Способ оценивания очковых линз, способ проектирования очковых линз, способ изготовления очковых линз, система изготовления очковых линз и очковая линза

Иллюстрации

Показать все

Способ проектирования очковых линз, в котором положительная и отрицательная относительные конвергенции, положительная и отрицательная относительные аккомодации и вертикальная фузийная вергенция заданы как относительные значения измерения, относящиеся к бинокулярному зрению, и одна или обе из положительной и отрицательной относительных конвергенций включены в отдельное относительное значение измерения. В способе определяют оптические проектные значения, используя в качестве оценочной функцию, полученную суммированием функций зрительного утомления, включающих в себя относительные значения измерения в качестве коэффициентов в соответствующих оценочных точках объекта. Функция зрительного утомления включает в качестве коэффициентов аберрацию конвергенции и ошибку в оптической силе и изменяется в зависимости от аберрации конвергенции и ошибки в оптической силе. Технический результат - использование при оценке, проектировании и изготовлении очковых линз оценочной функции, учитывающей функциональность бинокулярного зрения. 5 н. и 7 з.п. ф-лы, 2 табл., 45 ил.

Реферат

Область техники

[0001] Настоящее изобретение относится к способу оценивания очковых линз, причем способ используется для оценивания эксплуатационных показателей при проектировании и производстве очковых линз, и к способу проектирования очковых линз и к способу изготовления очковых линз с его помощью.

Уровень техники

[0002] Для оценивания или проектирования очковых линз, предложены различные способы оценивания и способы проектирования для получения оптимальной видимости, и, в частности, предложен способ, в котором основное внимание уделяется зрению при ношении стеклянных линз. Например, в патентном документе 1 (WO2002/088828) раскрыт способ проектирования очковых линз с использованием функции зрения. В патентном документе 2 (WO2004/018988) описаны очковые линзы, спроектированные с учетом хроматической аберрации функции зрения. В данном случае, функция зрения это функция, представляющая зрение, которое нормализовано с помощью оптических аберраций линз и характеристик глазных яблок (значений относительной аккомодации, значений относительной конвергенции, величин физиологического астигматизма), при осуществлении зрения через очковые линзы (нормализованным зрением называется зрение, полная коррекция которого дает logMAR, равный 0).

Сущность изобретения

[0003] Однако в патентных документах 1 и 2 вовсе не рассматривается функциональность бинокулярного зрения во время ношения очков. Например, поскольку в патентном документе 1 способ проектирования нацелен на применение к линзе общего назначения, индивидуальные элементы, например, относительная аккомодация и относительная конвергенция, не рассматриваются. Таким образом, он не пригоден для проектирования оптимальных очковых линз, для которых учитывается индивидуальная информация, касающаяся бинокулярного зрения. Поскольку он предназначен для линз общего назначения, естественно, конструкция очковых линз для обоих глаз не рассматривается. Хотя в патентном документе 2 учитывается часть хроматической аберрации функции зрения, в отношении других частей, как и в вышеописанном патентном документе 1, технического содержания недостаточно для индивидуального проектирования, в котором учитывается бинокулярное зрение.

[0004] С другой стороны, в патентном документе 3 (перевод на японский язык международной заявки PCT № HEI 2-39767A (опубликованная предварительная патентная заявка Японии № SHO 57-10113A), в патентном документе 4 (перевод на японский язык международной заявки PCT № 2008-511033A) и в патентном документе 5 (перевод на японский язык международной заявки PCT No. 2000-506628A) содержатся ссылки на возможность осуществления зрения левым и правым глазами во время ношения очков.

[0005] В патентном документе 3 описано необходимое условие реализации функциональности бинокулярного зрения. В частности, описаны диапазон астигматизма в прогрессивной полосе, размещение астигматизма и ошибка выравнивания в линзе в целом, призменные диапазоны левой и правой очковых линз, и условие по направлениям перекосов, обусловленных призмами. Однако, возвращаясь к патентному документу 3, можно обнаружить, что изобретение, описанное в патентном документе 3, включает в себя ряд серьезных недостатков.

