Ламинированная сульфированным блок-сополимером мембрана для вентиляции с рекуперацией энергии

Иллюстрации

Показать все

Изобретение относится к ламинированной мембране для использования в центральном блоке вентиляционной системы с рекуперацией энергии для обмена теплом и паром между двумя независимыми входящим и выходящим воздушными потоками без их перемешивания. Ламинированная мембрана имеет волокнистую микропористую поддерживающую подложку и пленку, ламинированную на микропористую поддерживающую подложку. В состав пленки входит сульфированный блок-сополимер, имеющий по меньшей мере один концевой блок А и по меньшей мере один внутренний блок B, в котором каждый блок А, по существу, не содержит сульфокислотных или сульфоэфирных функциональных групп, и каждый блок B представляет собой полимерный блок, содержащий от приблизительно 10 до приблизительно 100 мол.% сульфокислотных или сульфоэфирных функциональных групп в зависимости от числа мономерных звеньев. Описана также система рекуперации энергии, содержащая множество ламинированных мембран, образованных микропористой волокнистой поддерживающей подложкой и пленкой, в состав которой входит сульфированный блок-сополимер, ламинированный на микропористой поддерживающей подложке. Технический результат - улучшенные значения скорости переноса водяного пара, в частности выше 96%. 2 н. и 15 з.п. ф-лы, 7 ил., 2 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к мембране для использования в центральном блоке вентиляционной системы с рекуперацией энергии. В частности, настоящее изобретение относится к мембране, изготовленной из микропористой подложки, ламинированной сульфированным блок-сополимером, имеющим по меньшей мере два концевых полимерных блока, которые содержат мало или вообще не содержат сульфокислотную или сульфонатную функциональность, и по меньшей мере один внутренний полимерный блок, который содержит эффективное количество сульфокислотной или сульфонатной функциональности. Настоящее изобретение также относится к блоку вентиляционной системы с рекуперацией энергии, имеющему центральный блок, который использует такие мембраны.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Хорошо известно, что системы отопления и охлаждения используются для управления температурой зданий и различного жилья. Зачастую свежий воздух забирается снаружи здания или дома, а отработанный в помещении воздух возвращается наружу. Как правило, на такое охлаждение и отопление расходуется большое количество энергии. Одним из способов уменьшения стоимости этого расхода энергии является обмен некоторым количеством тепла и влаги между воздушными потоками по мере их входа в структуру и выхода из структуры.

Соответственно, такие системы для обмена тепла и влагой между воздушными потоками стали известны как вентиляционные системы с рекуперацией энергии (energy recovery ventilation, ERV). ERV включает в себя обмен явным и скрытым теплом между выходящим отработанным внутренним воздухом и свежим наружным воздухом. Основанием для такого обмена является то, что поток отработанного воздуха и входящий воздушный поток будут обладать различным давлением водяного пара и, кроме того, будут иметь различающиеся температуры. Например, летом, если входящий воздух является теплым и влажным, энергия рекуперируется путем обмена как явным теплом, так и скрытым теплом с прохладным отработанным воздухом низкой влажности. Альтернативно, в зимнее время, если наружный воздух холодный и сухой, энергия рекуперируется путем обмена между сухим холодным воздухом и теплым, более влажным отработанным воздухом.

Системы ERV обычно используются в сочетании с системой отопления и/или охлаждения и состоят из устройства, имеющего центральный блок ERV. Центральный блок, как правило, включает в себя пакет различных мембран, разделенных некоторым типом барьера. Потоки входящего и выходящего воздуха подаются к центральному блоку и проходят мимо друг друга без смешения с каждой стороны уложенных в пакет мембран.

Обмен явным теплом, как правило, проще осуществить, так как тонкий барьерный слой может передавать тепло довольно легко. С другой стороны, передача скрытого тепла (теплоты фазового перехода) зависит от разности влажности воздушных потоков. Соответственно, существует необходимость в системе, которая позволяла бы эффективный обмен как явным, так и скрытым теплом различных входящих и выходящих потоков воздуха.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

На скрытое тепло в значительной степени влияет изменение влажности входящего и выходящего воздуха. Соответственно, передача скрытого тепла становится в большой степени функцией способности мембраны ERV передавать водяной пар между двумя воздушными потоками.

То, что было найдено и раскрыто в настоящем документе, является системой ERV для улучшенного обмена явным и скрытым теплом между входящим и выходящим потоками воздуха. Это было достигнуто с помощью мембраны, описанной в настоящем документе, состоящей из микропористой подложки с ламинатом, имеющим сульфированный блок-сополимер. Сульфированный блок-сополимер имеет высокие скорости переноса водяного пара, способствуя тем самым эффективному обмену скрытым теплом.

