Буровое долото с фиксированными резцами с элементами для получения фрагментов керна

Иллюстрации

Показать все

Группа изобретений относится к буровым долотам и способам для получения фрагментов образцов керна из подземного пласта. Технический результат заключается в увеличении скорости проходки бурового долота. Буровое долото содержит корпус долота, имеющий центральную осевую линию долота и торец долота; совокупность лопастей, проходящих радиально вдоль торца долота и разделенных совокупностью каналов прохода потока между собой, при этом одна из совокупности лопастей является лопастью отбора керна, содержащей вертикальную поверхность и наклонную поверхность, при этом по существу вертикальная поверхность и наклонная поверхность интегрально соединены; и совокупность режущих элементов, расположенных на совокупности лопастей, при этом один из совокупности режущих элементов является первым режущим элементом, расположенным на лопасти отбора керна на первой радиальной позиции от центральной осевой линии долота. 4 н. и 32 з.п. ф-лы, 30 ил.

Реферат

[0001] Данная заявка испрашивает приоритет по заявкам U.S. Provisional Application 61/499,851 зарегистрирована 22 июня 2011 г., и 61/609,527 зарегистрирована 12 марта 2012 г., обе полностью включены в данный документ в виде ссылки.

ОБЛАСТЬ ТЕХНИКИ

[0002] Варианты осуществления, раскрытые в данном документе, в общем относятся к устройству и способам для получения фрагментов образцов керна из подземного пласта. Конкретнее, варианты осуществления, раскрытые в данном документе, относятся к буровым долотам с фиксированными резцами для получения фрагментов образцов керна из подземного пласта.

УРОВЕНЬ ТЕХНИКИ

[0003] При бурении скважины вглубь земли, такой как для добычи углеводородов или для других вариантов применения, обычной практикой является соединение бурового долота с нижним концом компоновки звеньев бурильных труб, соединенных концами, для образования "бурильной колонны". Долото вращается с помощью вращения бурильной колонны с поверхности или приведения в действие забойных двигателей или турбин или обеими способами. Благодаря осевой нагрузке, прикладываемой бурильной колонной, вращающееся долото входит в контакт с горной породой пласта, обеспечивая проходку долотом породы пласта с помощью истирания, раскалывания или срезания или комбинации всех способов разрушения породы, при этом, образуется ствол скважины, проходящий по заданной траектории к проектной точке.

[0004] Буровые долота многих различных типов разработаны и находят применение в бурении таких стволов скважин. Двумя преобладающими типами буровых долот являются шарошечные долота с коническими шарошками и долота с фиксированными резцами (или роторные истирающе-режущего действия). Конструкция большинства долот с фиксированными резцами включает в себя множество лопастей, установленных с угловыми интервалами в плоскости торца долота. Лопасти выступают радиально наружу от корпуса долота и образуют между собой каналы потока. Кроме того, режущие элементы, обычно сгруппированы и установлены на несколько лопастей радиальными рядами. Конфигурация или схема расположения режущих элементов на лопастях может изменяться в широких пределах, в зависимости от ряда факторов, таких как обусловленные породой, подлежащей бурению.

[0005] Режущие элементы, расположенные на лопастях долот с фиксированными резцами, обычно выполняют из чрезвычайно твердых материалов. В обычном долоте с фиксированными резцами каждый режущий элемент содержит удлиненный, в общем, цилиндрический опорный штырь из карбида вольфрама, размещенный и закрепленный в гнезде, выполненном в поверхности лопасти. Режущие элементы, в общем, включают в себя твердый режущий слой из поликристаллического алмаза (PCD) или другие суперабразивные материалы, такие как термостабильный алмаз или поликристаллический кубический нитрид бора. Для удобства при использовании в данном документе "долото PDC" и "резцы PDC" относятся к долотам с фиксированными резцами или режущими элементами с использованием твердого режущего слоя из поликристаллического алмаза или других суперабразивных материалов.

[0006] На фиг.1 и 2 показано обычное долото 10 с фиксированными режущими элементами или лопастное долото режуще-истирающего действия, выполненное с возможностью бурения горной породы для образования ствола скважины. Долото 10, в общем, включает в себя корпус 12 долота, хвостовик 13 долота, и деталь резьбового замка или замковый ниппель 14 для соединения долота 10 с бурильной колонной (не показано), используемой для вращения долота для бурения ствола скважины. Торец 20 долота несет вооружение 15 и выполнен на конце долота 10, противоположном концу 16 с замковым ниппелем. Долото 10 имеет центральную осевую линию 11, вокруг которой долото 10 вращается в направлении резания, представленном стрелкой 18.

