Пирроло[2,1-f][1,2,4]триазиновое соединение, способ его получения и применения
Иллюстрации
Показать всеИзобретение относится к пирроло[2,1-f][1,2,4]триазиновому соединению общей формулы I, его изомеру, фармацевтически приемлемой соли, сложному эфиру или гидрату. Соединение общей формулы I обладает свойствами ингибитора активности киназы PI3K. В общей формуле I
X представляет собой СН или N; R1 представляет собой -NR5R6; R2 представляет собой ; R3 представляет собой -NH2, -NHC(O)NHR11, -NHC(O)OR11, -NHC(O)R11, -CH2OH, -CH2S(O)2R12 или -CH2NHS(O)2R12; R4 представляет собой H или CF3. Изобретение также относится к способу получения пирроло[2,1-f][1,2,4]триазиновых соединений общей формулы I и к их применению в получении лекарственных средств для лечения заболевания, связанного с фосфатидилинозитол 3-киназой и ингибитора белка-мишени рапамицина. Технический результат: получены новые пирроло[2,1-f][1,2,4]триазиновые соединения общей формулы I, обладающие свойствами ингибитора активности киназы PI3K. 3 н. и 8 з.п. ф-лы, 2 ил., 5 табл., 39 пр.
Реферат
Область изобретения
Изобретение относится к пирроло[2,1-f][1,2,4]триазиновым производным, представленным общей формулой I, их изомерам или их фармацевтически приемлемым солям, сложным эфирам или гидратам, и способу их получения и применения. Соединения I, представленные общей формулой I могут ингибировать фосфатидилинозитол 3-киназный (PI3K) сигнальный путь, таким образом применяться для приготовления лекарственных средств для лечения заболеваний, связанных в фосфатидилинозитол 3-киназой, таких как рак.
Предшествующий уровень техники
PI3K представляет собой липидную киназу и может фосфорилировать по 3-позиции инозитольного кольца в фосфатидилинозитоле с образованием фосфатидилинозитол-3-фосфата (PIP), фосфатидилинозитол-3,4-дифосфата (PIP2) и фосфатидилинозитол-3,4,5-трифосфата (PIP3). PIP, PIP2 и PIP3, будучи важными вторичными мессенджерами, связываются и активируют различные белки, содержащие домен РН (плекстрин-гомологичный домен), домен FYVE (названный по первым буквам в названиях белков Fablp, YOTB, Vaclp и ЕЕА1, которые, как исходно обнаружили, содержат домен FYVE, смотри Gaullier, J.М.; Simonsen, A.; D′ Arrigo, A.; Bremnes, В.; Stenmark, Н., Chem. Phys. Lipids, 1999, 98: 87-94.), домен РХ (Phox-гомологичный домен) и другую связывающуюся с фосфолипидом область с образованием комплекса сигнального каскада, и наконец регулируют клеточные функции, такие как пролиферация, дифференциация, выживание и миграция и т.п. (смотри Vanhaesebroeck, В.; Leevers, S.J.; Ahmadi, К.; Timms, J.; Katso, R.; Driscoll, P.C; Woscholski, R.; Parker, P.J.; Waterfield, M.D., Annu. Rev. Biochem., 2001, 70: 535-602).
В зависимости от различий в генной последовательности, субстратной специфичности и функции суперсемейство PI3K группируется в три класса: I, II и III PI3K. Класс I PI3K представляет собой наиболее широко исследованный до настоящего времени класс. Субстраты PI3K представляют собой фосфатидилинозитол (PI), фосфатидилинозитол-4-фосфат (PI(4)P), фосфатидилинозитол 4,5-бисфосфат (PI(4,5)P2). Класс I PI3K представляют собой гетеродимерные молекулы, состоящие из одной каталитической субъединицы и одной регуляторной субъединицы. Класс I PI3K может быть дополнительно разделен на две категории ввиду различий в регуляторной субъединице и в механизме активации: PI3K IA и PI3K IB. Где PI3K IA содержит PI3Kα, PI3Kβ и PI3Kδ и активируется рецепторной тирозинкиназой; хотя PI3K IB состоит только из PI3Ky и активируется рецепторами, связанными с G белком. PI и PI(4)Р представляют собой подклассы класса II PI3K. Класс II PI3K включает PI3KC2α, PI3KC2β и PI3KC2y. Они характеризуются доменом С2 по С-концу, что указывает на то, что их активности регулируются ионом кальция. Субстрат для класса III PI3K представляет собой PI. Механизм его активации до настоящего времени остается невыясненным (смотри Engelman, J.A.; Luo, J.; Cantley, L.С, Nat Rev. Genet, 2006, 7: 606-619).