[0006] Во-первых, вычисление аберрации линии фиксации, исходящей от линзы, осуществляется без учета закона Листинга для одного глаза, который относится к основному движению глазного яблока. В этом случае вычисление остаточного астигматизма становится неопределенным, что не позволяет утверждать о наличии заранее определенного эффекта, описанного в документе. Движение глазного яблока одного глаза можно рассматривать как вращательное движение, осуществляемое с центром в одной точке глазного яблока, т.е. относительно центра вращения. Фронтальная плоскость, включающая в себя центр вращения в положении, откуда глазное яблоко смотрит вперед, называется поверхностью Листинга. Закон главных движений глазного яблока гласит, что ось вращения глазного яблока лежит на поверхности Листинга, и называется законом Листинга.

[0007] Во-вторых, написано, что прогрессивные части левой и правой линз находятся в заранее определенных призменных диапазонах, и что берутся почти одинаковые астигматизмы и ошибки выравнивания, и расфокусировки совпадают, что позволяет обеспечить острое стереоскопическое зрение (иными словами, бинокулярное зрение). Однако, в патентном документе 3, не показано, насколько точный баланс астигматизмов и ошибок выравнивания требуется для стереоскопического зрения, и степень точности не выражена количественно. В связи с этим, конфигурация очковых линз, описанных в патентном документе 3, неочевидна.

[0008] В-третьих, на странице 5, в строках 25-44 патентного документа 3, объяснение "фиг. 2" документа не относится к оптической системе для бинокулярного зрения. Этот чертеж показан на фиг. 44. На фиг. 44, когда глазные яблоки 57 и 58 смотрят прямо в точку PP на поверхности 59 объекта, линии 50 и 51 взгляда направлены в точку PP. Очковые линзы 52 и 53 расположены перед глазными яблоками 57 и 58. За счет призменного эффекта очковых линз 52 и 53, для левого глаза 57, наблюдается, что точка PP располагается в точке PL пересечения линии взгляда 54 и поверхности 59, и, для правого глаза 58, наблюдается, что точка PP располагается в точке PR пересечения. В строках 41-42 на той же странице описано, что соотношение между линиями взгляда, показанными на фиг. 44, можно рассматривать как одну очковую линзу, симметричную относительно главного меридиана. Однако, как можно видеть из формулы Прентиса, (P=(h×D)/10), призменный эффект пропорционален оптической силе. Таким образом, это утверждение справедливо только в том случае, когда левая линза и правая линза идентичны.

[0009] Дополнительно, формула Прентиса является приближенной формулой, которая пригодна в стандартных условиях, и подразумевает, что призменный эффект P линзы пропорционален расстоянию, h (в мм) от центра и оптической силе D. Одним словом, поскольку левая линза и правая линза, в общем случае, имеют разную оптическую силу, вышеприведенное утверждение неочевидно и не находит подтверждения. Кроме того, после объяснения "фиг. 2" в патентном документе 3, объяснения основаны на одной из левой линзы и правой линзы на протяжении всего документа, без указания системы координат и начала отсчета, которые определяют целевую точку PP. Таким образом, данная конфигурация не позволяет обеспечить функциональность бинокулярного зрения в оптической системе.

[0010] В-четвертых, трудно понять степень дисторсии, показанной на "фиг. 4" патентного документа 3. Этот чертеж показан на фиг. 45. Объяснение чертежа в патентном документе 3 приведено в строке 17 в правом столбце на странице 5, где объясняется, что чертеж является изображением равномерной и симметричной решетки. На "фиг. 4" этого документа показан чертеж, где позиционные разности в горизонтальном направлении отложены от точки P, где точка P задана как узловая точка решетки на поверхности. В частности, можно видеть, что искажение присутствует в нижней периферийной части. В строках 25-27 того же столбца патентного документа 3, объясняется, что это седловидное искажение (дисторсия) или бочкообразное искажение (дисторсия). В частности, в патентном документе 3, указано наличие соотношения между позиционными разностями в горизонтальном направлении, ∆PH, и искажением. Когда предполагается наличие соотношения между позиционными разностями в горизонтальном направлении, ∆PH, и искажением (дисторсией), решетка искажается, когда все линии 54 и 55 взгляда пересекаются в точках, отличных от точки PP на поверхности 59. Однако, в этом случае, поскольку позиционные разности в горизонтальном направлении равны 0, возникает противоречие, состоящее в том, что искажения в вышеописанной "фиг. 4" исчезают. Таким образом, позиционные разности в горизонтальном направлении, ∆PH, не связаны с искажением. Кроме того, описано, что искаженный чертеж обрабатывается мозгом как изображение, выполненное с прямыми линиями. Однако не описана основа, касающаяся степени искажения чертежа, чертеж может обрабатываться как линии, хотя это важный вопрос. Таким образом, до конца не ясно, превращается ли искажение, показанное на фиг. 45, в прямые линии в мозгу.