[0007] Вооружение 15 создано на торце 20 долота 10. Вооружение 15 включает в себя множество установленных с угловыми интервалами основных лопастей 31, 32, 33, и вспомогательных лопастей 34, 35, 36, каждая из которых выступает от торца 20 долота. Основные лопасти 31, 32, 33 и вспомогательные лопасти 34, 35, 36 проходят, в общем, радиально вдоль торца 20 долота и затем аксиально вдоль участка периферии долота 10. При этом, вспомогательные лопасти 34, 35, 36 проходят радиально вдоль торца 20 долота от положения, удаленного от осевой линии 11 долота, к периферии долота 10. Таким образом, в данном документе термин "вспомогательная лопасть" можно использовать для лопасти, которая начинается на некотором расстоянии от осевой линии долота и проходит, в общем, радиально вдоль торца долота к периферии долота. Основные лопасти 31, 32, 33 и вспомогательные лопасти 34, 35, 36 разделены каналами 19 прохода бурового раствора.

[0008] Также, как показано на фиг.1 и 2, каждая основная лопасть 31, 32, 33 включает в себя верх 42 лопасти для установки множества режущих элементов, и каждая вспомогательная лопасть 34, 35, 36 включает в себя верх 52 лопасти для установки множества режущих элементов. В частности, режущие элементы 40, каждый имеющий режущую поверхность 44, установлены в гнезда, выполненные в верхних частях 42, 52 каждой основной лопасти 31, 32, 33 и каждой вспомогательной лопасти 34, 35, 36, соответственно. Режущие элементы 40 выполнены смежно друг с другом в проходящем радиально ряду вблизи ведущей кромки каждой основной лопасти 31, 32, 33 и каждой вспомогательной лопасти 34, 35, 36. Каждая режущая поверхность 44 имеет самую удаленную от осевой линии вершину 44a резца, самую удаленную от верха 42, 52 лопастей, на котором режущий элемент 40 установлен.

[0009] На фиг.3 показан профиль долота 10, получающийся для всех лопастей (например, основных лопастей 31, 32, 33 и вспомогательных лопастей 34, 35, 36) и режущих поверхностей 44 всех режущих элементов 40 при повороте в одну плоскость при вращении. На профиле верхние участки 42, 52 всех лопастей 31-36 долота 10 образуют и определяют комбинированный или сводный профиль 3 лопасти, проходящий радиально от осевой линии 11 долота к наружному радиусу 23 долота 10. Таким образом, при использовании в данном документе, фраза "сводный профиль лопасти" относится к профилю, проходящему от осевой линии долота к наружному радиусу долота, и образованному верхними участками всех лопастей долота, повернутыми в одну плоскость при вращении (т.е. к виду профиля вращения).

[0010] Обычный сводный профиль 39 лопасти (наиболее ясно показан на правой половине долота 10 на фиг.3) можно, в общем, разделить на три зоны, обычно называемые конусообразной зоной 24, выступающей зоной 25 и калибрующей зоной 26. Конусообразная зона 24 представляет собой радиально самую близкую к осевой линии зону долота 10 и сводного профиля 39 лопасти, проходящую, в общем от осевой линии 11 долота до выступающей зоны 25. Как показано на Фиг.3, в большинстве обычных долот с фиксированным режущим элементом конусообразная зона 24 является, в общем, вогнутой. Смежной с конусообразной зоной 24 является выступающая (или имеющая вид направленной кверху кривой) зона 25. В большинстве обычных долот с фиксированным режущим элементом выступающая зона 25 является, в общем, выпуклой. Выступающая радиально наружу смежная с выступающей зоной 25 калибрующая зона 26 проходит параллельно осевой линии 11 долота на наружной радиальной периферии сводного профиля 39 лопасти. Таким образом, сводный профиль 39 лопасти обычного долота 10 включает в себя одну вогнутую конусообразную зону 24, и одну выпуклую выступающую зону 25.