Гиперактивация PI3K инициирует сигнальный путь через фосфатидилинозитол 3-киназу/белковую киназу В/белок-мишень млекопитающих для рапамицина (PI3K/Akt/mTOR) и способствует клеточному выживанию и пролиферации, которые часто присутствуют приблизительно в 60% человеческих опухолей. PTEN (гомолог фосфата и тензина с делецией на хромосоме 10) действует в качестве агента, подавляющего опухоли, и дефосфорилирует 3-позицию в инозитольном кольце фосфатидилинозитола и оказывают антагонистическую активность в отношении PI3K. Такая функция утрачивается при множестве форм рака. Активная мутация в гене PIK3CA, кодирующем р110α, представлена свыше чем при 30% видов рака. Кроме того, амплификации генов PI3K3CA и протеинкиназы В (Akt) часто обнаруживаются при других формах рака, которые также вносят вклад в экспрессию белка (смотри Engelman, J.A., Nat. Rev. Рак, 2009, 9: 550-562). Эти факты свидетельствуют о том, что PI3K тесно связана с онкогенезом и активацией. Белок-мишень для рапамицина (mTOR) представляет собой один из важных последующих белков каскада протеинкиназы В, представляющей собой сериновую/треониновую киназу. Протеинкиназа В дополнительно активирует белок-мишень рапамицина путем прямого фосфорилирования mTOR; или опосредованно, усиливая активацию mTOR путем инактивации подавляющего опухоль гена TSC2 (белок туберозного склероза 2). Активный mTOR прямо или опосредованно принимает участие в регуляциях различных процессов, связанных с клеточной пролиферацией и ростом, таких как исходная фаза трансляции, транскрипции, разборки микрофиламента, мембранного транспорта, деградации белка, пути протеинкиназы С (РКС), синтеза рибосомального белка и синтеза tRNA и т.п. путем регуляции последующих сигнальных путей, таких как рибосомальная S6 киназа (S6K1 или P70S6K), белок 1 (4Е-ВР1), связывающийся с фактором инициации трансляции эукариотических клеток 4Е (elF-4 е), фактор 3 трансдукции сигнала и активации транскрипции (STAT3) и т.п. Таким образом, mTOR представляет собой центральный регуляторный белок клеточного роста и пролиферации и становится новой мишенью для нового противоопухолевого лекарства.
Ингибиторы PI3K и последующего сигнального белка mTOR представляют собой класс многообещающих противоопухолевых лекарств. В настоящее время, несколько ингибиторов пан-PI3K, таких как GDC-0941, XL-147, РХ-866, и т.п. были вовлечены в клинические исследования. Тем не менее, количество и структурное разнообразие должны быть увеличены для того, чтобы удовлетворять потребностям исследования разработки нового противоракового лекарства. В то же время, существуют дефекты, присутствующие у известных ингибиторов. Например РХ-866, происходящий из вортманнина, сложно синтезировать; и активность GDC-0941 должна быть улучшена. Таким образом, открытие и разработка противоопухолевых лекарств, нацеленных на PI3K с более высокой активностью, большей безопасностью привлекают растущий интерес по всему миру.
Пирроло[2,1-f][1,2,4]триазин представляет собой исключительную структуру в медицинской химии. После того, как об этой исключительной структуре сообщали в качестве пуриновых аналогов (смотри: Hayashi, М.; Araki, A.; Maeba, I., Heterocycles, 1992, 34: 569-574. Patil, S.A.; Otter, В.A.; Klein, R.S., Tempahedron Lett., 1994, 35: 5339-5342), все больше и больше соединений, содержащих такую исключительную структуру, были синтезированы и демонстрировали разнообразие биологических активностей, например действующие в качестве ингибиторов JAK2 (смотри: Weinberg, L.R.; Albom, М.S.; Angeles, Т.S. et al., Bioorg. Med. Chem. Lett. 2001, 21: 7325-7330), ингибиторов киназы пан-аврора (Abraham, S.; Hadd, M.J.; Tran, L. et al., Bioorg. Med. Chem. Lett. 2011, 21: 5296-5300), ингибиторов митогенактивируемой протеинкиназы р38α (р38α МАРК) (Liu, С; Lin, J.; Wrobleski, S.Т. et al., J. Med. Chem., 2010, 53: 6629-6639), ингибиторов киназы лимфомы ALK (Mesaros, E.R; Thieu, Т.V; Wells, G.J. et al., J. Med. Chem., 2012, 55: 115-125), двойных ингибиторов VEGFR-2/FGFR-1 (Cai, Z. - w.; Zhang, Y; Borzilleri, R.M. et al., J. Med. Chem., 2008, 5: 1976-1980), ингибиторов VEGFR-2 (Hunt, J.Т.; Mitt, Т.; Borzilleri, R. et al., J. Med. Chem., 2004, 47: 4054-4059), ингибиторов EGFR1/2 (Gavai, A.V.; Fink, В.E.; Fairfax, D.J. et al., J. Med. Chem., 2009, 52: 6527-6530), ингибиторов IGF-1R (смотри: Wittman, M.D.; Carboni, J.M.; Yang, Z. et al. J. Med. Chem., 2009, 52: 7360-7363), или ингибиторов киназы Met (смотри: Schroeder, G.M.; Chen, X. - T.; Williams, D.K. et al., Bioorg. Med. Chem. Lett, 2007, 18: 1945-1951). Кроме того, соединения, содержащие эту пирроло[2,1-f][1,2,4]триазиновую исключительную структуру, такие как EGFR ингибитор АС-480 (WO-2004054514), антагонист рецептора VEGF-2 BMS-690514 (WO 2005/066176 A1), и антагонист IGF-1R BMS-754807 (US 2008/0009497 А1) и т.п. были включены в клинические исследования. Также сообщали о способах синтеза коровой структуры пирроло[2,1-f][1,2,4]триазина, например Thieu, Т; Sclafani, J.A.; Levy, D.V. et al., Org. Lett, 2011, 13: 4204-4207. Дополнительно к вышеупомянутым литературным источникам существует множество заявок на патенты, связанных с коровой структурой пирроло[2,1-f][1,2,4]триазина, например, действующих в качестве ингибиторов киназы (публикация No.: US 2006/0084650 A1), ингибиторов киназы EGFR (публикация No.: US 2006/0089358 A1, WO 2006/069395), ингибиторов VEGFR-2 и FGFR-1 (публикация No.: WO 2004/009784, WO 2004/043912), и заявок на патенты, связанных со способами синтеза промежуточных соединений (WO 2007/005709, WO 2008/083398), ингибиторов тирозинкиназного рецептора (WO 2007/061882, WO 2008/131050), ингибиторов киназы аврора (публикация №: WO 2009/136966), ингибиторов киназы JAK (публикация No.: WO 2010/002472). Вышеупомянутые пирроло[2,1-f][1,2,4]триазины, о которых сообщалось, не охватывают и не относятся к соединениям по настоящему изобретению и их применению в качестве ингибиторов PI3K.