[0011] В-пятых, на поверхности находится цель. В принципе, цель произвольно определяется проектировщиком. Таким образом, в целом, очковые линзы проектируются так, чтобы эксплуатационные показатели очковых линз повышались на произвольно определенной проектировщиком цели. Однако, в патентном документе 3, способ оценивания ограничивается предполагаемыми вариантами цели, которые одобрены для чтения с помощью очковых линз символов на туго натянутой газете или на стене. Точки в цели, отличные от точки фиксации в патентном документе 3, имеют большие разности в расстояниях от обоих глазных яблок. Таким образом, это препятствует одновременной коррекции ошибки в оптической силе, обусловленной точкой фиксации, остаточным астигматизмом и призменным эффектом. Следовательно, призменный эффект усиливается. Таким образом, в системе, где цель находится на поверхности, трудно оценивать бинокулярное зрение.

[0012] В патентном документе 4 предложен способ проектирования очковых линз. Согласно способу проектирования, рассматривается состояние, в котором направление прямого зрения лица, носящего пару очков, сдвинуто в сторону ведущего глаза. Однако патентный документ 4 включает в себя проблемы, описанные ниже.

[0013] Во-первых, измеряемый объект является живым существом. Таким образом, встает проблема точности измерения. В примере, описанном в абзаце 0030 патентного документа 4, написано, что сдвиг равен 2 см. Если он равен 2 см, он легко поддается измерению, но в случае сдвига меньшей величины, надежное измерение производить труднее. В абзаце 0063 патентного документа 2 описано, что его можно измерять с "абсолютной погрешностью меньшей или равной 3 мм". Однако, с учетом того, что обычная величина добавки для зрения на малое расстояние в прогрессивной линзе равна 2,5 мм, величина ошибки очень велика.

[0014] Вторая проблема состоит в том, что явление "сдвига направления прямого зрения в сторону ведущего глаза" противоречит закону Геринга об эквивалентной иннервации, который является единственным законом, касающимся бинокулярных движений глаз. Трудно улучшить функциональность бинокулярного зрения путем проектирования очковых линз через меру, которая основана на явлении, противоречащем закону Геринга об эквивалентной иннервации. Здесь, объяснение закона Геринга об эквивалентной иннервации можно найти в непатентном документе 15 (составленный Ryoji Osaka, Sachio Nakamizo и Kazuo Koga, “Binocular Movement and Hering Theory, Experimental Psychology of eye movement”, The University of Nagoya Press, (1993), глава 3, стр. 60-61, составленная Sachio Nakamizo). Теория Геринга, касающаяся бинокулярного движения базируется на гипотезе о наличии иннервации содружественного поворота (ипсилатерального бинокулярного движения), которая порождает бинокулярное движение, и иннервации вергенции (контралатерального бинокулярного движения), гипотезе об эквивалентной иннервации обоих глаз, которая утверждает, что объемы иннервации, присутствующие в соответствующих глазах, всегда одинаковы (закон Геринга), и гипотезе аддитивности иннервации, то есть наличии аддитивности между этими двумя типами иннервации.

[0015] Кроме того, согласно другому мнению, известно, что центр вращения не фиксирован и совершает движения, а также сдвиги, во время движения глазного яблока. Известно, что центр вращения не вращается, когда он центрирован в одной точке, и он вращается, когда он центрирован в различных точках в зависимости от его использования. Утверждение о "сдвиге направления прямого зрения" в патентном документе 4 можно объяснить исходя из того, что центр вращения глазного яблока сам сдвигается. В частности, с учетом движения центров вращения, средняя точка между центрами вращения левого и правого глазных яблок также движется, и направление прямого зрения также движется. Таким образом, считается, что предположение о том, что левое и правое глазные яблоки движутся симметрично, лучше согласуется с физиологическим фактом, чем предположение о том, что левое и правое глазные яблоки движутся асимметрично, что утверждается в патентном документе 4.