[0011] Аксиально самая нижняя точка выпуклой выступающей зоны 25 и сводного профиля 39 лопасти образуют нос 27 профиля лопасти. На носу 27 профиля лопасти угол наклона касательной 27a к выпуклой выступающей зоне 25 и сводному профилю 39 лопасти равен нулю. Таким образом, при использовании в данном документе термин "нос профиля лопасти" относится к точке на выпуклой зоне сводного профиля лопасти долота на виде при повороте в одну плоскость, в которой угол наклона касательной к сводному профилю лопасти равен нулю. Для большинства обычных долот с фиксированными резцами (например, долота 10) сводный профиль лопасти включает в себя только одну выпуклую выступающую зону (например, выпуклую выступающую зону 25), и только один нос профиля лопасти (например, нос 27). Как показано на фиг.1-3, режущие элементы 40 расположены рядами вдоль лопастей 31-36 и установлены вдоль торца 20 долота в зонах, описанных выше как конусообразная зона 24, выступающая зона 25 и калибрующая зона 26 сводного профиля 39 лопасти. В частности, режущие элементы 40 установлены на лопасти 31-36 в заданных положениях радиально дистанцированных относительно центральной осевой линии 11 долота 10.

[0012] Для бурения более твердых пород механизм бурения меняется с режущего на режуще-истирающий. Для бурения с режуще-истирающим действием предпочтительными являются долота имеющие фиксированные абразивные элементы. Хотя долота PDC известны своей эффективностью для бурения некоторых пород, обнаружено, что их эффективность меньше в твердых весьма абразивных породах, таких как песчаник. Для данных твердых пород эффективным является вооружение, которое содержит твердые частицы алмаза, или твердые спекшиеся частицы алмаза, импрегнированные в несущую матрицу. В приведенном ниже рассмотрении, компоненты данного типа именуются "импрегнированными алмазами".

[13] Импрегнированные алмазами буровые долота обычно используют для бурения стволов скважин в пластах высокотвердых или абразивных горных пород. Режущая поверхность таких долот содержит в себе природные или синтетические алмазы, распределенные в несущем материале (например, композиты с металлической матрицей) для образования абразивного слоя. Во время работы бурового долота алмазы в абразивном слое постепенно обнажаются при стирании несущего материала. Непрерывный процесс обнажения новых алмазов, благодаря стиранию несущего материала на режущей поверхности, является фундаментальным принципом функционирования для импрегнированных буровых долот

[0014] Пример импрегнированного алмазами бурового долота известной техники показан на фиг.4. Импрегнированное долото 70 включает в себя корпус 72 долота и совокупность ребер 74, которые выполнены в корпусе 72 долота. Ребра 74 могут проходить от центра корпуса долота радиально наружу к наружному диаметру корпуса 72 долота, и затем аксиально вниз, для образования диаметра (или калибра) импрегнированного долота 70. Ребра 74 разделены каналами 76, которые обеспечивают буровому раствору проход между ребрами и как очистку, так и охлаждение ребер 74. Ребра 74 обычно располагаются группами 79 где канавка 78 между группами 79 обычно выполняется с помощью удаления или пропуска, по меньшей мере участка ребра 74. Канавки 78, которые можно называть "каналами прохода текучей среды", установлены для создания дополнительных каналов подачи бурового раствора и для создания прохода выбуренной породы вдоль бурового долота 70 к наземному оборудованию скважины (не показано).

[0015] На фиг.5 показан пример импрегнированного долота 80 известной техники согласно U.S. Patent No. 6394202, который выдан патентообладателю настоящего изобретения и включен в виде ссылки. На фиг.5 импрегнированное долото 80 содержит хвостовик 82 и коронку 84. Хвостовик 82 обычно выполнен из стали и включает в себя замковый ниппель 86 с резьбой для прикрепления к бурильной колонне. Коронка 84 имеет режущую поверхность 88 и наружную боковую поверхность 89. Согласно одному или нескольким вариантам осуществления коронка 84 выполняется с помощью инфильтрации массы порошка карбида вольфрама, импрегнированной синтетическими или природными алмазами.