В некоторых вариантах осуществления в настоящем документе раскрыта многослойная мембрана для центрального блока системы рекуперации энергии для обмена теплом и влагой между воздушными потоками, проходящими через систему, включающая в себя:

волокнистую микропористую поддерживающую подложку,

сульфированный блок-сополимер, имеющий по меньшей мере один концевой блок А и по меньшей мере один внутренний блок B, в котором каждый блок А по существу не содержит сульфокислотных или сульфоэфирных функциональных групп, и каждый блок B представляет собой полимерный блок, содержащий от приблизительно 10% моль до приблизительно 100% моль сульфокислотных или сульфоэфирных функциональных групп в зависимости от числа мономерных звеньев,

в которой сульфированный блок-сополимер ламинирован на микропористой поддерживающей подложке.

Кроме того, мембрана может включать в себя распорный элемент, помещенный между мембраной и второй мембраной, так что распорный элемент и мембрана образуют один слой в центральном блоке ERV. В других вариантах осуществления центральный блок имеет множество указанных слоев, сложенных друг на друга в виде пакета.

В других вариантах осуществления микропористая подложка является волокнистым тканым или нетканым материалом. В дополнительных вариантах осуществления микропористая подложка выбирается из группы, состоящей из углерода, стекловолокна, полиэфира, полиэтилена, полиэтилентерефталата, целлюлозы, нитрата целлюлозы, ацетата целлюлозы, нейлона и политетрафторэтилена.

В некоторых вариантах осуществления сульфированный блок-сополимер наносится горячим ламинированием, ламинированием из растворителя или клеевым ламинированием на микропористую поддерживающую подложку. Кроме того, ламинатный сульфированный блок-сополимер может быть смешан с дополнительными гидрогенизированными и негидрогенизированными термопластичными эластомерными стирольными блок-сополимерами.

В других вариантах осуществления каждый блок А включает в себя один или несколько сегментов, выбранных из полимеризованных (i) пара-замещенных стирольных мономеров, (ii) этилена, (iii) альфа-олефинов, содержащих от 3 до 18 атомов углерода; (iv) 1,3-циклодиеновых мономеров, (v) мономеров сопряженных диенов, имеющих содержание винила до гидрогенизации менее 35% моль, (vi) акриловых эфиров, (vii) метакриловых эфиров и (viii) их смесей.

В других вариантах осуществления каждый блок B включает в себя сегменты одного или нескольких виниловых ароматических мономеров, выбранных из полимеризованных (i) незамещенных стирольных мономеров, (ii) орто-замещенных стирольных мономеров, (iii) мета-замещенных стирольных мономеров, (iv) альфа-метилстирола, (v) 1,1-дифенилэтилена, (vi) 1,2-дифенилэтилена и (vii) их смесей.

В других вариантах осуществления сульфированный блок-сополимер имеет общую конфигурацию A-B-A, A-B-A-B-A, (A-B-A)nX, (A-B)nX, A-D-B-D-A, A-B-D-B-A, (A-D-B)nX, (A-B-D)nX или смесь этих конфигураций, где n является целым числом от 2 до примерно 30, а Х представляет собой остаток связующего агента, и в котором каждый блок D представляет собой полимерный блок, устойчивый к сульфированию, а множество блоков А, блоков B, или блоков D могут быть одинаковыми или различными.

В других вариантах осуществления каждый блок D выбран из группы, состоящей из (i) полимеризованного или сополимеризованного сопряженного диена, выбранного из изопрена и 1,3-бутадиена, имеющего содержание винила до гидрогенизации от 20% моль до 80% моль, (ii) полимеризованного акрилатного мономера, (iii) силиконового полимера, (iv) полимеризованного изобутилена и (v) их смесей, где любые сегменты, содержащие полимеризованный 1,3-бутадиен или изопрен, впоследствии гидрогенизированы.

В других вариантах осуществления в настоящем документе раскрыта система рекуперации энергии, имеющая центральный блок, позволяющий обмен теплом и влагой между, по меньшей мере, двумя потоками воздуха, и включающий в себя:

множество распорных элементов, расположенных в сложенной пакетной конфигурации, формирующих воздушные проходы, сконфигурированные для пропускания через них по меньшей мере двух независимых потоков воздуха,

множество ламинированных мембран со вставленными между ними распорными элементами, состоящих из ламинированной микропористой волокнистой поддерживающей подложки, слоя ламината, содержащего сульфированный блок-сополимер, имеющий по меньшей мере один концевой блок А и по меньшей мере один внутренний блок B, в котором каждый блок А по существу не содержит сульфокислотных или сульфоэфирных функциональных групп, и каждый блок B представляет собой полимерный блок, содержащий от приблизительно 10% моль до приблизительно 100% моль сульфокислотных или сульфоэфирных функциональных групп в зависимости от числа мономерных звеньев блока B.