[0016] В-третьих, в абзаце 0039 патентного документа 4 написано, что "обеспечивается очень хорошая бинокулярная фузия". Однако, неизвестно, в какой степени. В частности, написано, что если возникающий астигматизм (он рассматривается как остаточный астигматизм) меньше или равен 0,5 диоптрии, то поле зрения является комфортным. Однако ошибка в оптической силе возникает в зависимости от расстояния до цели. Таким образом, комфортное поле зрения не реализуется, за исключением случая, когда предполагается, что цель располагается в положении, где ошибка в оптической силе равна 0. Согласно варианту осуществления патентного документа 4, показаны две фигуры, где представлены ошибки в оптической силе и где представлены возникающие астигматизмы, в зависимости от условий наблюдения. Однако об их балансе речи не идет. Таким образом, едва ли можно понять, могут ли быть получены комфортные поля зрения, если не показан баланс или соотношение между ошибкой в оптической силе и возникающим астигматизмом.

[0017] Кроме того, было бы неправильно утверждать, что "бинокулярная фузия улучшается", на основании схемы, демонстрирующей только ошибки в оптической силе и возникающие астигматизмы. Расстройство, связанное с утратой бинокулярного зрения, даже, если левый и правый глаза по отдельности обладают хорошими зрительными возможностями, в основном наблюдается у пациентов, страдающих косоглазием. При традиционном оценивании ошибки в оптической силе и астигматизма, например, оценивании, описанном в этом патентном документе 4, оценивание эксплуатационных показателей, относящихся к бинокулярному зрению, не пригодно.

[0018] В-четвертых, как и в случае патентного документа 3, предметом этого патента является поверхность, что явствует из "фиг. 1" или "фиг. 4" патентного документа 4. В частности, можно сделать вывод, подобный сделанному в четвертом пункте относительно патентного документа 3.

[0019] В патентном документе 5 раскрыт способ, касающийся очковой линзы, так называемого панорамного типа, причем линза искривлена от передней стороны к стороне уха. Кроме того, на странице 13 или странице 15 патентного документа 3, приведены некоторые описания внеосевой призматической диспарантности. Здесь главным образом описаны дефекты, касающиеся бинокулярного зрения, причем патентный документ 5 посвящен бинокулярному зрению.

[0020] Во-первых, написано, что подходы, раскрытые в патентном документе 5, относятся к очковой линзе панорамного типа или очковой линзе защитных очков. Однако их конфигурации не уточнены. В сущности изобретения, описанной в патентном документе 5, предполагается, что существуют рецептурная зона и периферийная височная зона. Различие между этими двумя зонами заключается в формах поверхностей, как описано на страницах 28-30 патентного документа 5. Здесь способ объяснения различия не основан на оценивании путем вычислений трассировки лучей, которые обычно используются в настоящее время, но является упрощенным способом, предусматривающим вычисление на основании формы поверхности линзы, которая ранее использовалась для объяснения прогрессивной линзы. Таким образом, преломляющая способность и астигматизм являются расчетными значениями кривой, которые вычисляются из производных поверхности. Таким образом, они отличаются от значений, вычисленных путем трассировки лучей. Кроме того, аналогично, отсутствует описание, связанное с применением закона Листинга к движению глазного яблока, который в настоящее время обычно используется для проектирования. В этом состоит отличие от оценивания или проектирования на физиологической основе, например закона Листинга. Кроме того, периферийная височная зона определена настолько произвольно, что ее трудно отличить от рецептурной зоны. Таким образом, периферийная височная зона не задает ограничивающее условие. Таким образом, можно считать, что описание пригодно только для нормальной конструкции линзы.

[0021] Во-вторых, что касается определения внеосевой призматической диспарантности, описанной в нижней части страницы 13 патентного документа 5, указано только, что "дефект бинокулярного зрения возникает, когда астигматизм в височной части и астигматизм в назальной части не равны". Однако описание является недостаточным, и невозможно понять, о каком астигматизме идет речь. Кроме того, в качестве способа коррекции внеосевой призматической диспарантности, на странице 15 патентного документа 5 указано лишь, что применяется асферическая поверхность. Таким образом, описание является недостаточным. Кроме того, хотя ясно, что оценивание осуществляется для одной очковой линзы, на странице 13 патентного документа 5 делается вывод о том, что "присутствует дефект бинокулярного зрения". На чем основано это заключение, неясно.