[0016] Коронка 84 может включать в себя различные элементы поверхности, такие как поднятые ребра 74. Предпочтительно, оправки включаются в конструкцию во время изготовления, так что коронка с инфильтрованными импрегнированными алмазами включает в себя множество отверстий или гнезд 85, выполняемых с размерами и формой для приема соответствующей совокупности импрегнированных алмазами штырей 83. Когда коронка 84 отформована, штыри 83 устанавливают в гнезда 85 и крепят любым подходящим способом, таким как пайка, клеевое соединение, механическим средством, таким как посадка с натягом, или т.п. Как показано на фиг.5, гнезда 85 могут располагаться по существу перпендикулярно к поверхности коронки 84. Альтернативно, и как показано на фиг.5, каждое гнездо 85 может по существу располагаться перпендикулярно поверхности коронки 84. В данном варианте осуществления гнезда 85 наклонены так, что штыри 83 ориентируются по существу в направлении вращения долота, для улучшения породоразрушения.

[0017] На фиг.6 показан пример сечения ребра импрегнированного бурового долота известной техники. Ребро 74 имеет профиль 90, определяющий его общую форму/геометрию с возможным разделением на различные сегменты: зона 92 воронки (вынутая центральные площадь), торцевая зона 94 (ведущая режущая кромка профиля), зона 96 наружной кромки (начало наружного диаметра долота), переходная зона 98 (переход между наружной кромкой и вертикальным калибром), и калибрующая зона 99 (вертикальная зона, определяющая наружный диаметр долота). Основной породоразрушающий участок ребра 74 включает в себя зону 92 воронки, торцевую зону 94 и зону 96 наружной кромки, а калибрующая зона 99 в основном предназначена для поддержания диаметра ствола.

[0018] Вне зависимости от типа долота стоимость бурения ствола скважины является пропорциональной времени, затраченному на бурение ствола скважины до нужной глубины и в проектное место. На время бурения, в свою очередь, в значительной степени влияет число замен бурового долота для достижения проектного пласта. Причина состоит в том, что каждый раз, когда долото меняют, всю бурильную колонну, которая может иметь длину несколько миль (1 миля = 1,6 км), приходится извлекать из ствола скважины свечу за свечой. После извлечения бурильной колонны и установки нового долота, долото должно спускаться на забой ствола скважины на бурильной колонне, которую вновь приходится собирать из трубных свечей. Данный процесс, известный как "рейс" бурильной колонны, требует значительного времени, затрат труда и расходов. Соответственно, всегда требуется использовать буровые долота, которые должны бурить быстрее и работать дольше, применимые в более широком диапазоне пластов с отличающейся твердостью и в различных вариантах.

[0019] Продолжительность времени использования бурового долота до его замены зависит от его скорости проходки, а также его долговечности или способности поддерживать высокую или приемлемую скорость проходки. Конкретно, скорость проходки является скоростью, с которой буровое долото проходит через данный подземный пласт. Скорость проходки обычно измеряют в футах (0,3 м) в час. Продолжаются усилия по оптимизации конструкции буровых долот для ускорения бурения конкретных пластов для уменьшения затрат на бурение, на которые значительно влияет скорость проходки.

[0020] Когда требуемый пласт вскрывается в стволе скважины, образец керна пласта можно извлекать для проведения анализа. Обычно, пустотелое керновое буровое долото применяют для получения образца керна из пласта. Когда образец керна поднят из ствола скважины на поверхность, образец можно использовать для проведения анализов и испытаний, например, проницаемости, пористости, состава или других геологических свойств пласта.

[0021] Вне зависимости от типа бурового долота, применяемого для бурения пласта, обычные способы отбора керна требуют извлечения бурильной колонны из ствола скважины, замены бурового долота керновым буровым долотом, и спуска кернового бурового долота в ствол скважины на бурильной колонне для отбора образца керна, который затем поднимается по стволу скважины на поверхность для анализа. То есть, обычные способы отбора керна требуют выполнения рейса бурильной колонны в скважину и таким образом требуют значительного времени, усилий и затрат.