На основе вышеприведенных соображений авторы изобретения разработали и синтезировали серии ингибиторов PI3K с пиррол[2,1-f][1,2,4]триазином в качестве коровой структуры. Соединения по настоящему изобретению продемонстрировали превосходную биологическую активность in vitro и in vivo, и, как предполагается, будут преобразованы в новое лекарственное средство для лечения рака.
Краткое изложение сущности изобретения
Задача настоящего изобретения заключается в том, чтобы предложить новый тип пирроло[2,1-f][1,2,4]триазиновых производных, представленных общей формулой I.
где X представляет собой СН или N;
R1 представляет собой -NR5R6;
R2 представляет собой
R3 представляет собой -NH2, -NHC(O)NHR11, -NHC(O)OR11, -СН2ОН, -CH2S(O)2R12, -CH2OS(O)2R12 или -CH2NHS(O)2R12;
R4 представляет собой H или CF3;
каждый из R5 и R6 независимо представляет собой C1-C4 ал кил или вместе с атомом азота, к которому они присоединены, образуют незамещенный насыщенный гетероцикл или насыщенный гетероцикл, замещенный заместителем(ями), предпочтительно пирролидил, пиперидинил и пиперазинил, более предпочтительно пиперазинил; где заместитель представляет собой -S(O)2R12;
каждый из R7, R8, R9 и R10 независимо представляет собой Н или C1-C3 алкил; альтернативно R7 и R8 или R9 и R10 комбинированы с атомом углерода, к которому они присоединены, с образованием 5-8-членного насыщенного кольца; предпочтительно R7 и R8 или R9 и R10 с атомами азота, к которым они присоединены в качестве мостиковых атомов углерода, образуют связанный мостиковыми связями бицикло-гетероцикл с морфолиновым кольцом;
R11 представляет собой C1-C4 алкил, незамещенный C3-C6 циклоалкил или C3-C6 циклоалкил, замещенный одним или более чем одним заместителем, незамещенный бензил или бензил, замещенный одним или более чем одним заместителем, незамещенный фенил или фенил, замещенный одним или более чем одним заместителем, незамещенный изоксазолил или изоксазолил, замещенный одним или более чем одним заместителем, или незамещенный пиридил или пиридил, замещенный одним или более чем одним заместителем, где один или более чем один заместитель выбран из галогена, C1-C3 алкила или C1-C3 алкоксила, -CF3, -C(O)OR12, -C(O)NR12R15, или
каждый из R12 и R15 независимо представляет собой C1-C3 алкил. Предпочтительно, структура общей формулы I представлена следующим образом:
или
где X, R1, R2, R3 и R4 являются такими как определено выше.
Более предпочтительно, R1 представляет собой диметиламино или 1-метилсульфонилпиперазинил;
R2 представляет собой морфолинил, (S)-3-метилморфолинил или 8-окса-3-азабицикло[3,2,1]октан-3-ил;
R3 представляет собой -NH2, -NHC(O)NHR11, -NHC(O)OR11, -СН2ОН, -CH2S(O)2Me, или -CH2NHS(O)2Me;
R4 представляет собой Н или -CF3;
R11 представляет собой метил, этил, пропил, циклопропил, трет-бутил, изобутил, 4-фторбензил, незамещенный фенил или фенил, замещенный одним или более чем одним заместителем, незамещенный изоксазолил или изоксазолил, замещенный одним или более чем одним заместителем, или незамещенное пиридиновое кольцо или пиридиновое кольцо, замещенное одним или более чем одним заместителем, и заместитель выбран из фтора, хлора, трифторметила, метила, метокси, этоксикарбонила, диметиламинокарбонила, 4-метил-пиперазин-1-карбонила, пиперидин-1-карбонила и 4-диметиламинопиперидин-1-карбонила.
Более предпочтительно, соединения, представленные общей формулой I, имеют следующие структуры:
или
где R1, R2, R11 и R12 являются такими как определено выше,
R16 и R17 идентичны или отличаются, и каждый независимо выбран из C1-C4 алкила, или R16 и R17 вместе с атомом азота, к которому они присоединены, образуют 4-метил-пиперазинил, 4-диметиламино-пиперидил или пиперидин-1-ил.
Более предпочтительно, в настоящем изобретении предложены соединения, представленные в таблице 1.