[0022] В-третьих, на странице 15 патентного документа 5 упомянуты взаимная регулировка преломляющей способности, астигматизма и призматической диспарантности, а также баланс элементов для оптической коррекции. Однако утверждение о том, что дефект бинокулярного зрения является приемлемым при условии, что дефект находится в диапазоне значений, приведенных в таблице на странице 15, не поддается пониманию. Из этой таблицы следует, что величина коррекции уменьшается с увеличением прописанной оптической силы линзы. Как указано, "ошибку можно в достаточной степени скорректировать с помощью меньшей величины коррекции, и что дефект бинокулярного зрения является приемлемым", в том смысле, что с увеличением прописанной оптической силы линзы, допуск на бинокулярное зрение пациента возрастает. Это утверждение трудно понять, поскольку допуск описан на основании оценивания для одного глаза. Исходя из предмета изобретения патентного документа 5, в котором даже не раскрыт способ определения допуска на бинокулярное зрение, трудно прогнозировать, возможна ли конструкция, в которой допуск оказывается меньшим или равным указанному допуску, как в случае нормального стандарта для очковых линз. В частности, имея описание такого допуска в случае, когда даже не дано определение бинокулярного зрения, не просто применять этот допуск к проектированию линзы другого общего рецепта.

[0023] При этом представляется, что оценивание бинокулярного зрения через оценивание для одного глаза основано на соображении о том, что височная часть и назальная часть должны быть одинаковыми, поскольку, при взгляде вправо, правая височная часть используется в правой линзе и назальная часть используется в левой линзе. Однако в этом случае требуется, чтобы левая линза и правая линза были одинаковыми, что составляет, например, третью проблему патентного документа 1. Такой рецепт выписывается крайне редко. Кроме того, возможен случай, когда рецепты для левого глаза и правого глаза почти одинаковы. В этом случае, с учетом того, что предел чувствительности по углу сенсорной фузии составляет около 10 угловых секунд, такое нечеткое определение не позволяет уверенно регистрировать бинокулярное зрение. Кроме того, применительно к линзам общего назначения, проблематично применять оценивание и проектирование, которые основаны на таком допуске, в отсутствие надлежащей физиологической основы, к человеческому телу, даже если рецепты для левого и правого глаза заранее неизвестны. Это грозит возникновением дискомфорта или повышением утомляемости.

[0024] Ввиду вышеописанных проблем, задачей настоящего изобретения является предложение оценочной функции, при вычислении которой учитывается результат оценивания, полученный количественным оцениванием функциональности бинокулярного зрения на основании знания физиологии, и оценивание, проектирование и изготовление очковых линз, обладающих повышенной функциональностью бинокулярного зрения, на основании оценочной функции.

[0025] Для решения вышеописанной проблемы, согласно способу проектирования очковых линз, отвечающему настоящему изобретению: когда положительная относительная конвергенция, отрицательная относительная конвергенция, положительная относительная аккомодация, отрицательная относительная аккомодация и вертикальная фузийная вергенция, которые являются отдельными значениями измерения, относящимися к бинокулярному зрению, заданы как относительные значения измерения, по меньшей мере, одна или обе из положительной относительной конвергенции и отрицательной относительной конвергенции включена в отдельное относительное значение измерения. Способ содержит этап, на котором определяют оптические проектные значения для очковых линз путем оптимизации бинокулярного зрения, используя, в качестве оценочной функции для оптимизации, функцию, полученную суммированием функций зрительного утомления, включающих в себя относительные значения измерения в качестве коэффициентов в соответствующих оценочных точках объекта.

[0026] Способ изготовления очковых линз согласно настоящему изобретению содержит этап, на котором изготавливают очковые линзы на основании оптических проектных значений, определенных вышеописанным способом проектирования очковых линз. Способ оценивания очковых линз согласно настоящему изобретению предусматривает оценивание бинокулярного зрения, с использованием, в качестве оценочной функции для вычисления оптимизации, функции, полученной суммированием вышеописанных функций зрительного утомления, включающих в себя относительные значения измерения в качестве коэффициентов в соответствующих оценочных точках.