В других вариантах осуществления воздушные проходы состоят из двух наборов воздушных проходов, где первый набор расположен в первом направлении, а второй набор расположен во втором направлении, отличном от указанного первого направления, позволяя тем самым по меньшей мере двум независимым потокам воздуха течь перекрестно по отношению друг к другу.

В других вариантах осуществления распорный элемент выполнен из металла, стекловолокна или пластика. В дополнение к этому микропористая подложка может быть волокнистым тканым или нетканым материалом. Кроме того, микропористая подложка выбирается из группы, состоящей из углерода, стекловолокна, полиэфира, полиэтилена, полиэтилентерефталата, целлюлозы, нитрата целлюлозы, ацетата целлюлозы, нейлона и политетрафторэтилена. В других вариантах осуществления сульфированный блок-сополимер наносится горячим ламинированием, ламинированием из растворителя или клеевым ламинированием на микропористую поддерживающую подложку.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 иллюстрирует вид в перспективе центрального блока ERV.

Фиг.2 иллюстрирует воздухообменные мембраны с распорным элементом.

Фиг.3 иллюстрирует распорные элементы в перпендикулярной конфигурации.

Фиг.4 иллюстрирует пакетное расположение распорных элементов.

Фиг.5 иллюстрирует распорные элементы, имеющие удлиненные ребра.

Фиг.6 иллюстрирует распорные элементы, изготовленные в виде тарелок.

Фиг.7 иллюстрирует роликовый узел.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В настоящем документе дано подробное описание вариантов осуществления настоящего изобретения, однако следует понимать, что описанные варианты осуществления являются всего лишь примерами, и что изобретение может быть воплощено в различных и альтернативных формах раскрытых вариантов осуществления. Таким образом, конкретные структурные и функциональные детали, которые рассматриваются в раскрытых вариантах осуществления, не должны интерпретироваться как ограничивающие, а только в качестве основы для формулы изобретения и как представительная основа для обучения специалистов в данной области техники разнообразным использованиям настоящего изобретения.

Все публикации, патентные заявки и патенты, упомянутые в настоящем документе, включены посредством ссылки в полном объеме. В случае конфликта настоящее описание, включая определения, имеет преимущество.

Если не указано иное, все технические термины, используемые в настоящем документе, имеют обычные значения, понятные специалистам в данной области техники.

Более того, если специально не указано иное, следующие выражения, используемые в настоящем документе, понимаются как имеющие следующие значения.

Если специально не указано иное, термин "покрытый" или "покрытие" означает наложение или прикрепление полимера в растворе или жидкой форме к подложке или другому материалу.

В отличие от термина "покрытый", если специально не указано иное, термин "ламинирование" означает наложение или прикрепление литой полимерной мембраны или полимерной пленки к подложке или другому материалу.

В настоящем документе описана улучшенная система ERV для обмена явным и скрытым теплом между входящим потоком воздуха и выходящим потоком воздуха. Системы ERV используют центральный блок, имеющий пакет из нескольких влагопроницаемых мембран, разделенных распорными элементами. Как входящие потоки воздуха, так и выходящие потоки воздуха подаются к центральному блоку ERV. В центральном блоке воздушные потоки разделены мембранами центрального блока, так что они текут мимо друг друга. Таким образом происходит обмен теплом и влагой между двумя потоками воздуха.

Центральные блоки вентиляционной системы с рекуперацией энергии

Один вариант осуществления центрального блока 1 ERV показан на Фиг.1. Как показано на этом чертеже, блок имеет корпус, состоящий из верхней крышки 2 и нижней крышки 3 с боковыми опорами 4. В корпусе имеется обменный элемент 5, состоящий из множества воздухообменных мембран, разделенных множеством распорных элементов. В показанном варианте осуществления поток входящего свежего воздуха показан стрелкой 8, а поток выходящего воздуха показан стрелкой 9.