Еще одна задача настоящего изобретения заключается в том, чтобы предложить способ получения соединений, представленных общей формулой I, где в способе получения осуществляют следующие стадии:
где R13 представляет собой нитро или -СН2ОАс; R14 представляет собой амино или -СН2ОН;
1. Пиррольное производное 1 и хлорамин в безводном N,N-диметилформамиде подвергают реакции N-аминирования в присутствии основания с получением соединения 2;
Основание может представлять собой гидрид натрия, карбонат калия или трет-бутоксид калия;
2. Соединение, представленное формулой 2, не подвергнутое дополнительной очистке, подвергают аммонолизу с получением соединения 3;
3. соединение 3 подвергают взаимодействию с ароматическим альдегидом под действием кислоты Льюиса с металлом с получением соединения IIa, или соединение 3 и альдегид под действием кислоты Льюиса в качестве катализатора, такого как раствор трифторида бора в диэтиловом эфире, подвергают конденсации с получением основания Шиффа, и затем осуществляют окислительную циклизацию с получением соединения IIa;
Кислота Льюиса с металлом может представлять собой реагент одновалентной или двухвалентной меди, такой как бромид одновалентной меди, хлорид одновалентной меди, моногидрат ацетата меди, бромид меди, безводный хлорид меди, дигидрат хлорида меди и т.п. Предпочтительно дигидрат хлорида меди используют ввиду его более высокого выхода и легкости последующей обработки по сравнению с другими медными реагентами. Реакционный растворитель представляет собой диметилсульфоксид или N,N-диметилформамид, N,N-диметилацетамид, и реакционная температура составляет 80-150°C;
4. Соединение IIa подвергают хлорированию с получением соединения IIb; Хлорирующий агент представляет собой оксихлорид фосфора или пентахлорид фосфора, и используемое основание представляет собой N,N-диметиланилин или 4-диметиламинопиридин (DMAP);
5. Соединение IIb и морфолин или морфолиновое производное подвергают реакции нуклеофильного замещения с получением соединения IIc;
6. Сложный эфир соединения Не подвергают реакции гидролиза; или нитросоединения IIc сначала подвергают восстановлению и затем сложноэфирную группу IIc гидролизуют;
7. Соединение IId подвергают взаимодействию с амином или замещенным/незамещенным насыщенным гетероциклом, содержащим один атом азота, с получением соединения IIe;
амин здесь представляет собой диметиламин или метилсульфонил пиперазин;
8. Соединение IIe восстанавливают при помощи восстановителя с получением соединения I′;
восстановитель здесь представляет собой боран-тетрагидрофурановый комплекс или боран-диметилсульфидный комплекс;
9. соединение I′ далее подвергают (реакции присоединения с R11NCO, этерификации или амидирования с R11OC(O)Cl, этерификации или амидирования с R11C(O)OH или R11C(O)Cl, или реакции этерификации или реакции амидирования с R12S(O)2Cl), с образованием соединений, представленных общей формулой I.
В частности, соединения, представленные общей формулой Ia-If, могут быть получены при помощи следующих стадий:
(1) Синтез соединений, представленных общей формулой IIIa-IIIc, и синтез N-(5-формил-4-(трифторметил)пиридин-2-ил)пиваламида (7):
пиррольное производное 1 и хлорамин в безводном N,N-диметилформамиде подвергают реакции N-аминирования в присутствии основания с получением соединения 2, где основание может представлять собой гидрид натрия, карбонат калия или трет-бутоксид калия. Без дополнительной очистки неочищенный продукт 2 непосредственно подвергают реакции аммонолиза в запаянной пробирке путем использования насыщенного раствора аммиака в метаноле или имеющегося в продаже концентрированного водного раствора аммиака с получением соединения 3. Соединение 3 подвергают взаимодействию с соответствующим ароматическим альдегидом (например пара-нитробензальдегид, 3-формил-бензилацетат, N-(5-формил-4-(трифторметил)пиридин-2-ил)пиваламид) в присутствии подходящей кислоты Льюиса с металлом с получением соединения IIIa, IIIb или IIIc. Соединения IIIa, IIIb или IIIc также получают путем конденсации соединения 3 и различных альдегидов в присутствии кислоты Льюиса, такой как раствор трифторида бора в диэтиловом эфире, с получением основания Шиффа, и последующей окислительной циклизации. Где кислота Льюиса с металлом может представлять собой реагент одновалентной или двухвалентной меди, такой как бромид одновалентной меди, хлорид одновалентной меди, моногидрат ацетата меди, бромид меди, безводный хлорид меди, дигидрат хлорида меди и т.п. По сравнению с другим медным реагентом может быть получены более высокие выходы путем использования дигидрата хлорида меди, и облегчается последующая обработка. Реакционный растворитель представляет собой диметилсульфоксид или N,N-диметилформамид, N,N-диметилацетамид, и реакционная температура составляет 80-150°C.
Где альдегид 7 получают при помощи трехстадийного способа 2-амино-4-трифторметил-пиридин (4) бромируют при помощи N-бромсукцинимида в хлороформе с получением соединения 5. Аминогруппу соединения 5 защищают при помощи пивалоильной группы, и затем соединение 7 получают с использованием н-бутиллития и N,N-диметилформамида в безводном тетрагидрофуране.
(2) синтез пирроло[2,1-f][1,2,4]триазиновых производных Ia и Ib, где X представляет собой СН и R3 представляет собой NHC(O)NHR11:
Соединение IIIa хлорируют при помощи оксихлорида фосфора или пентахлорида фосфора с получением продукта 8, который подвергают взаимодействию с морфолином или его аналогом при комнатной температуре в тетрагидрофуране с получением соединения 9. Соединение 9 восстанавливают при помощи 5% или 10% палладия на углероде с получением соединения 10, сложноэфирную группу которого гидролизуют в основных условиях с получением кислоты 11. Соединение 11 и амин, такой как диметиламин или метилсульфонил пиперазин, и т.п, подвергают конденсации с получением соединения 12. Затем 12 восстанавливают при помощи восстановителя с получением соединения 13, где восстановитель может представлять собой боран-тетрагидрофурановый комплекс или боран-диметилсульфидный комплекс. Продукт восстановления 13 подвергают взаимодействию с сериями изоцианатов в безводном дихлорметане при комнатной температуре, или с соответствующим ацилазидом в диоксане при кипячении с обратным холодильником с получением Ia. Когда R11 представляет собой 4-этоксикарбонил-фенил, тогда Ia гидролизуют с получением соединения 14. Соединение 14 и диметиламин, N-метилпиперазин или 4-диметиламинопиперидин подвергают конденсации с получением Ib.