[0027] Система изготовления очковых линз согласно изобретению представляет собой систему, в которой компьютер заказывающей стороны, имеющий функцию выполнения процесса оформления заказа на очки и установленный на стороне, заказывающей очковые линзы, компьютер изготавливающей стороны, имеющий функцию приема информации от компьютера заказывающей стороны и выполнения процесса, необходимого для приема заказа на очковую линзу, соединены через сеть. Компьютер заказывающей стороны передает информацию, необходимую для проектирования очковых линз, включающую в себя, по меньшей мере, одну или обе из положительной относительной конвергенции и отрицательной относительной конвергенции, на компьютер изготавливающей стороны. Компьютер изготавливающей стороны включает в себя: блок ввода данных, в которые вводятся данные, включающие в себя относительное значение измерения, передаваемое с компьютера заказывающей стороны; блок вычисления функции зрительного утомления, который вычисляет значения оптических эксплуатационных показателей на множестве оценочных точек очковых линз на основании введенных данных; блок оптимизации оценочных значений, который оптимизирует значения оптических эксплуатационных показателей, используя в качестве оценочной функции, функцию, полученную суммированием функций зрительного утомления, включающих в себя, в качестве коэффициентов, относительные значения измерения, включающие в себя, по меньшей мере, одну или обе из положительной относительной конвергенции и отрицательной относительной конвергенции; блок оценивания оценочной функции, который оценивает значения оптических эксплуатационных показателей, сравнивая оценочную функцию с заранее определенным порогом; блок коррекции проектных данных, который корректирует проектные данные, когда значения функций зрительного утомления не достигают заранее определенного условия конвергенции в результате оценивания блоком оценивания оценочных значений; блок определения оптических проектных значений, который определяет проектные данные на основании результата оценивания, полученного для каждой оценочной точки блоком оценивания оценочной функции; блок вывода проектных данных, который выдает окончательные проектные данные, полученные блоком определения оптических проектных значений, на устройство для обработки линзы.

[0028] Очковые линзы согласно изобретению изготавливаются вышеописанным способом изготовления очковых линз и системой изготовления очковых линз.

[0029] Для общего объяснения функции зрительного утомления, рассмотрим сначала комфортную зону Персиваля применительно к очковым линзам. Таким образом, зона в пределах 1/3 относительной конвергенции и угла 3m называется комфортной зоной Персиваля. В настоящем изобретении, зона коррекции, которая составляет 1/3 каждого относительного значения измерения и имеет пороговое значение угла конвергенции в соответствии с возрастом, задается как комфортная зона Персиваля. Как описано, например, в патентном документе 16 (“Relationship between visual fatigue and inconsistency between a focus adjustment and convergence of both eyes in a three-dimansional image vision”, Masaki Emoto, visual science, vol. 24, No. 1 (2003) p13), и в патентном документе 17 (“Horizontal binocular disparity and visual fatigue during stereo display observation”, VISION Vol. 17, No. 2, 101-112, 2005), относительное значение измерения глубоко связано с двигательной фузией и зрительным утомлением. Уменьшение относительного значения измерения приводит к утомлению. Автор настоящего изобретения сосредоточился на этом факте и установил, что очковые линзы следует проектировать таким образом, чтобы аберрация конвергенции и ошибка в оптической силе не превышали 1/3 относительного значения измерения. Аберрация конвергенции задается в виде разности относительно опорного значения угла конвергенции, который является углом конвергенции линий фиксации, проходящих через проектные опорные точки очковых линз. Таким образом, в настоящем изобретении, относительные значения измерения получаются от заказчика в соответствии с проектируемой линзой. Если относительное значение измерения является одной или обеими из положительной относительной конвергенции и отрицательной относительной конвергенции, другие значения можно вычислить из одной или обеих из положительной относительной конвергенции и отрицательной относительной конвергенции. Если относительное значение измерения нельзя получить от заказчика, относительное значение измерения можно аппроксимировать путем вычисления на основании возраста, как описано ниже, и использование приближенного значения в качестве относительного значения измерения также согласуется с объемом настоящего изобретения. Бинокулярное зрение очковых линз можно улучшить путем выполнения оценивания и проектирования, применяя в оценочной функции относительное значение измерения, полученное вышеописанным способом.

