Системы и способы для расширенного канала управления

Иллюстрации

Показать все

Изобретение относится к технике беспроводной связи и может быть использовано для приема расширенного физического канала управления нисходящей линии связи (E-PDCCH) в модуле беспроводной передачи/приема (WTRU). В способе приема E-PDCCH для модуля беспроводной передачи/приема (WTRU) идентифицируют элемент расширенного канала управления (E-CCE) расширенного физического канала управления нисходящей линии связи (E-PDCCH), определяют идентификатор порта антенны, используемый для передачи E-PDCCH, по меньшей мере частично на основе идентификатора E-CCE в E-PDCCH и декодируют E-PDCCH по порту антенны. Технический результат - поддержание сложности декодирования на разумном уровне, которые позволяют WTRU определить, следует ли вообще пытаться декодировать E-PDCCH. 2 н. и 22 з.п. ф-лы, 2 табл., 10 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Данная заявка притязает на преимущество по предварительной заявке на патент США № 61/441,846, поданной 11 февраля 2011 года, предварительной заявке на патент США № 61/523,043, поданной 12 августа 2011 года, предварительной заявке на патент США № 61/541,188, поданной 30 сентября 2011 года, предварительной заявке на патент США № 61/556,088, поданной 4 ноября 2011 года и предварительной заявке на патент США № 61/591,531, поданной 27 января 2012 года, содержимое которых настоящим включается в этот документ по ссылке.

УРОВЕНЬ ТЕХНИКИ

[0002] Протокол усовершенствованной Системы долгосрочного развития (LTE Advanced) Проекта партнерства 3го поколения (3GPP) является стандартом беспроводной связи 4ого поколения (4G). Поскольку число пользователей беспроводной связи продолжает увеличиваться, стандарт LTE Advanced постоянно развивается в попытке предоставить расширенные услуги и возможности для пользователей. Например, такие свойства, как функциональность во всем мире и роуминг, совместимость услуг, взаимодействие с другими системами радиодоступа и увеличенные максимальные скорости передачи данных для поддержки современных услуг и приложений (например, 100 Мбит/с для высокой мобильности и 1 Гбит/с для низкой мобильности), являются целями для сетей, реализующих LTE Advanced. По существу, нужно проектировать и определять подробности мобильности и радиоуправления, которые обеспечивают такие функциональные возможности.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0003] Раскрывается способ приема расширенного физического канала управления нисходящей линии связи (E-PDCCH) для модуля беспроводной передачи/приема (WTRU). WTRU может определить, попытаться ли декодировать E-PDCCH в идентифицированном субкадре на идентифицированной составляющей несущей. WTRU определяет множество элементов ресурсов (RE) в идентифицированном субкадре на идентифицированной составляющей несущей, которые ассоциированы с областью E-PDCCH идентифицированного субкадра. WTRU может дополнительно определить по меньшей мере один возможный E-PDCCH в области E-PDCCH идентифицированной составляющей несущей. По меньшей мере один возможный E-PDCCH может включать в себя поднабор из множества RE в области E-PDCCH. WTRU может попытаться обработать возможный E-PDCCH.

[0004] Попытка обработать возможный E-PDCCH может включать в себя выполнение пространственного демультиплексирования путем определения по меньшей мере одного порта антенны, из которого WTRU пытается декодировать возможный E-PDCCH. Пространственное демультиплексирование может выполняться на основе по меньшей мере одного принятого опорного сигнала, характерного для пользовательского оборудования (UE). WTRU может определить по меньшей мере один возможный E-PDCCH в области E-PDCCH на основе расположения по меньшей мере одного элемента расширенного канала управления (E-CCE) в области E-PDCCH. Обработка возможного E-PDCCH может включать в себя демодуляцию множества символов модуляции из возможного E-PDCCH на основе предполагаемого отношения мощностей между E-PDCCH и по меньшей мере одним принятым характерным для UE опорным сигналом для порта антенны, который соответствует возможному E-PDCCH. WTRU может определить по меньшей мере один возможный E-PDCCH в области E-PDCCH идентифицированной составляющей несущей на основе параметра E-PDCCH. Параметр E-PDCCH может быть определенной характеристикой передачи E-PDCCH. Параметр E-PDCCH может включать в себя по меньшей мере одно из идентификатора по меньшей мере одного порта антенны, по которому принимается E-PDCCH, характеристики по меньшей мере одного порта антенны, по которому принимается E-PDCCH, или общего количества портов антенны, по которым принимается E-PDCCH.

