Система оптической связи

Иллюстрации

Показать все

Изобретение относится к технике связи и может использоваться в оптической беспроводной системе связи через воздушную среду. Технический результат состоит в обеспечении на пересеченной местности. Для этого система оптической связи содержит разнесенные в пространстве источник направленного излучения, приемник излучения, устройство кодировки излучения, устройство дешифровки сигнала с приемника, при этом источник и приемник расположены на пересекающихся оптических осях, причем зона пересечения оптических осей сопряжена с внешним отражающим или светорассеивающим объектом. Источником излучения служит лазер с длиной волны излучения, выбранной в диапазоне 220-280 нм. 1 ил.

Реферат

Изобретение относится к беспроводным системам связи, в частности к системам связи через воздушную среду, и может быть использовано для передачи информации на пересеченной местности.

Из уровня техники известен источник информации, в котором достаточно полно изложены все вопросы, относящиеся к оптическим системам передачи информации. В книге приведена обобщенная схема оптического канала, рассмотрены особенности распространения оптического излучения и механизмы потерь в оптических волокнах. Описаны методы изготовления оптических волокон. Рассмотрен принцип действия и основные характеристики полупроводниковых лазеров и фотоприемников различных типов (см. Гауэр Дж. оптические системы связи. М.: Радио и связь, 1989, с. 423-424).

В патенте РФ №2380834, опубликованном 27.01.2010 по индексу МПК H04B 10/00, заявлены «Способ лазерной космической связи и комплекс для его осуществления».

Данное изобретение относится к области космической лазерной связи и лазерной техники и предназначено для создания комплексов стационарной лазерной космической связи в ближнем космосе и дальнем космосе и в пределах всей солнечной системы. Техническим результатом является повышение дальности действия лазерной космической связи, увеличение объемов и скорости передачи информации между космическими аппаратами и наземными станциями в пределах солнечной системы. Для этого определяют доплеровский сдвиг частоты лазерного излучения от базовой части комплекса лазерной космической связи при его приеме в бортовой части комплекса, осуществляют сдвиг оптической частоты лазерного излучения в базовой части комплекса на отрицательную величину измеренного доплеровского сдвига, осуществляют квантовое усиление лазерного излучения и измерение сдвига его оптической частоты в бортовой части комплекса, а также сдвиг центральной частоты полосы приема и квантового усиления в бортовой и базовой частях комплекса, определяют параметры качества установленной лазерной космической связи, осуществляют генерацию лазерного излучения, прием и квантовое усиление сигналов лазерной связи с установленными сдвигами оптических частот.

В данном случае речь идет о двусторонней связи между двумя независимо перемещающимися и удаленными приемно-передающими системами, оптические оси которых должны быть полностью совмещены в момент передачи информации. Указанные в примере зеркала частично соединяют оси приемника и передатчика, но внутри каждого приемо-передающего блока. Целью такого соединения не является передача внутри блока информации, предназначенной другому удаленному приемопередатчику. Этот внутренний канал предназначен для совместной калибровки по несущей частоте приемного и передающего каналов блока. Здесь идет речь о пересечении оптических осей внутри устройства.

Наиболее близкой к предлагаемому и выбранной в качестве прототипа является система оптической связи, содержащая разнесенные в пространстве источник направленного излучения, приемник излучения и устройства кодировки излучения и дешифровки сигнала с приемника, описанная в первом источнике информации - Гауэр Дж. Оптические системы связи. М.: Радио и связь, 1989, с. 423-424.

Источник излучения и приемник расположены на одной оптической оси. Источником излучения служит лазерный диод или лазерный источник в ИК-области. Приемник излучения - обычно, фотодиод. Источник излучения управляется устройством кодировки, формирующим амплитудную и частотную характеристики излучения. Промодулированное излучение через воздушную среду направляется на приемник излучения, который преобразует поступившее излучение в электрический сигнал. Устройство дешифровки восстанавливает передаваемую информацию путем обработки электрического сигнала.