(3) синтез пирроло[2,1-f][1,2,4]триазиновых производных Ic-e, где X представляет собой СН и R3 представляет собой СН2ОН, CH2S(O)2R12 или CH2NHS(O)2R12:
Хлорированное соединение IIIb подвергают взаимодействию с морфолином или его аналогом при комнатной температуре в тетрагидрофуране с получением соединения 16. Сложноэфирную группу соединения 16 гидролизуют с получением соединения 17. 17 и амин, такой как диметиламин или метилсульфонил пиперазин и т.п, подвергают конденсации с получением соединения 18, и затем 18 восстанавливают при помощи боран-тетрагидрофуранового раствора или боран-диметилсульфидного раствора с получением Ic. При использовании метилсульфонил хлорида гидроксил в Ic превращают для хорошего высвобождения метансульфонатной группы, и превращают в соединение 19. Соединение 19 подвергают взаимодействию с алкилсульфонатом натрия при воздействии микроволнового излучения в N-метилпирролидоне при 120°C в течение 30 минут с получением соединения Id. Кроме того, соединение 19 подвергают аммонолизу с получением соединения 20, которое затем подвергают взаимодействию с алкилсульфонилхлоридом с получением соединения Ie.
(4) синтез пирроло[2,1-f][1,2,4]триазиновых производных If-Ig, где X представляет собой N, R3 представляет собой NH2, NHC(O)NHR11 или NHC(O)OR11, и R4 представляет собой CF3:
Хлорированное соединение IIIc подвергают взаимодействию с морфолином или его аналогом в тетрагидрофуране при комнатной температуре с получением соединения 22. Сложноэфирную группу соединения 22 гидролизуют с получением продукта 23. 23 и амин или замещенный или незамещенный насыщенный гетероцикл подвергают конденсации с получением соединения 24, которое затем восстанавливают с использованием боран-тетрагидрофуранового раствора или боран-диметилсульфидного раствора с получением If. Соединение If подвергают взаимодействию с изоцианатом или хлороформиатом в безводном дихлорметане при комнатной температуре с получением Ig.
Соединения по настоящему изобретению могут эффективно ингибировать активность киназы PI3K. Таким образом, эти соединения могут быть использованы в лечении заболеваний, ассоциированных с путем PI3K, в частности для лечения опухолей. Таким образом, еще одна задача настоящего изобретения заключается в том, чтобы предложить применение соединений общей формулы I или их фармацевтически приемлемых солей для приготовления лекарственных средств для фосфатидилинозитол 3-киназы и белка-мишени млекопитающих рапамицинового ингибитора, т.е. для приготовления лекарственных средств для лечения заболеваний, связанных с фосфатидилинозитол 3-киназой. Заболевания, связанные с фосфатидилинозитол 3-киназой, включают опухоли. Опухоли включают человеческую рабдомиосаркому, немелкоклеточный рак легкого, человеческую глиому, рак предстательной железы, рак яичников, рак печени, рак толстой кишки, рак молочной железы и т.п.
Кроме того, в настоящем изобретении предложена фармацевтическая композиция, содержащая терапевтически эффективное количество соединения общей формулы I, и фармацевтическая композиция также может включать другие ингредиенты, такие как носитель, эксципиент и т.п.
В настоящем изобретении предложен способ лечения заболеваний, связанных с фосфатидилинозитол 3-киназой, при котором осуществляют введение терапевтически эффективного количества соединения, представленного общей формулой I.
Краткое описание графических материалов
Фиг. 1 демонстрирует действия I-33 на сигнальный путь PI3K в клетках человеческой рабдомиосаркомы Rh30 и клетках человеческой глиомы U87MG.
Фиг. 2 демонстрирует ингибирующее рост действие I-30 и I-33 на подкожно трансплантированные опухоли человеческой глиомы U87MG бестимусным мышам.
Подробное описание изобретения
Настоящее изобретение дополнительно проиллюстрировано при помощи следующих примеров, но эти примеры никоим образом не ограничивают изобретение. Во всех примерах 1H ЯМР (ядерный магнитный резонанс) регистрировали при помощи спектрометров ядерного магнитного резонанса Brucher АМ-400 или GEMINI-300, где химический сдвиг представлен посредством δ (млн-1). Масс-спектр регистрировали при помощи масс-спектрометра МАТ-95. Для разделения использовали силикагели 200-300 меш.
Примеры
1. Получение метил 1-амино-5-карбамоил-1Н-пиррол-3-карбоксилата (3)
Смесь 9 г хлорида аммония и 330 мл диэтилового эфира охлаждали до -20°C и при помощи пипетки добавляли 15 мл концентрированного водного раствора аммиака. 216 мл 5% (процент по массе) раствора гипохлорита натрия добавляли по каплям через капельную воронку при постоянном давлении. Смесь перемешивали при -10°C в течение 30 минут. После разделения органический слой промывали насыщенным рассолом (хлорамин нестабилен и рассол должен быть предварительно охлажден). Безводный хлорид кальция добавляли в органический слой, и смесь сушили при -40°C в течение 1 часа до применения.