На Фиг.2 показаны воздухообменные мембраны 6 с расположенными между ними распорными элементами 7. Распорные элементы 7 сконфигурированы так, чтобы обеспечить каналы для воздушного потока между мембранами 6. Размер таких каналов может быть таким, чтобы обеспечить воздушный зазор от приблизительно 5 мм до 30 мм. В варианте осуществления, показанном на Фиг.2, это делается посредством придания распорным элементам 7 формы с продольными ребрами. Таким образом, гребни распорных элементов образуют продольные отверстия по всей длине распорных элементов в одном направлении, позволяя тем самым потоку течь как выше, так и ниже распорного элемента в зависимости от формы продольных ребер. Такие распорные элементы могут быть сделаны из стекловолокна, алюминия или пластика. Также могут быть использованы другие материалы, которые обеспечивают прочность и поддерживают мембраны разделенными для пропуска и направления воздушного потока. Материал должен быть таким, чтобы ни воздух, ни влага не могли проходить через сами распорные элементы.

В варианте осуществления, показанном на Фиг.3, распорные элементы имеют форму с продольными ребрами и расположены в поперечной конфигурации. В этом примере один набор 7а распорных элементов устроен таким образом, что воздушные каналы проходят в одном продольном направлении, в то время как второй набор 7b распорных элементов устроен таким образом, что воздушные каналы ориентированы во втором продольном направлении, и каждый набор укладывается в пакет попеременно. Соответственно, входящий свежий воздух 8 может проходить через воздушные каналы распорного элемента в одном направлении, в то время как отработанный воздух 9 проходит через воздушные каналы распорного элемента во втором направлении. Кроме того, так как мембраны расположены по обе стороны от распорных элементов 7, обмен теплом и влагой может быть осуществлен через мембрану без смешения различных потоков воздуха. В то время как Фиг.3 иллюстрирует распорные элементы 7а и 7b в разобранном состоянии, Фиг.4 показывает это же расположение распорных элементов в собранном виде, сложенными друг на друга так, как они находились бы в центральном блоке (с мембранами между ними).

Примерные центральные блоки ERV, имеющие ребристые распорные элементы, продаются, например, компанией Innergytech в их энтальпийных теплообменных блоках. Дополнительно к этому, например, патент США № 6536514 описывает ребристый распорный элемент с влагопроницаемыми мембранами.

В то время как на Фиг.2-4 показаны ребристые распорные элементы, следует понимать, что могут быть использованы и другие типы распорных элементов. Например, как показано на Фиг.5, вместо ребристой формы распорные элементы могут быть сделаны из одиночных удлиненных ребер 10, приклеенных к поверхности мембран 11 и проходящих по всей длине центрального блока, при этом каждый последующий слой меняет направление ребер, чтобы сформировать перекрестные потоки. В других примерах, как показано на Фиг.6, распорные элементы могут быть сделаны из тарелок 12, которые могут быть проложены между мембранами. Такие тарелки могут иметь внешнюю раму 13 с продольными перегородками 14, расположенными на расстоянии друг от друга. Такие тарелки могут быть изготовлены из стекловолокна, алюминия или пластика. Мембрана 6 помещается между тарелками 12, а сами тарелки 12 складываются друг на друга, при этом каждая последующая тарелка меняет направление перегородок, чтобы сформировать перекрестные потоки. Например, на Фиг.6 верхняя тарелка имеет одно направление, в то время как нижняя тарелка имеет второе направление, которое в наглядном примере перпендикулярно первому. Перегородки 14 образуют воздушные каналы 15, которые направляют потоки воздуха, протекающего через блок ERV. Отверстия для входа воздушного потока в воздушные каналы 15 располагаются на боковой стороне внешней рамы 13.

Распорные элементы, такие, как показаны на Фиг.2-6, могут иметь конфигурацию, отличающуюся от продольной, например, они могут быть диагональными, криволинейными, или иметь другую форму. Путем изменения формы перегородок можно увеличить время нахождения воздушных потоков в центральном блоке ERV, улучшая таким образом обмен теплом и влагой. Кроме того, такие распорные элементы могут быть уложены так, что входящий и выходящий потоки воздуха пересекаются в любом направлении, например в поперечном направлении, под прямым углом, или в любой непараллельной конфигурации. Кроме того, параллельные конфигурации также могут быть использованы, если может быть предотвращено перемешивание газов на входе и выходе из блока.

Мембраны для вентиляции с рекуперацией энергии

Распорные элементы предназначены для того, чтобы позволять поверхностям мембраны контактировать с входящим и выходящим потоками воздуха, текущими в непараллельном направлении по одному с каждой стороны мембраны без их смешения. Мембраны позволяют перенос влаги между воздушными потоками, создавая тем самым ощутимый теплообмен. Соответственно, возможность более эффективно передавать влагу очень сильно влияет на производительность и эффективность блока ERV. Как описано в настоящем документе, была найдена поразительно улучшенная мембрана для ERV, имеющая полимерную пленку, ламинированную на подложке, для улучшения переноса водяного пара между входящим и выходящим потоками газа.

a. Подложка мембраны

Подложка используется с мембраной для обеспечения механической прочности при одновременном дополнительном облегчении переноса водяного пара. Соответственно, она должна быть изготовлена из пористого материала, чтобы влага проходила через нее с минимальным возможным сопротивлением, но при этом она также должна обеспечивать структурную целостность. В качестве пористой подложки могут использоваться подложки, известные и используемые в данной области техники, многие из которых являются коммерчески доступными.

