважины. В этом случае, обработка может быть начата с повторной стимуляции существующих зон или с отклонения от существующих зон и затем перфорирования новых зон для стимуляции.

Далее устройство или система для измерения или контроля размещаются в скважине, как описано выше. В связи с этим, может быть использован контроль гидравлического разрыва в ответвленных скважинах или, в качестве альтернативы, устройство или система для измерения или контроля, по меньшей мере, одного параметра, характерного для обработки, может быть размещена в скважине. Например, устройство для измерения или контролирования может быть размещено в скважине, как, например, описанное в патенте США № 6758271 и патенте США № 6751556, каждый из которых полностью включен сюда путем ссылки. Другие измерительные или контролирующие устройства, подходящие для использования в вариантах осуществления изобретения, включают в себя известные устройства для определения скважинных параметров, такие как измерители забойного давления или измерители забойной температуры.

Далее, обработка целевой зоны в подземной формации начинается с закачивания обрабатывающей текучей среды в скважину. Во время этой обработки, по меньшей мере, один параметр, характерный для обработки, контролируется и обрабатывающая операция модифицируется на основании проконтролированного параметра(ов).

После обработки конкретной целевой зоны в скважину закачивается отклоняющий агент и размещается в месте, желательном для отклонения. В некоторых вариантах осуществления изобретения местоположение для отклонения предпочтительно является обработанной целевой интересующей зоной. Отклонение текучей среды из скважины в подземную формацию или отклонение текучей среды из подземной формации в скважину понимается здесь как стадия отклонения. В некоторых вариантах осуществления отклоняющий агент может быть закачан в перфорации в обсадной колонне для изолирования перфораций. В некоторых вариантах осуществления отклоняющий агент может быть закачан через перфорации в простимулированные зоны подземной формации. В некоторых других вариантах осуществления отклоняющий агент может быть размещен непосредственно в скважине. Отклоняющий агент предпочтительно является подходящим для действия в качестве отклоняющего агента в формации или перфорациях. В некоторых вариантах осуществления отклоняющий агент может быть текучей средой, который содержит волокна. В некоторых вариантах осуществления отклоняющий агент может включать в себя разлагающийся материал.

Операция размещения отклоняющего агента может контролироваться с помощью одного или нескольких измеренных параметров для определения или подтверждения размещения агента.

В некоторых вариантах осуществления, измеренный параметр или параметры могут контролироваться для одной или нескольких обработанных целевых зон или стадии отклонения на всем протяжении обработки. Такой контроль является полезным на тот случай, если стадия отклонения снизит производительность, поскольку оно будет являться сигналом о необходимости дополнительной стадии отклонения или повторного нагнетания дополнительного отклоняющего агента в существующей стадии отклонения.

В некоторых вариантах осуществления изобретения, закачивание обрабатывающей текучей среды повторяется для более чем одной целевой зоны. В дополнительных вариантах осуществлени