[0022] Соответственно, требуется создание бурового долота с фиксированными резцами, обеспечивающего извлечение фрагментов образцов керна из пласта во время бурения, таким образом исключающего выполнение рейса бурильной колонны в скважину и уменьшающего стоимость отбора керна. Дополнительно, от такого бурового долота с фиксированными резцами требуется поддержание приемлемых скоростей проходки в течение приемлемого времени и предотвращение блокирования прохода через долото при подъеме фрагментов образцов керна на поверхность для анализа.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0023] В одном аспекте варианты осуществления, раскрытые в данном документе, относятся к буровому долоту для получения фрагментов образцов керна из подземного пласта, которое включает в себя: корпус долота, имеющий центральную осевую линию долота и торец долота; совокупность лопастей, проходящих радиально вдоль торца долота и разделенных совокупностью каналов прохода потока между собой, при этом, одна из совокупности лопастей является лопастью отбора керна, включающей в себя по существу вертикальную поверхность и наклонную поверхность, при этом по существу вертикальная поверхность и наклонная поверхность интегрально соединяются; и совокупность режущих элементов, расположенных на совокупности лопастей, при этом один из совокупности режущих элементов является первым режущим элементом, расположенным на лопасти отбора керна на первой радиальной позиции от центральной осевой линии долота.

[0024] В другом аспекте варианты осуществления, раскрытые в данном документе, относятся к буровому долоту для получения фрагментов образцов керна из подземного пласта, которое включает в себя: корпус долота, имеющий центральную осевую линию долота и торец долота; совокупность лопастей, проходящих радиально вдоль торца долота и разделенных совокупностью каналов прохода потока между собой, при этом одна из совокупности лопастей является лопастью отбора керна, при этом один из совокупности каналов прохода потока является желобом для удаления керна, установленным поперек центральной осевой линии долота относительно лопасти отбора керна; и совокупность режущих элементов, расположенных на совокупности лопастей, при этом один из совокупности режущих элементов является первым режущим элементом, расположенным на лопасти отбора керна на первой радиальной позиции от центральной осевой линии долота, при этом первый режущий элемент является коническим режущим элементом, встроенным в лопасть отбора керна так, что вершина конического режущего элемента ориентируется к центральной осевой линии долота, при этом опорная поверхность расположена между лопастью отбора керна и желобом для удаления керна и интегрально соединяет лопасть отбора керна с желобом для удаления керна, при этом конический штырь располагается вблизи центральной осевой линии долота на опорной поверхности, и при этом конический штырь является встроенным в корпус долота так, что вершина конического штыря устанавливается аксиально над первой радиальной позицией первого режущего элемента.

[0025] В другом аспекте варианты осуществления, раскрытые в данном документе, относятся к способу получения фрагментов образцов керна из подземного пласта, который включает в себя: скрепление бурового долота с нижним концом бурильной колонны; вращение бурильной колонны, обеспечивающее проходку буровым долотом пласта с разрушением породы, создающего ствол скважины; использование первого режущего элемента бурового долота для формирования фрагмента образца керна вблизи центральной осевой линии бурового долота во время вращения бурильной колонны, при этом фрагмент образца керна имеет ширину, определяемую первой радиальной позицией первого режущего элемента; использование наклонной поверхности лопасти отбора керна для приложения поперечной нагрузки на боковую поверхность фрагмента образца керна для обеспечения отрыва фрагмента образца керна от пласта после достижения некоторой длины фрагмента образца керна; перемещение фрагмента образца керна в желоб удаления керна бурового долота; и транспортировку фрагмента образца керна из желоба для удаления керна на поверхность через кольцевое пространство, образованное между стволом скважины и бурильной колонной.

[0026] В еще одном аспекте варианты осуществления, раскрытые в данном документе, относятся к способу получения фрагмента образца керна из подземного пласта, который включает в себя: скрепление бурового долота с нижним концом бурильной колонны; вращение бурильной колонны, обеспечивающее проходку буровым долотом пласта с разрушением породы, создающего ствол скважины; использование конического режущего элемента, встроенного в лопасть отбора керна бурового долота для врубки породы, когда фрагмент образца керна формируется вблизи центральной осевой линии бурового долота во время вращения бурильной колонны, при этом фрагмент образца керна имеет ширину, определяемую первой радиальной позицией конического режущего элемента, встроенного в лопасть отбора керна; использование конического режущего элемента, встроенного в лопасть отбора керна для ослабления фрагмента образца керна для обеспечения отрыва фрагмента образца керна от пласта после достижения некоторой длины фрагмента образца керна; в случае если конический режущий элемент, встроенный в лопасть отбора керна, не может оторвать фрагмент образца керна от пласта, использование конического штыря, расположенного вблизи центральной осевой линии бурового долота для приложения осевой нагрузки на конец фрагмента образца керна для отрыва фрагмента образца керна от пласта после достижения некоторой длины фрагмента образца керна, при этом конический штырь расположенный вблизи центральной осевой линии бурового долота, является встроенным в корпус долота так, что вершина конического штыря устанавливается аксиально над первой радиальной позицией конического режущего элемента, встроенного в лопасть отбора керна; перемещение фрагмента образца керна в желоб удаления керна бурового долота; и транспортировку фрагмента образца керна из желоба для удаления керна на поверхность пласта через кольцевое пространство, образованное между стволом скважины и бурильной колонной.