[0005] Возможный E-PDCCH может включать в себя множество E-CCE. Множество E-CCE может приниматься по множеству портов антенны. WTRU может попытаться обработать возможный E-PDCCH на основе информации, принятой в поддерживающем физическом канале управления нисходящей линии связи (PDCCH). WTRU может принимать физический совместно используемый канал нисходящей линии связи (PDSCH) на основе информации из E-PDCCH. WTRU может неявно определить характеристику передачи PDSCH на основе характеристики передачи E-PDCCH.

[0006] WTRU может принимать E-PDCCH путем определения по меньшей мере одного порта антенны, ассоциированного с областью E-PDCCH. WTRU может определить возможный E-PDCCH, расположенный в области E-PDCCH, на основе по меньшей мере одного порта антенны. WTRU может попытаться обработать возможный E-PDCCH на основе по меньшей мере одного принятого предварительно кодированного опорного сигнала, ассоциированного по меньшей мере с одним портом антенны. По меньшей мере один принятый предварительно кодированный опорный сигнал может предварительно кодироваться с такими же весовыми коэффициентами предварительного кодирования, что использовались для возможного E-PDCCH.

[0007] E-PDCCH может ассоциироваться с множеством портов антенны, и WTRU может попытаться обработать возможный E-PDCCH на основе отношения предварительного кодирования между множеством портов антенны. Область E-PDCCH может располагаться вне унаследованной области управления для унаследованного физического канала управления нисходящей линии связи (PDCCH). E-PDCCH может ассоциироваться с множеством портов антенны, и WTRU может попытаться обработать E-PDCCH с использованием первого предварительно кодированного опорного сигнала, ассоциированного с первым портом антенны, чтобы обработать первую часть возможного E-PDCCH, и второго предварительно кодированного опорного сигнала, ассоциированного со вторым портом антенны, чтобы обработать вторую часть возможного E-PDCCH. Первый предварительно кодированный опорный символ может ассоциироваться с первым поднабором элементов ресурсов (RE) в области E-PDCCH, а второй предварительно кодированный опорный символ может ассоциироваться со вторым поднабором RE в области E-PDCCH.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Нижеследующее подробное описание раскрытых вариантов осуществления лучше воспринимается при прочтении в сочетании с прилагаемыми чертежами. С целью иллюстрации на чертежах показаны типовые варианты осуществления; однако предмет изобретения не ограничивается определенными раскрытыми элементами и средствами. На чертежах:

[0009] Фиг.1A - схема системы для примерной системы связи, в которой можно реализовать один или более раскрытых вариантов осуществления.

[0010] Фиг.1B - схема системы для примерного модуля беспроводной передачи/приема (WTRU), который может использоваться в системе связи, проиллюстрированной на Фиг.1A.

[0011] Фиг.1C - схема системы для примерной сети радиодоступа и примерной базовой сети, которые могут использоваться в системе связи, проиллюстрированной на Фиг.1A.

[0012] Фиг.2 - блок-схема алгоритма примерного процесса передачи расширенного канала управления.

[0013] Фиг.3 - блок-схема алгоритма примерного процесса приема расширенного канала управления.

[0014] Фиг.4 иллюстрирует субкадры с примерными областями расширенного канала управления.

[0015] Фиг.5 иллюстрирует примерные элементы расширенного канала управления (E-CCE), которые могут использоваться для E-PDCCH и передаваться по одному или более портам антенны.

[0016] Фиг.6 иллюстрирует примерное выделение ресурсов E-PDCCH в соответствии с идентификаторами физических сот (PCI).

[0017] Фиг.7 иллюстрирует примерные элементы расширенного канала управления в субкадре, включающем в себя CRS и DM-RS.

[0018] Фиг.8 иллюстрирует примерные элементы расширенного канала управления в субкадре, включающем в себя DM-RS.

[0019] Фиг.9 иллюстрирует примерное агрегирование E-CCE с помощью перемежителя блоков.

[0020] Фиг.10 иллюстрирует пример отображения «сначала по времени» для нумерации E-CCE.