Соединение пиррол-1,3-дикарбоксилат 1 (5 г, 25,4 ммоль, полученный в соответствии с Kamijo, S., Kanazawa, С, and Yamamoto Y.J. AM. CHEM. SOC. 2005, 127, 9260-9266, где исходные вещества метилпропиолят и этилизоцианоацетат приобретены в Darui chemical Co., Ltd) растворяли в 25 мл безводного N,N-диметилформамида и охлаждали в ледяной бане до 0°С. Гидрид натрия (60%, диспенсированный в минеральном масле, 1,22 г, 30,5 ммоль) добавляли порциями. Смесь перемешивали в течение 1 часа при комнатной температуре. Затем одной порцией добавляли 300 мл раствора хлорамина в диэтиловом эфире, приготовленного заранее, и перемешивали в течение ночи при комнатной температуре в атмосфере азота. Реакционную смесь гасили насыщенным раствором тиосульфата натрия и разбавляли водой. Слой диэтилового эфира отделяли, и водный слой однократно экстрагировали этилацетатом. Органические слои комбинировали и трижды промывали водой, сушили над безводным сульфатом натрия и концентрировали при пониженном давлении с получением 6,2 г неочищенного продукта, который непосредственно подвергали аммонолизу без очистки. К каждым 3 г неочищенного продукта добавляли 80 мл насыщенного раствора аммиака в метаноле, и реакцию осуществляли при 80°C в запаянной пробирке в течение 2 суток. Реакционную смесь концентрировали для осаждения твердых веществ, затем оставляли осаждаться в течение приблизительно 1 часа, и фильтровали с получением 3 г продукта в виде белого твердого вещества. Выход после двух стадий составил 64,6%. т.пл. (точка плавления) 222-224°C.
1H ЯМР (300 МГц, DMSO-d6): δ 7,95 (br s, 1Н), 7,38 (s, 1Н), 7,33 (br s, 1Н), 7,15 (s, 1Н), 6,87 (s, 2Н), 3,70 (s, 3Н). MS (EI(ионизация распылением электронов)) m/z (%): 183 (М+, 100).
2. Получение 2-амино-4-трифторметил-5-бромпиридина (5)
2-Амино-4-трифторметилпиридин (5 г, 30,8 ммоль, Langfang Beixin Chemical Co., Hebei) растворяли в 100 мл хлороформа и порциями добавляли N-бромсукцинимид (5,92 г, 33,3 ммоль). Смесь перемешивали в темноте или вдали от света при комнатной температуре в течение 3 часов. Реакционную смесь концентрировали и очищали при помощи колоночной хроматографии с градиентной элюцией (петролейный эфир: этилацетат = 10:1 и дихлорметан) с получением 4,33 г красного твердого вещества. Выход: 58,2%. LC-MS (жидкостная хроматография/масс-спектрометрия): 240 (М+1), 242 (М+2+1).
3. Получение N-(5-бром-4-(трифторметил)пиридин-2-ил)пиваламида (6)
В ледяной бане 29,8 г пивалоилхлорида (226 ммоль) добавляли по каплям к раствору соединения 5 (50,0 г, 207 ммоль) и триэтиламина (37,9 мл) в дихлорметане (300,0 мл) в течение одного часа и затем перемешивали в течение 2 часов до исчезновения исходных веществ. В реакционный раствор добавляли 150 мл воды и перемешивали при комнатной температуре в течение 10 минут. Органический слой отделяли, сушили над безводным сульфатом натрия, концентрировали и разделяли на короткой колонке с этилацетатом с получением белого твердого вещества (57,7 г, 85,6%).
т.пл. 126-128°C. 1Н ЯМР (300 МГц, CDCl3): δ 8,67 (s, 1Н), 8,50 (s, 1Н), 8,14 (brs, 1Н), 1,33 (s, 9Н).
4. Получение N-(5-формил-4-(трифторметил)пиридин-2-ил)пиваламида (7)
Соединение 6 (15,0 г, 46,2 ммоль) растворяли в 350 мл безводного тетрагидрофурана и охлаждали до -78°C в атмосфере азота. 45 мл 2,5 М раствора н-бутиллития в тетрагидрофуране медленно добавляли в реакционный раствор в течение одного часа. Реакционный раствор перемешивали при -78°C в течение 1 часа, и затем 15 мл безводного N,N-диметилформамида медленно добавляли по каплям и перемешивали в течение еще 2,5 ч при -78°C. К реакционному раствору добавляли 120 мл 1М разбавленной соляной кислоты для гашения реакции. Реакционную смесь экстрагировали этилацетатом (200 мл ×3). Органические слои комбинировали и промывали соответственно водой (200 мл ×3), насыщенным рассолом (200 мл), затем сушили над безводным сульфатом натрия и фильтровали. Фильтрат концентрировали и очищали при помощи колоночной хроматографии (петролейный эфир: дихлорметан: этилацетат = 60: 10: 1) с получением 7,1 г белого твердого вещества (56,1%). т.пл. 96-98°C. 1H ЯМР (300 МГц, CDCl3): δ 10,32 (brs, 1 Н), 9,01 (s, 1 Н), 8,73 (s, 1 Н), 8,40 (s, 1 Н), 1,38 (s, 9 Н).