[0027] Другие аспекты и преимущества изобретения должны стать ясны из следующего описания и прилагаемой формулы изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0028] На фиг.1 показано в перспективе буровое долото PDC известной техники.

[0029] На фиг.2 показан вид сверху бурового долота PDC известной техники.

[0030] На фиг.3 показано сечение бурового долота PDC известной техники.

[0031] На фиг.4 показан вид сверху импрегнированного бурового долота известной техники.

[0032] На фиг.5 показано в перспективе импрегнированное буровое долото известной техники.

[0033] На фиг.6 показано сечение ребра импрегнированного бурового долота известной техники.

[0034] На фиг.7 показано в перспективе буровое долото с фрагментом образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0035] На фиг.8 показан другой вид в перспективе бурового долота с фрагментом образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0036] На фиг.9 показан вид сверху бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0037] На фиг.10 показан вид сверху бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0038] На фиг.11 показана в перспективе часть бурового долота с фрагментами образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0039] На фиг.12 показана в перспективе часть бурового долота без фрагментов образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0040] На фиг.13 показана часть разобранного бурового долота фиг.12 согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0041] На фиг.14 показана другая часть разобранного бурового долота фиг.12 согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0042] На фиг.15 показано сечение бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0043] На фиг.16 показано сечение бурового долота фиг.15 с фрагментом образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0044] На фиг.17 показан график процентного изменения скорости проходки бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0045] На фиг.18 показан график сравнения нормальной силы на буровом долоте согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0046] На фиг.19 показана в перспективе часть бурового долота с фрагментами образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0047] На фиг.20 показана в перспективе часть бурового долота фиг.19 без фрагментов образцов керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0048] На фиг.21 показана часть разобранного бурового долота фиг.20 согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0049] На фиг.22 показана другая часть разобранного бурового долота фиг.20 согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0050] На фиг.23 показано сечение бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0051] На фиг.24 показано в перспективе сечение бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0052] На фиг.25 показано сечение бурового долота фиг.23 с фрагментом образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0053] На фиг.26A-C показаны различные конические штыри или конические режущие элементы согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0054] На фиг.27 показан вариант осуществления конического штыря или конического режущего элемента согласно настоящему изобретению.

[0055] На фиг.28A-C показаны различные конические штыри или конические режущие элементы согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0056] На фиг.29 показан вариант осуществления конического штыря или конического режущего элемента согласно одному или нескольким вариантам осуществления настоящего изобретения.

[0057] На фиг.30 показан режущий профиль согласно одному варианту осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ

[0058] Варианты осуществления настоящего изобретения описаны ниже и показаны на фигурах. в одном аспекте варианты осуществления, раскрытые в данном документе, относятся к устройству и способам для получения фрагментов образцов керна из подземного пласта. В частности, варианты осуществления, раскрытые в данном документе, относятся к буровым долотам с фиксированными резцами для получения фрагментов образцов керна из подземного пласта.

[0059] На фиг.7 и 8 показаны перспективы бурового долота с фрагментом образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения. Как показано, буровое долото является долотом 700 типа PDC, которое включает в себя корпус 701 долота, торец 703 долота, хвостовик 705, и замковый ниппель 707. Замковый ниппель 707 используется для скрепления долота 700 типа PDC с нижним концом бурильной колонны (не показано). Долото 700 типа PDC дополнительно включает в себя центральную осевую линию 709 долота вокруг которой долото 700 типа PDC вращается в направлении резания, показанном стрелкой 711. Согласно одному или нескольким вариантам осуществления настоящего изобретения торец 703 долота проходит через центральную осевую линию 709 долота и плавно переходит в площадь каналов 719 прохода потока и промежутка между ними, как подробно описано ниже.