ПОДРОБНОЕ ОПИСАНИЕ ПОЯСНИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0021] Фиг.1A - схема примерной системы 100 связи, в которой можно реализовать один или более раскрытых вариантов осуществления. Система 100 связи может быть системой множественного доступа, которая предоставляет контент, такой как речь, данные, видео, обмен сообщениями, радиовещание и т.д., множеству беспроводных пользователей. Система 100 связи может обеспечивать возможность множеству беспроводных пользователей обращаться к такому контенту посредством совместного использования ресурсов системы, включающих полосу пропускания беспроводной связи. Например, системы 100 связи могут применять один или более способов доступа к каналу, таких как множественный доступ с кодовым разделением каналов (CDMA), множественный доступ с временным разделением каналов (TDMA), множественный доступ с частотным разделением каналов (FDMA), ортогональный FDMA (OFDMA), FDMA с одной несущей (SC-FDMA) и т.п.

[0022] Как показано на Фиг.1A, система 100 связи может включать в себя модули 102a, 102b, 102c, 102d беспроводной передачи/приема (WTRU), сеть 104 радиодоступа (RAN), базовую сеть 106, коммутируемую телефонную сеть 108 общего пользования (PSTN), Интернет 110 и другие сети 112, хотя нужно будет принять во внимание, что раскрытые варианты осуществления предполагают любое количество WTRU, базовых станций, сетей и/или сетевых элементов. Каждый из WTRU 102a, 102b, 102c, 102d может быть любым типом устройства, сконфигурированного для работы и/или осуществления связи в беспроводной среде. В качестве примера WTRU 102a, 102b, 102c, 102d могут конфигурироваться для передачи и/или приема беспроводных сигналов и могут включать в себя пользовательское оборудование (UE), мобильную станцию, стационарный или мобильный абонентский модуль, пейджер, сотовый телефон, персональный цифровой помощник (PDA), смартфон, переносной компьютер, нетбук, персональный компьютер, беспроводной датчик, бытовую электронику и т.п.

[0023] Системы 100 связи также могут включать в себя базовую станцию 114a и базовую станцию 114b. Каждая из базовых станций 114a, 114b может быть любым типом устройства, сконфигурированного для беспроводного взаимодействия по меньшей мере с одним из WTRU 102a, 102b, 102c, 102d, чтобы содействовать доступу к одной или более сетям связи, например, к базовой сети 106, Интернету 110 и/или сетям 112. В качестве примера базовые станции 114a, 114b могут быть базовой приемопередающей станцией (BTS), Узлом B, усовершенствованным Узлом B, домашним Узлом B, домашним усовершенствованным Узлом B, контроллером узла, точкой доступа (AP), беспроводным маршрутизатором и т.п. Хотя каждая из базовых станций 114a, 114b изображается как одиночный элемент, нужно будет принять во внимание, что базовые станции 114a, 114b могут включать в себя любое количество взаимосвязанных базовых станций и/или сетевых элементов.

[0024] Базовая станция 114a может быть частью RAN 104, которая также может включать в себя другие базовые станции и/или сетевые элементы (не показаны), например, контроллер базовой станции (BSC), контроллер радиосети (RNC), узлы ретрансляции и т.д. Базовая станция 114a и/или базовая станция 114b может конфигурироваться для передачи и/или приема беспроводных сигналов в конкретной географической области, которая может называться сотой (не показана). Сота дополнительно может делиться на секторы соты. Например, сота, ассоциированная с базовой станцией 114a, может делиться на три сектора. Таким образом, в одном варианте осуществления базовая станция 114a может включать в себя три приемопередатчика, то есть по одному для каждого сектора соты. В другом варианте осуществления базовая станция 114a может применять технологию многих входов и выходов (MIMO) и поэтому может использовать множество приемопередатчиков для каждого сектора соты.

[0025] Базовые станции 114a, 114b могут осуществлять связь с одним или более WTRU 102a, 102b, 102c, 102d по радиоинтерфейсу 116, который может быть любой подходящей линией беспроводной связи (например, радиочастотой (RF), микроволновым излучением, инфракрасным (IR) излучением, ультрафиолетовым (UV) излучением, видимым светом и т.д.). Радиоинтерфейс 116 может устанавливаться с использованием любой подходящей технологии радиодоступа (RAT).

[0026] Более конкретно, как отмечалось в этом документе, система 100 связи может быть системой множественного доступа и может применять одну или более схем доступа к каналу, например, CDMA, TDMA, FDMA, OFDMA, SC-FDMA и т.п. Например, базовая станция 114a в RAN 104 и WTRU 102a, 102b, 102c могут реализовать технологию радиосвязи, такую как Наземный радиодоступ (UTRA) универсальной системы мобильной связи (UMTS), которая может устанавливать радиоинтерфейс 116 с использованием широкополосного CDMA (WCDMA). WCDMA может включать в себя протоколы связи, например, высокоскоростной пакетный доступ (HSPA) и/или усовершенствованный HSPA (HSPA+). HSPA может включать в себя Высокоскоростной пакетный доступ нисходящей линии связи (HSDPA) и/или Высокоскоростной пакетный доступ восходящей линии связи (HSUPA).