5. Общий способ получения соединений IIIa-IIIc
5 мл диметилсульфоксида добавляли к смеси соединения 3 (55 мг, 0,3 ммоль), соответствующего альдегида (0,3 ммоль) и дигидрата хлорида меди (51 мг, 0,3 ммоль), и реакцию осуществляли при 80-150°C. После завершения реакции реакционную смесь охлаждали и выливали в воду, осажденные твердые вещества фильтровали. Если неочищенный продукт обладал плохой растворимостью, то его промывали метанолом. Если он обладал хорошей растворимостью, то его очищали при помощи колоночной хроматографии (дихлорметан: метанол = 50:1).
Получение метил 2-лара-нитрофенил-4-оксо-3,4-дигидропирроло[2,1 -f][1,2,4]триазин-6-формиата (IIIa)
В соответствии с общим способом получения, описанным в примере 5 выше, пара-нитробензальдегид подвергают взаимодействию с соединением 3 с получением соединения IIIa в виде светло-желтого твердого вещества с выходом 72,0%. т.пл. больше 300°C. 1H ЯМР (300 МГц, DMSO (диметилсульфоксид)-d6): δ 12,52 (s, 1Н), 8,38 (d, J=8,5 Гц, 2Н), 8,22 (s, 1Н), 8,21 (d, J=8,5 Гц, 2Н), 7,26 (s, 1Н), 3,80 (s, 3Н). LRMS (масс-спектр низкого разрешения) (EI) m/z (%): 314 (М+, 85), 283 (100). HRMS (масс-спектр высокого разрешения) вычисл. C14H10N4O5: 314,0651; найдено: 314,0659.
Получение метил 2-(3-(ацетоксиметил)фенил)-4-оксо-3,4-дигидропирроло[2,1-f][1,2,4] триазин-6-карбоксилата (IIIb)
В соответствии с общими способами получения, описанным в примере 5 выше, 3-формилбензилацетат подвергают взаимодействию с соединением 3 с получением соединения IIIb в виде не совсем белого твердого вещества с выходом 39,0%. т.пл. 202-203°C. 1Н ЯМР (300 МГц, DMSO-d6): δ 12,29 (s, 1Н), 8,19 (d, J=1,7 Гц, 1Н), 7,96 (s, 1Н), 7,92 (dt, J=1,7, 7,2 Гц, 1Н), 7,58-7,53 (m, 2Н), 7,24 (d, J=1,7 Гц, 1Н), 5,16 (s, 2Н), 3,81 (s, 3Н), 2,10 (s, 3Н). LC-MS: 342 (М+1).
Получение метил 4-оксо-2-(6-пиваламидо-4-(трифторметил)-пиридин-3-ил)-3,4-дигидропирроло[2,1-f][1,2,4]триазин-6-карбоксилата (IIIc)
В соответствии с общим способом получения, описанным в примере 5 выше, соединение 7 подвергают взаимодействию с соединением 3 с получением соединения IIIc в виде светло-желтого твердого вещества с выходом 25,9%. т.пл. 244-245°C. 1Н ЯМР (300 МГц, DMSO-d6): δ 12,47 (s, 1Н), 10,68 (s, 1Н), 8,86 (s, 1Н), 8,57 (s, 1Н), 8,20 (d, J=1,7 Гц, 1Н), 7,29 (d, J=1,7 Гц, 1Н), 3,81 (s, 3Н), 1,28 (s, 9Н). LC-MS: 438 (М+1).
6. Получение метил 2-лара-нитрофенил-4-хлорпирроло[2,1-f][1,2,4]триазин-6-карбоксилата (8)
20 мл оксихлорида фосфора добавляли к смеси соединения IIIa (4,74 г, 15,1 ммоль) и 4-диметиламинопиридина (4,34 г, 35,6 ммоль) и кипятили с обратным холодильником в течение 5 часов. После охлаждения реакционной смеси порцию оксихлорид фосфора отгоняли при пониженном давлении. Остаток выливали в измельченный лед, фильтровали и сушили с получением желтого твердого вещества (4,6 г, 91,8%). т.пл. 218-223°C. 1H ЯМР (300 МГц, CDCl3): δ 8,54 (d, J=8,9 Гц, 2Н), 8,36 (s, 1Н), 8,34 (d, J=8,9 Гц, 2Н), 7,46 (d, J=1,3 Гц, 1Н), 3,96 (s, 3Н). MS (EI) m/z (%): 332 (М+ 100), 334 (М+2, 33).
7. Получение соединения 9
Метил 2-(пара-нитрофенил)-4-(морфолинил)-пирроло[2,1-f][1,2,4]триазин-6-карбоксилат (9а)
Соединение 8 (4,6 г, 13,8 ммоль) суспендировали в 150 мл тетрагидрофурана, по каплям добавляли 3,6 мл морфолина и подвергали взаимодействию в течение 5 часов при комнатной температуре. 3,9 г твердого вещества получали путем фильтрования, и фильтрат разделяли при помощи колоночной хроматографии с дихлорметаном с получением 1,1 г желтого соединения 9а (94,3%). т.пл. 296-300°C. 1H ЯМР (300 МГц, CDCl3): δ 8,45 (d, J=8,7 Гц, 2Н), 8,29 (d, J=8,7 Гц, 2Н), 8,14 (d, J=1,3 Гц, 1Н), 7,23 (d, J=1,3 Гц, 1Н), 4,17 (t, J=4,8 Гц, 4Н), 3,91 (t, J=4,8 Гц, 7Н). LC-MS: 384 (М+1).