[0030] В настоящем изобретении, классификация на комфортную зону и зону зрительного утомления производится с использованием 1/3 относительного значения измерения в качестве порогового значения. Поскольку зрительное утомление является безразмерной величиной, предпочтительно нормализовать функцию зрительного утомления возрастающей функцией, которая принимает нулевое значение, когда аберрация конвергенции и ошибка в оптической силе обе равны нулю, и достигает 1, когда аберрация конвергенции и ошибка в оптической силе увеличиваются в комфортной зоне, и функция зрительного утомления достигает 1 в зоне зрительного утомления.

[0031] При рассмотрении трехмерного пространства, в котором горизонтальная ось представляет угол конвергенции, вертикальная ось представляет вертикальную фузийную вергенцию двигательной фузии, и ось глубины представляет аккомодацию для классификации на комфортную зону и зону зрительного утомления, предпочтительно, чтобы классификация на комфортную зону и зону зрительного утомления производилась с использованием критерия принятия решения, находится ли она внутри или вне замкнутых поверхностей, пороговое значение которых составляет 1/3 относительного значения измерения.

[0032] Кроме того, предпочтительно получать угол конвергенции и аберрацию конвергенции в оценочной точке, задавая при этом 1/3 положительной относительной конвергенции или отрицательной относительной конвергенции относительных значений измерения в качестве порогового значения, вдоль оси вышеописанного угла конвергенции. Предпочтительно, чтобы, для аберрации конвергенции, компонент, параллельный плоскости, который является проецируемым компонентом средней линии для линий фиксации, для которых получен угол конвергенции в оценочной точке, относительно плоскости, перпендикулярной медианной плоскости, и классификация на комфортную зону и зону зрительного утомления производится с использованием разности между значением компонента, параллельного плоскости, для аберрации конвергенции и вышеописанным пороговым значением. Используемый здесь термин «средняя линия» означает прямую, которая, когда прямая выражается направляющим косинусом, имеет среднее направляющих косинусов левой и правой линий фиксации, которая проходит через центр (начало отсчета) центров вращения левого и правого глазных яблок на стороне изображения, и проходит через оценочную точку объекта на стороне объекта.

[0033] На вышеописанной оси аккомодации, классификация на комфортную зону и зону зрительного утомления может производиться путем задания, в качестве порогового значения, 1/3 положительной относительной аккомодации или отрицательной относительной аккомодации относительных значений измерения, и с использованием разности между ошибкой в оптической силе, полученной в оценочной точке, и пороговым значением, в качестве критерия принятия решения по относительной аккомодации.

[0034] Кроме того, на оси вертикальной фузийной вергенции двигательной фузии предпочтительно задавать 1/3 вертикальной фузийной вергенции относительных значений измерения в качестве порога; определять аберрацию конвергенции, задающую разность относительно опорных значений угла конвергенции, которые выражают угол конвергенции в проектной опорной точке; определять компонент, перпендикулярный плоскости, который включает в себя среднюю линию для линий фиксации, для которых получен угол конвергенции в оценочной точке и который является компонентом, проецируемым на плоскость, параллельную медианной плоскости; и производить классификацию на комфортную зону и зону зрительного утомления с использованием разности между значением компонента, перпендикулярного плоскости, для аберрации конвергенции и пороговым значением. Предпочтительно производить классификацию на комфортную зону и зону зрительного утомления в соответствии с тем, находится ли она внутри или вне замкнутой поверхности, имеющей заранее определенное соотношение, пороговые значения которой составляют 1/3 относительной конвергенции, относительной аккомодации и вертикальной фузийной вергенции.

[0035] Кроме того, определение функции зрительного утомления, включающей в себя описанную ниже сенсорную фузию, является предпочтительным. В отличие от зоны двигательной фузии, измеряемой относительным значением измерения, фузия, не сопровождаемая движением глаз и аккомодацией, называется сенсорной фузией. Что касается относительной конвергенции, относительной аккомодации и вертикальной фузийной вергенции, значения измерения называются горизонтальным компонентом фузийной зоны Панума, глубиной фокусировки (или глубиной поля) и вертикальным компонентом фузийной зоны Панума, соответственно. Зона сенсорной фузии это зона, в которой зрительным утомлением можно пренебречь. Таким образом, в зоне сенсорной фузии, функция зрительного утомления задается равной 0. Тогда, поскольку зона сенсорной фузии включена в комфортную зону, функцию зрительного утомления, которая принимает значения от 0 до 1, можно задать в этом диапазоне. В этом случае, получаются зона сенсорной фузии, зона комфортного движения и зоны зрительного утомления, комфортная зона это зона, включающая в себя зону сенсорной фузии и зону комфортного движения.