Соответственно, подложка для использования с мембраной, описанной в настоящем документе, включает пористые целлюлозные волокнистые материалы. Также могут быть использованы микропористые пленки. Материалы включают в себя, например, ткани, полимерные пленки и волокна, а также целлюлозные материалы (такие как бумага). Подложка может состоять из натуральных и/или синтетических волокон. Ткани включают в себя тканые материалы, нетканые материалы, трикотажные материалы и материалы с перекрестным усилением.

Кроме того, подложка может состоять из волокон, стеклянных нитей, стекловолокна, нержавеющих металлических волокон (таких как никелевые волокна), а также из углеродных волокон. Синтетические волокна включают полиолефины, полиэтилен, полипропилен и полиэфиры.

Иллюстративные подложки также включают в себя поливинилиденфторид, политетрафторэтилен, нейлон, полиэфирсульфон, полипропилен, полиамид, целлюлозу, нитрат целлюлозы, ацетат целлюлозы, сополимер нитрата/ацетата целлюлозы и политетрафторэтилена, полиэтилентерефталат (PET) и полиэфирэфиркетон (PEEK).

Добавки или покрытия (кроме покрытия сульфированным полимером) могут быть добавлены к подложке для улучшения других свойств. Такие добавки не должны оказывать негативное влияние на производительность и эффективность блока ERV или вводить какие-либо вредные компоненты в воздушные потоки. Одним из видов добавок являются антипирены, которые могут быть использованы для ингибирования или предотвращения пожара или распространения огня. Например, могут быть использованы негалогенные антипирены, а также фосфорсодержащие соединения. Галогенные антипирены могут включать в себя бромсодержащие антипирены. Могут быть использованы также другие полезные антипирены, известные в данной области техники.

Также могут применяться биоциды, в том числе фунгициды, микробициды и бактерициды, для предотвращения роста плесневых грибов, плесени, грибков, бактерий, вирусов и паразитов, а также других биологических организмов, которые могут быть вредными для людей или снижать эффективность блока ERV.

Другие добавки могут быть добавлены к подложке, чтобы увеличить ее прочность, пористость и время жизни, либо уменьшить запах, такие как антиоксиданты, двуокись кремния, окись алюминия и цеолиты.

b. Полимер мембраны

Мембрана для использования в центральном блоке ERV, описанная в настоящем документе, представляет собой полимерный пленочный слой, ламинированный на пористую подложку. Как описано в настоящем документе, полимерная пленка состоит из или включает в себя сульфированный блок-сополимер. Неожиданно было обнаружено, что, когда сульфированный блок-сополимер, описанный в настоящем документе, ламинируется на пористой подложке, перенос водяного пара, и следовательно, обмен скрытым теплом значительно улучшаются. В некоторых вариантах осуществления сульфированные блок-сополимеры, которые используются в слое полимерной пленки, включают в себя сульфированные блок-сополимеры, описанные в патентной заявке США № 2007/0021569 (Уиллис и соавт.), описание которой включено в настоящий документ посредством ссылки в полном объеме. Кроме того, сульфированные блок-сополимеры, которые включают в себя сульфированные блок-сополимеры, описанные в патентной заявке США № 2007/0021569, могут быть получены в соответствии со способом, описанным в патентной заявке WO 2008/089332 (Дадо и соавт.), которая включена в настоящий документ посредством ссылки в полном объеме.

1. Сульфированные блок-сополимеры

Блок-сополимеры, необходимые для приготовления сульфированных блок-сополимеров, могут быть приготовлены посредством ряда различных процессов, включая анионную полимеризацию, замедленную анионную полимеризацию, катионную полимеризацию, полимеризацию Циглера-Натта и полимеризацию по механизму живых цепей (живую полимеризацию) или полимеризацию, инициированную стабильным свободным радикалом. Анионная полимеризация более подробно описана ниже и в указанных документах. Процессы замедленной анионной полимеризации для получения стирольных блок-сополимеров описаны, например, в патенте США № 6391981, патенте США № 6455651 и патенте США № 6492469, каждый из которых включен в настоящий документ посредством ссылки. Процессы катионной полимеризации для получения блок-сополимеров описаны, например, в патенте США № 6515083 и патенте США № 4946899, каждый из которых включен в настоящий документ посредством ссылки.