[0060] Когда долото 700 типа PDC скрепляется с бурильной колонной, вращение бурильной колонны обуславливает вращение долота 700 типа PDC и проходку с разрушением породы через подземный пласт с использованием множества режущих элементов 713, как подробно описано ниже. При проходке с разрушением породы долота 700 типа PDC через подземный пласт образуется, ствол скважины.

[0061] Как показано на фиг.7 и 8, торец 703 долота 700 типа PDC несет совокупность лопастей 715. Совокупность лопастей 715 выполнена на конце долота 700 типа PDC противоположном замковому ниппелю 707. Как показано, совокупность лопастей 715 проходит радиально вдоль торца 703 долота и затем аксиально вдоль участка периферии долота 700 типа PDC. Согласно одному или нескольким вариантам осуществления настоящего изобретения одна из совокупности лопастей является лопастью 717 отбора керна, которая описана подробно ниже. Совокупность лопастей 715 разделяет совокупность каналов 719 прохода потока, которые обеспечивают проход потока бурового раствора между совокупностью лопастей 715 и как их очистку, так и охлаждение во время бурения. Согласно одному или нескольким вариантам осуществления настоящего изобретения один из совокупности каналов 719 прохода потока является желобом 721 для удаления керна, который описан подробно ниже.

[0062] Как дополнительно показано на фиг.7 и 8, каждая из совокупности лопастей 715 включает в себя совокупность режущих элементов, 713 расположенных на ней. Как показано, в совокупности режущие элементы 713 расположены смежно друг с другом в радиально проходящем ряду вблизи передней кромки каждой из совокупности лопастей 715. Совокупность режущих элементов 713 может иметь по существу плоскую режущую поверхность для получения породоразрушения резанием во время бурения пласта. В других вариантах осуществления любой один из совокупности режущих элементов 713 может являться вращающимся режущим элементом, таким как элементы, раскрытые в U.S. Patent No. 7703559, U.S. Patent Publication No. 2010/0219001, и U.S. Patent Application Nos. 13/152626, 61/479151, и 61/479183, все выданы настоящему патентообладателю и в данный документ полностью включены в виде ссылки. В других вариантах осуществления любой один из совокупности режущих элементов 713 может являться "коническим режущим элементом", таким как элемент, описанный в U.S. Patent Application Nos. 61/441,319, 13/370734, 61/499851, 13/370862, и 61/609527, все выданы настоящему патентообладателю и в данный документ полностью включены в виде ссылки. Конические режущие элементы также описаны подробно ниже.

[0063] Согласно одному или нескольким вариантам осуществления настоящего изобретения один из совокупности режущих элементов 713 является первым резцом (или первым режущим элементом) 723, расположенным на лопасти 717 отбора керна. Как описано подробно ниже, первый резец 723 и лопасть 717 отбора керна работают для формирования и отрыва фрагмента 725 образца керна, показаны на фиг.7 и 8.

[0064] Как дополнительно показано на фиг.7 и 8, долото 700 типа PDC включает в себя конический штырь 727, встроенный в корпус 701 долота и расположенный на или вблизи центральной осевой линии 709 долота. Как описано подробно ниже, конический штырь 727 работает с лопастью 717 отбора керна, обуславливая отрыв фрагмента 725 образца керна от пласта во время бурения.

[0065] На фиг.9 показан вид сверху бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения. Конкретно, на фиг.9 показан вид сверху долота 700 типа PDC согласно одному или нескольким вариантам осуществления настоящего изобретения. Фрагмент 725 образца керна не показан на фиг.9 для создания не закрытого вида сверху структуры долота 700 типа PDC. На фиг.9 показан торец 703 долота, совокупность режущих элементов 713, совокупность лопастей 715, и совокупность каналов 719 прохода потока, которые по отдельности описаны выше. На фиг.9 дополнительно показана лопасть 717 отбора керна, желоб 721 для удаления керна, первый резец 723 и конический штырь 727, которые по отдельности описаны ниже.