[0036] Как описано выше, в настоящем изобретении, мы предлагаем использовать функцию зрительного утомления, которая, когда значение измерения бинокулярного зрения при ношении очков в качестве вышеописанного “относительного значения измерения” включает в себя одну или обе из положительной относительной конвергенции и отрицательной относительной конвергенции в качестве относительных значений измерения, и которая включает в себя относительные значения измерения в качестве коэффициентов. Согласно изобретению, путем выполнения оптимизации с использованием оценочной функции, полученной прибавлением функции зрительного утомления в соответствующих оценочных точках объекта, осуществляются оценивание и проектировка очковых линз.

Преимущества изобретения

[0037] Согласно изобретению, использование функции зрительного утомления, которая учитывает относительные значения измерения, представляющие собой значения измерения, относящиеся к бинокулярному зрению, позволяет обеспечить очковые линзы с улучшенными возможностями бинокулярного зрения.

Краткое описание чертежей

[0038] Фиг. 1 - схема системы изготовления согласно варианту осуществления способа изготовления очковых линз настоящего изобретения.

Фиг. 2 - функциональная блок-схема, демонстрирующая функцию компьютера изготавливающей стороны в системе изготовления согласно варианту осуществления способа изготовления очковой линзы настоящего изобретения.

Фиг. 3 - блок-схема операций согласно варианту осуществления способа изготовления очковой линзы.

Фиг. 4 - график, демонстрирующий относительное поле зрения по отношению к положению на сетчатке.

Фиг. 5 - график (диаграмма Дуэйна), демонстрирующий соотношение между возрастом и аккомодацией по Дуэйну.

Фиг. 6 - график, демонстрирующий зону комфорта, выведенную из диаграммы Петерса для возрастной группы 5-15 лет.

Фиг. 7 - график, демонстрирующий зону комфорта, выведенную из диаграммы Петерса для возрастной группы 25-35 лет.

Фиг. 8 - график, демонстрирующий зону комфорта, выведенную из диаграммы Петерса для возрастной группы 45-55 лет.

Фиг. 9 - график, демонстрирующий зону комфорта, выведенную из диаграммы Петерса для возрастной группы 75 лет и более.

Фиг. 10 - схема, демонстрирующая систему объект - очковая линза - глазное яблоко для пояснения понятия "объект", используемый согласно варианту осуществления способа оценивания очковых линз настоящего изобретения.

Фиг. 11 - схема, демонстрирующая опорное значение угла конвергенции на стороне изображения в системе объект - очковая линза - глазное яблоко, используемой согласно варианту осуществления очковой линзы способ оценивания настоящего изобретения.

Фиг. 12 - схема, демонстрирующая опорное значение угла конвергенции на стороне объекта в системе объект - очковая линза - глазное яблоко, используемой согласно варианту осуществления очковой линзы способ оценивания настоящего изобретения.

Фиг. 13 - пояснительная схема поверхности, перпендикулярной направлению аберрации конвергенции, заданному на стороне изображения, причем пояснительная диаграмма показывает систему объект - очковая линза - глазное яблоко, показанную на фиг. 11, которая используется для варианта осуществления способа оценивания очковых линз настоящего изобретения, в направлении, перпендикулярном медианной плоскости.

Фиг. 14 - пояснительная схема поверхности, перпендикулярной направлению аберрации конвергенции, заданному на стороне объекта, причем пояснительная диаграмма показывает систему объект - очковая линза - глазное яблоко, показанную на фиг. 12, которая используется для варианта осуществления способа оценивания очковых линз настоящего изобретения, в направлении, перпендикулярном медианной плоскости.

Фиг. 15 - схема, демонстрирующая угол конвергенции на стороне изображения в оценочной точке системы объект - очковая линза - глазное яблоко, используемой согласно варианту осуществления способа оценивания очковых линз настоящего изобретения.

Фиг. 16 - схема, демонстрирующая угол конвергенции на стороне объекта в оценочной точке системы объект - очковая линза - глазное яблоко, используемой согласно варианту осуществления способа оценивания очковых линз настоящего изобретения.

Фиг. 17 - схема, демонстрирующая конфигурацию си