Основным недостатком этого устройства является то, что любое непрозрачное препятствие на пути излучения от источника к приемнику делает невозможным передачу информации, т.е. оно не пригодно к использованию на пересеченной местности, когда на пути излучения находятся дома, скалы или другие объекты.

Задачей нового изобретения является обеспечение возможности передачи информации с помощью оптического излучения в условиях пересеченной местности.

Поставленная цель достигается в системе оптической связи, содержащей разнесенные в пространстве независимо перемещающиеся источник направленного излучения и приемник излучения, устройство кодировки излучения и устройство дешифровки сигнала с приемника излучения, в которой, в отличие от прототипа, источник направленного излучения и приемник излучения расположены на пересекающихся оптических осях, при этом зона пересечения оптических осей сопряжена с внешним отражающим или светорассеивающим объектом.

Источником направленного излучения может служить лазер с длиной волны излучения в диапазоне 220-280 нм.

На чертеже изображена схема предлагаемого устройства, включающая:

1. Источник направленного излучения.

2. Устройство кодировки излучения.

3. Приемник излучения.

4. Устройство дешифровки сигнала.

5. Внешний объект.

Устройство работает следующим образом:

Излучение источника направленного излучения 1 модулируется по амплитуде и частоте устройством кодировки излучения 2 и направляется на некий внешний объект 5 (например, стену здания). Часть излучения отражается или рассеивается этим объектом.

На этот же объект 5 направляется приемник излучения 3. Часть отраженного или рассеянного излучения регистрируется приемником 3 и дешифруется в устройстве дешифровки сигнала 4 для восстановления передаваемой информации.

Пример реализации и использования:

В качестве источника направленного излучения 1 использовали частотный лазер с длиной волны излучения 455 нм и полезной мощностью 1 Вт. Приемник оптического излучения 3 состоял из собирающего конденсора, диаметром 50 мм и фокусным расстоянием 80 мм и фотодиода. Устройство кодировки излучения 2 состояло из кодирующей микросхемы и ТТЛ (транзисторно-транзисторная логика). Устройство дешифровки сигнала 4 состояло из декодирующей микросхемы.

В эксперименте аналоговый звуковой сигнал (человеческая речь) оцифровывался с помощью цифрового микрофона и подавался на устройство кодировки излучения 2, в котором кодирующие микросхемы осуществляли сжатие сигнала до уровня 10 кбит/с и, посредством ТТЛ модулировалась интенсивность излучения от источника направленного излучения 1. Частота следования световых импульсов составляла 15 кГц.

Внешним объектом 5 служила стена дома. Рассеянное от объекта 5 излучение частично попадало на приемник излучения 3, преобразовывалось в электрический сигнал, который поступал в устройство дешифровки сигнала 4. Там с помощью декодирующей микросхемы осуществлялось цифроаналоговое преобразование сигнала. Преобразованный сигнал можно было прослушать мультимедийным устройством (наушниками).

Экспериментально удалось передать человеческую речь на расстояние до 50 м.

В дальнейшем предполагается усовершенствовать систему, применив лазер в диапазоне 220-280 нм. В этом спектральном диапазоне все солнечное излучение поглощается озоновым слоем в верхних слоях атмосферы, таким образом, уменьшается фоновая засветка приемника и повышается чувствительность системы.

Преимуществом заявленного устройства по сравнению с прототипом является то, что, в отличие от прототипа, заявленное устройство позволяет передавать информацию на пересеченной местности, когда прямой прием излучения невозможен.

Представленные чертеж и описание позволяют, используя существующие материалы и технологии, изготовить предлагаемое устройство промышленным способом и использовать его для оптической передачи информации на пересеченной местности.

Система оптической связи, содержащая разнесенные в пространстве независимо перемещающиеся источник направленного излучения и приемник излучения, устройство кодировки излучения и устройство дешифровки сигнала с приемника излучения, в которой источник направленного излучения и приемник излучения расположены на пересекающихся оптических осях, при этом зона пересечения оптических осей сопряжена с внешним отражающим или светорассеивающим объектом.