Обзор процессов живой полимеризации Циглера-Натта, которые могут быть использованы для получения блок-сополимеров, был сделан недавно в статье G.W. Coates, P.D. Hustad, S. Reinartz, Angew. Chem. Int. Ed., 41, 2236-2257 (2002); последующая публикация H. Zhang, K. Nomura, J. Am. Chem. Soc., Comm., 2005 описывает способы живой полимеризации Циглера-Натта для получения конкретно стирольных блок-сополимеров. Обширный обзор работ в области химии живой радикальной полимеризации с участием свободного нитроксильного радикала приведен в публикации C.J. Hawker, A.W. Bosman, E. Harth, Chem. Rev., 101(12), 3661-3688 (2001). Как отмечается в этом обзоре, стирольные блок-сополимеры могут быть синтезированы с помощью способа живой полимеризации или способа полимеризации, инициированной стабильным свободным радикалом. Способы радикальной полимеризации с участием свободного нитроксильного радикала при подготовке предшествующих полимеров являются предпочтительными способами живой цепной полимеризации или полимеризации, инициированной стабильным свободным радикалом.

2. Структура полимера

Один аспект изобретения относится к полимерной структуре сульфированных блок-сополимеров. В одном варианте осуществления нейтрализованные блок-сополимеры имеют по меньшей мере два концевых или внешних полимерных блока А и по меньшей мере один насыщенный внутренний полимерный блок B, в котором каждый блок А представляет собой полимерный блок, устойчивый к сульфированию, а каждый блок B представляет собой полимерный блок, который подвержен сульфированию.

Предпочтительные структуры блок-сополимера имеют общую конфигурацию A-B-A, (A-B)n(A), (A-B-A)n, (A-B-A)nX, (A-B)nX, A-B-D-B-A, A-D-B-D-A, (A-D-B)n(A), (A-B-D)n(A), (A-B-D)nX, (A-D-B)nX или смесь этих конфигураций, где n является целым числом от 2 до примерно 30, Х представляет собой остаток связующего агента, а блоки A, B и D определены ниже.

Наиболее предпочтительными структурами являются линейные структуры, такие как A-B-A, (A-B)2X, A-B-D-B-A, (A-B-D)2X, A-D-B-D-A и (A-D-B)2X, и радиальные структуры, такие как (A-B)nX и (A-D-B)nX, где n является целым числом от 3 до 6. Такие блок-сополимеры, как правило, получают путем анионной полимеризации, полимеризации, инициированной стабильным свободным радикалом, катионной полимеризации или полимеризации Циглера-Натта. Предпочтительно блок-сополимеры получают путем анионной полимеризации. Специалистам в данной области техники будет понятно, что в любой полимеризации полимерная смесь в дополнение к любым линейным и/или радиальным полимерам будет включать в себя определенное количество диблок-сополимера A-B. Установлено, что соответствующие количества не оказывают вредного воздействия.

Блоки А являются одним или несколькими сегментами, выбранными из полимеризованных (i) пара-замещенных стирольных мономеров, (ii) этилена, (iii) альфа-олефинов, содержащих от 3 до 18 атомов углерода; (iv) 1,3-циклодиеновых мономеров, (v) мономеров сопряженных диенов, имеющих содержание винила до гидрогенизации менее 35% моль, (vi) акриловых эфиров, (vii) метакриловых эфиров и (viii) их смесей. Если сегменты А представляют собой полимеры 1,3-циклодиена или сопряженных диенов, сегменты будут гидрогенизированы после полимеризации блок-сополимера и перед сульфированием блок-сополимера.

Пара-замещенные стирольные мономеры выбираются из пара-метилстирола, пара-этилстирола, пара-н-пропилстирола, пара-изо- пропилстирола, пара-н-бутилстирола, пара-втор-бутилстирола, пара-изо-бутилстирола, пара-трет-бутилстирола, изомеров пара-децилстирола, изомеров пара-додецилстирола и смеси указанных выше мономеров. Предпочтительными пара-замещенными стирольными мономерами являются пара-трет-бутилстирол и пара-метилстирол, при этом пара-трет-бутилстирол является наиболее предпочтительным. Мономеры могут быть смесями мономеров, в зависимости от конкретного источника. Желательно, чтобы общая чистота пара-замещенных стирольных мономеров была по меньшей мере 90% масс., предпочтительно по меньшей мере 95% масс., и еще более предпочтительно по меньшей мере 98% масс. желаемого пара-замещенного стирольного мономера.