Метил 4-(8-окса-3-азабицикло[3,2,1]октан-3-ил)-2-(пара-нитрофенил)пирроло[2,1-f][1,2,4]триазин-6-карбоксилат (9b)
Соединение 8 (100 мг, 0,3 ммоль) суспендировали в 15 мл тетрагидрофурана, и добавляли 8-окса-3-азабицикло[3,2,1]октанхлоргидрат (54 мг, 0,36 ммоль) и одну каплю триэтиламина и подвергали взаимодействию в течение 3-4 ч при комнатной температуре. Растворитель удаляли при пониженном давлении. Остаток промывали водой, сушили и очищали при помощи колоночной хроматографии с дихлорметаном с получением 109 мг желтого твердого вещества 9b (88,6%). т.пл. 278-280°C. 1H ЯМР (300 МГц, CDCl3): δ 8,45 (d, J=9,0 Гц, 2Н), 8,29 (d, J=9,0 Гц, 2Н), 8,13 (d, J=1,3 Гц, 1Н), 7,21 (d, J=1,3 Гц, 1Н), 4,60 (br s, 4Н), 3,91 (s, 3Н), 3,63 (br, s, 2H), 2,08-2,04 (m, 2H), 1,91-1,84 (m, 2H). LC-MS: 410 (М+1).
8. Общий способ получения соединения 10
Смесь растворителей метанола и хлороформа (500 мл, 1: 1) и 10 масс. % палладия на углероде исходного вещества (10% Pd-углерод) добавляли к соединению 9 (13 ммоль) и восстанавливали в течение 24 часов в атмосфере водорода при комнатной температуре. Палладий-углерод отфильтровывали при помощи целита, и фильтрат концентрировали при пониженном давлении для количественного получения Соединения 10.
Метил 2-(пара-аминофенил)-4-(морфолинил)пирроло[2,1-f][1,2,4]триазин-6-карбоксилат (10а)
10а получали из 9а в соответствии с общим способом получения соединения 10. Белое твердое вещество, т.пл. 238-240°C. 1H ЯМР (300 МГц, DMSO-d6): δ 8,13 (d, J=1,6 Гц, 1Н), 7,93 (d, J=8,5 Гц, 2Н), 7,31 (d, J=1,6 Гц, 1Н), 6,62 (d, J=8,5 Гц, 2Н), 5,70 (br, s, 2Н), 4,04 (t, J=4,5 Гц, 4Н), 3,80 (s, 3Н), 3,77 (t, J=4,5 Гц, 4Н). MS (EI) m/e (отношение массы иона m к его заряду e) (%): 353 (М+, 100).
Метил 2-(пара-аминофенил)-4-(8-окса-3-азабицикло[3,2,1]октан-3-ил)пирроло[2,1-f][1,2,4] триазин-6-карбоксилат (10b)
10b получали из 9b в соответствии с общим способом получения соединения 10. Желтое твердое вещество, т.пл. 254-256°C. 1H ЯМР (300 МГц, DMSO-d6): δ 8,21 (s, 1Н), 8,19 (d, J=8,7 Гц, 2Н), 7,34 (s, 1Н), 7,22 (d, J=8,7 Гц, 2Н), 4,53 (br s, 4Н), 3,81 (s, 3Н), 3,49 (br, s, 2Н), 1,89-1,85 (m, 2Н), 1,78-1,75 (m, 2Н). LC-MS: 380 (М+1).
9. Способ получения соединения 11
2-(пара-аминофенил)-4-(морфолинил)пирроло[2,1-f][1,2,4]триазин-6-карбоновая кислота (11а)
Соединение 10а (14 ммоль) суспендировали в 150 мл этанола и добавляли 30 мл 2М водного раствора гидроксида натрия. Реакционную смесь кипятили с обратным холодильником с получением прозрачного раствора, и реакция по существу завершалась. Добавляли 2 мл уксусной кислоты. Большую часть растворителя отгоняли при пониженном давлении, и осадки фильтровали с получением соединения 11а (3,25 г, 68,5%). т.пл. >300°C. 1H ЯМР (300 МГц, DMSO-d6): δ 7,91 (d, J=8,8 Гц, 2Н), 7,71 (d, J=1,2 Гц, 1Н), 6,99 (d, J=1,2 Гц, 1Н), 6,59 (d, J=8,8 Гц, 2Н), 5,49 (s, 2Н), 4,02 (t, J=4,4 Гц, 4Н), 3,77 (t, J=4,4 Гц, 4Н). MS (EI) m/e (%): 339 (М+, 100).
2-(пара-аминофенил)-4-(8-окса-3-азабицикло[3,2,1]октан-3-ил)пирроло[2,1-f][1,2,4]триазин-6-карбоновая кислота (11b)
В соответствии с тем же самым способом, как способ получения соединения 11а, 360 мг 10b (0,95 ммоль) в качестве исходного вещества гидролизовали с получением соединения 11b (270 мг, 77,9%). т.пл. 278-280°C. 1H ЯМР (300 МГц, DMSO-d6): δ 12,46 (s, 1Н), 8,04 (d, J=1,7 Гц, 1Н), 7,92 (d, J=8,8 Гц, 2Н), 7,22 (d, J=1,7 Гц, 1Н), 6,60 (d, J=8,8 Гц, 2Н), 5,55 (br s, 2Н), 4,51 (br s, 4Н), 3,48 (br, s, 1H), 3,44(br, s, 1H), 1,88-1,85 (m, 2H), 1,79-1,75 (m, 2H). LC-MS: 366 (M+1).
10. Общий способ получения соединения 12
2-(пара-аминофенил)-N,N-диметил-4-морфолинопирроло[2,1-f][1,2,4]триазин-6-карбоксамид (12а)
Диметиламин хлоргидрат (686 мг, 8,4 ммо