[0066] На фиг.10 показан вид сверху бурового долота согласно одному или нескольким вариантам осуществления настоящего изобретения. Конкретно на фиг.10 показан вид сверху долота 700 типа PDC согласно одному или нескольким вариантам осуществления настоящего изобретения. Фиг.10 является аналогичной фиг.9 за исключением того, что показан участок 1000 перемычки согласно одному или нескольким вариантам осуществления настоящего изобретения. Для ясности некоторые элементы на фиг.10, которые перекрывают показанные на фиг.9, исключены.

[0067] Как показано на фиг.10, согласно одному или нескольким вариантам осуществления настоящего изобретения участок 1000 перемычки соединяет вместе центрально расположенные смежные концевые участки по меньшей мере двух из совокупности лопастей 715. Согласно одному или нескольким вариантам осуществления настоящего изобретения участок 1000 перемычки соединяет вместе центрально расположенный концевой участок лопасти 717 отбора керна со смежным центрально расположенным концевым участком по меньшей мере одной из совокупности лопастей 715. Соединение, созданное участком 1000 перемычки, может связывать центрально расположенные смежные концевые участки по меньшей мере двух из совокупности лопастей 715 в интегральную деталь. В некоторых вариантах осуществления участок 1000 перемычки может связывать лопасть 717 отбора керна и одну из совокупности лопастей 715, которая не является не лопастью 717 отбора керна, или участок 1000 перемычки может связывать по меньшей мере две из совокупности лопастей 715, которые не являются лопастью 717 отбора керна.

[0068] Как показано на фиг.7-10, при вращении долота 700 типа PDC в пласте, долото 700 типа PDC работает, создавая ствол скважины благодаря действию совокупности режущих элементов 713, и одновременно работает, создавая фрагмент 725 образца керна благодаря действию первого резца 723 лопасти 717 отбора керна. Когда фрагмент 725 образца керна образуется во время бурения, гидравлическая схема долота на торце 703 долота и между совокупностью каналов 719 прохода потока помогает передавать вновь образованный фрагмент 725 образца керна к желобу 721 для удаления керна в долоте 700 типа PDC.

[0069] Как показано на фиг.10, когда применяется участок 1000 перемычки, описанный выше согласно одному или нескольким вариантам осуществления настоящего изобретения механическая структура участка 1000 перемычки создает границу, и вместе с гидравлической схемой долота, помогает направлять вновь образованный фрагмент 725 образца керна к желобу 721 для удаления керна в долоте 700 типа PDC.

[0070] На фиг.11 показана в перспективе часть бурового долота с фрагментами 725 образца керна согласно одному или нескольким вариантам осуществления настоящего изобретения. Конкретно на фиг.11 показана в перспективе часть долота 700 типа PDC согласно одному или нескольким вариантам осуществления настоящего изобретения. На фиг.12 показана в перспективе часть долота 700 типа PDC согласно одному или нескольким вариантам осуществления настоящего изобретения аналогичная показанной на фиг.11 без фрагментов 725 образцов керна для показа в перспективе не закрытой части структуры долота 700 типа PDC.

[0071] На фиг.12 показана совокупность режущих элементов 713, совокупность лопастей 715 и совокупность каналов 719 прохода потока, которые описаны выше. На фиг.12 дополнительно показана лопасть 717 отбора керна, желоб 721 для удаления керна, первый резец 723 и конический штырь 727, которые по отдельности описаны ниже.

[0072] Как показано на фиг.12, лопасть 717 отбора керна является одной из совокупности лопастей 715 долота 700 типа PDC. На фиг.13-14 показаны части разобранного долота 700 типа PDC фиг.12 согласно одному или нескольким вариантам осуществления настоящего изобретения. Конкретно на фиг.13-14 внимание концентрируется на лопасти 717 отбора керна. Как показано, согласно одному или нескольким вариантам осуществления настоящего изобретения лопасть 717 отбора керна имеет совокупность режущих элементов 713, расположенных на ней. Один из совокупности режущих элементов 713 является первым резцом 723. Согласно одному или нескольким вариантам осуществления настоящего изобретения первый резец 723 располагается на лопасти 717 отбора керна на первой радиальной позиции R1 от центральной осевой линии 709 долота. Первая радиальная позиция R1 определяется с помощью поворота всех режущих элементов 713 в одну плоскость при вращении для получения профиля режущего инструмента. Режущий элемент 713 расположенный самым близки