Когда блоки А являются этиленовыми полимерными сегментами, может быть полезным полимеризовать этилен с помощью процесса Циглера-Натта, как описано в цитированной выше обзорной статье G.W. Coates et al., которая включена в настоящий документ посредством ссылки. Предпочтительно получать этиленовые блоки с использованием методов анионной полимеризации, как описано в патенте США № 3450795, включенном в настоящий документ посредством ссылки. Значение молекулярной массы блока для таких этиленовых блоков обычно составляет от приблизительно 1000 до приблизительно 60000.

Когда блоки А являются полимерами альфа-олефинов, содержащих от 3 до 18 атомов углерода, такие полимеры получают с помощью процесса Циглера-Натта, как описано в цитированной выше обзорной статье G.W. Coates et al. Предпочтительными альфа-олефинами являются пропилен, бутилен, гексан или октан, при этом пропилен является наиболее предпочтительным. Значение молекулярной массы блока для каждого из таких альфа-олефиновых блоков обычно составляет от приблизительно 1000 до приблизительно 60000.

Когда блоки А являются гидрогенизированными полимерами 1,3-циклодиеновых мономеров, такие мономеры выбираются из группы, состоящей из 1,3-циклогексадиена, 1,3-циклогептадиена и 1,3-циклооктадиена. Предпочтительно циклодиеновый мономер является 1,3-циклогексадиеном. Полимеризация таких циклодиеновых мономеров раскрыта в патенте США № 6699941, который включен в настоящий документ посредством ссылки. При использовании циклодиеновых мономеров будет необходимо гидрогенизировать блоки А, так как негидрогенизированные полимеризованные циклодиеновые блоки восприимчивы к сульфированию. Соответственно, после синтеза блока А с 1,3-циклодиеновыми мономерами блок-сополимер будет гидрогенизирован.

Когда блоки А являются гидрогенизированными полимерами сопряженных ациклических диенов, имеющих содержание винила до гидрогенизации менее 35% моль, предпочтительно, чтобы сопряженный диен являлся 1,3-бутадиеном. Необходимо, чтобы содержание винила в полимере до гидрогенизации было менее 35% моль, предпочтительно менее 30% моль В некоторых вариантах осуществления содержание винила в полимере до гидрогенизации будет меньше, чем 25% моль, еще более предпочтительно менее 20% моль, и даже меньше, чем 15% моль, при этом одним из более выгодных значений содержания винилового полимера до гидрогенизации является менее 10% моль Таким образом, блоки А будут иметь кристаллическую структуру, похожую на кристаллическую структуру полиэтилена. Такие структуры блока А описаны в патенте США № 3670054 и в патенте США № 4107236, каждый из которых включен в настоящий документ посредством ссылки.

Блоки А также могут быть полимерными сегментами акриловых эфиров или метакриловых эфиров. Такие полимерные блоки могут быть получены в соответствии со способами, описанными в патенте США № 6767976, который включен в настоящий документ посредством ссылки. Конкретные примеры метакрилового эфира включают сложные эфиры первичного спирта и метакриловой кислоты, такие как метилметакрилат, этилметакрилат, пропилметакрилат, н-бутилметакрилат, изобутилметакрилат, гексилметакрилат, 2-этилгексилметакрилат, додецилметакрилат, лаурилметакрилат, метоксиэтилметакрилат, диметиламиноэтилметакрилат, диэтиламиноэтилметакрилат, глицидилметакрилат, триметоксисилилпропилметакрилат, трифторметилметакрилат, трифторэтилметакрилат; сложные эфиры вторичного спирта и метакриловой кислоты, такие как изопропилметакрилат, циклогексилметакрилат и изоборнилметакрилат; и сложные эфиры третичного спирта и метакриловой кислоты, такие как трет-бутилметакрилат. Конкретные примеры акриловых эфиров включают сложные эфиры первичного спирта и акриловой кислоты, такие как метилакрилат, этилакрилат, пропилакрилат, н-бутилакрилат, изобутилакрилат, гексилакрилат, 2-этилгексилакрилат, додецилакрилат, лаурилакрилат, метоксиэтилакрилат, диметиламиноэтилакрилат, диэтиламиноэтилакрилат, глицидилакрилат, триметоксисилилпропилакрилат, трифторметилакрилат, трифторэтилакрилат; сложные эфиры вторичного спирта и акриловой кислоты, такие как изопропилакрилат, циклогексилакрилат и изоборнилакрилат; и сложные эфиры третичного спирта и акриловой кислоты, такие как трет-бутилакрилат. При необходимости, в качестве исходного материала или исходных материалов вместе с (мет)акриловым эфиром могут быть использованы один или несколько других анионных полимеризуемых мономеров. Примеры анионного полимеризуемого мономера, который может быть необязательно использован, включают в себя метакриловые или акриловые мономеры, такие как триметилсилилметакрилат, N-,N-диметилметакриламид, N,N-диизопропилметакриламид, N,N-диэтилметакриламид, N,N-метилэтилметакриламид, N,N-ди-трет-бутилметакриламид, триметилсилилакрилат, N,N-диметилакриламид, N,N-диизопропилакриламид, N,N-метилэтилакриламид и N,N-ди-трет-бутилакриламид. Более того, могут быть использованы многофункциональные анионные полимеризуемые мономеры, имеющие в своей молекуле две или более метакриловых или акриловых структуры, такие как структуры метакрилового эфира или структуры акрилового эфира (например, этиленгликольдиакрилат, этиленгликольдиметакрилат, 1,4-бутандиолдиакрилат, 1,4-бутандиолдиметакрилат, 1,6-гександиолдиакрилат, 1,6-гександиолдиметакрилат, триметилолпропантриакрилат и триметилолпропантриметакрилат).

В процессах полимеризации, используемых для получения полимерных блоков акрилового или метакрилового эфира, может быть использован только один из мономеров, например, (мет)акриловый эфир, либо два или более из них могут быть использованы в комбинации. Когда два или более мономеров используются в комбинации, любая форма сополимеризации, выбранная из случайной (статистической), блок-сополимеризации, конической блок-сополимеризации и т.п. форм сополимеризации, может быть осуществлена путем выбора условий, таких как комбинация мономеров и времена добавления мономеров к полимеризационной системе (например, одновременное добавление двух или более мономеров или раздельные добавления с заданным интервалом времени).

Блоки А могут содержать до 15% моль виниловых ароматических мономеров, таких как те, что присутствуют в блоках B, которые далее рассматриваются более подробно. В некоторых вариантах осуществления блоки А могут содержать до 10% моль, предпочтительно они будут содержать только до 5% моль, и особенно предпочтительно только до 2% моль виниловых ароматических мономеров, как упомянуто для блоков B. Тем не менее, в наиболее предпочтительных вариантах осуществления блоки А не будут содержать виниловых мономеров, присутствующих в блоках B. Уровень сульфирования в блоках А может составлять от 0% моль до 15% моль от общего количества мономеров в блоке А. Специалистам в данной области техники будет понятно, что подходящие диапазоны включают любую комбинацию указанных молярных процентов, даже если определенная комбинация и диапазон здесь не перечислены.

Блоки B в каждом случае включают в себя сегменты одного или более полимеризованных виниловых ароматических мономеров, выбранных из незамещенного стирольного мономера, орто-замещенных стирольных мономеров, мета-замещенных стирольных мономеров, альфа-метилстирольного мономера, 1,1-дифенилэтиленового мономера, 1,2-дифенилэтиленового мономера и их смесей. В дополнение к мономерам и полимерам, упомянутым выше, блоки B могут также включать в себя полностью или частично гидрогенизированный сополимер такого мономера(-ов) с сопряженным диеном, выбранным из 1,3-бутадиена, изопрена и их смесей, имеющий содержание винила от 20% моль до 80% моль Эти сополимеры с полностью или частично гидрогенизированными диенами могут быть статистическими сополимерами, коническими сополимерами, блок-сополимерами или сополимерами с управляемым распределением. В одном предпочтительном варианте осуществления блоки B выборочно полностью или частично гидрогенизированы и включают в себя сополимер сопряженных диенов и виниловых ароматических мономеров, упомянутых в данном пункте. В другом предпочтительном варианте осуществления блоки B являются блоками незамещенного стирольного мономера, которые насыщены в силу природы мономера и не требуют дополнительного этапа гидрогенизации. Блоки B, имеющие управляемую структуру распределения, описаны в патенте США № 7169848, который включен в настоящий документ посредством ссылки. Патент США № 7169848 также раскрывает приготовление сульфированных блок-сополимеров. Блоки В, включающие в себя стирольный блок, описаны в настоящем документе. В предпочтительном варианте осуществления блоки B получаются из незамещенного стирола и не требуют отдельного этапа гидрогенизации.

В другом аспекте настоящего изобретения блок-сополимер включает в себя по меньшей мере один блок D модификатора, увеличивающего ударную прочность, имеющий температуру стеклования менее 20°C. В одном вари