[0027] В другом варианте осуществления базовая станция 114a и WTRU 102a, 102b, 102c могут реализовать технологию радиосвязи, такую как Усовершенствованный наземный радиодоступ UMTS (E-UTRA), которая может устанавливать радиоинтерфейс 116 с использованием Системы долгосрочного развития (LTE) и/или LTE-Advanced (LTE-A).

[0028] В других вариантах осуществления базовая станция 114a и WTRU 102a, 102b, 102c могут реализовать технологии радиосвязи, такие как IEEE 802.16 (то есть Общемировая совместимость для микроволнового доступа (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Промежуточный Стандарт 2000 (IS-2000), Промежуточный Стандарт 95 (IS-95), Промежуточный Стандарт 856 (IS-856), Глобальная система мобильной связи (GSM), Развитие стандарта GSM с увеличенной скоростью передачи данных (EDGE), сеть радиодоступа GSM EDGE (GERAN) и т.п.

[0029] Базовая станция 114b на Фиг.1A может быть, например, беспроводным маршрутизатором, домашним Узлом B, домашним усовершенствованным Узлом B или точкой доступа и может использовать любую подходящую RAT для содействия возможности беспроводного соединения в локализованной области, например, в месте работы, в доме, в транспортном средстве, на территории университета и т.п. В одном варианте осуществления базовая станция 114b и WTRU 102c, 102d могут реализовать технологию радиосвязи, такую как IEEE 802.11, для установления беспроводной локальной сети (WLAN). В другом варианте осуществления базовая станция 114b и WTRU 102c, 102d могут реализовать технологию радиосвязи, такую как IEEE 802.15, для установления беспроводной персональной сети (WPAN). В еще одном варианте осуществления базовая станция 114b и WTRU 102c, 102d могут использовать сотовую RAT (например, WCDMA, CDMA2000, GSM, LTE, LTE-A и т.д.) для установления пикосоты или фемтосоты. Как показано на Фиг.1A, базовая станция 114b может иметь прямое соединение с Интернетом 110. Таким образом, базовой станции 114b может не требоваться доступ в Интернет 110 через базовую сеть 106.

[0030] RAN 104 может осуществлять связь с базовой сетью 106, которая может быть любым типом сети, сконфигурированной для предоставления речевых, информационных, прикладных услуг и/или услуг передачи голоса по IP-протоколу (VoIP) одному или более из WTRU 102a, 102b, 102c, 102d. Например, базовая сеть 106 может обеспечивать управление вызовом, услуги тарификации, услуги на основе местоположения мобильных абонентов, предоплаченный вызов, подключение к Интернету, распространение видео и т.д. и/или выполнять высокоуровневые функции безопасности, например, аутентификацию пользователей. Хотя и не показано на Фиг.1A, нужно будет принять во внимание, что RAN 104 и/или базовая сеть 106 может прямо или косвенно осуществлять связь с другими RAN, которые применяют такую же RAT, что и RAN 104, или другую RAT. Например, в дополнение к подключению к RAN 104, которая может использовать технологию радиосвязи E-UTRA, базовая сеть 106 также может осуществлять связь с другой RAN (не показана), применяющей технологию радиосвязи GSM.

[0031] Базовая сеть 106 также может служить в качестве шлюза для WTRU 102a, 102b, 102c, 102d для доступа к PSTN 108, Интернету 110 и/или другим сетям 112. PSTN 108 может включать в себя телефонные сети с коммутацией каналов, которые предоставляют традиционную услугу телефонной связи (POTS). Интернет 110 может включать в себя глобальную систему взаимосвязанных вычислительных сетей и устройств, которые используют общие протоколы связи, например, Протокол управления передачей (TCP), Протокол дейтаграмм пользователя (UDP) и Интернет-протокол (IP) в стеке протоколов TCP/IP. Сети 112 могут включать в себя сети проводной или беспроводной связи, которыми владеют и/или управляют другие поставщики услуг. Например, сети 112 могут включать в себя другую базовую сеть, подключенную к одной или более RAN, которые могут применять такую же RAT, как и RAN 104, или другую RAT.

[0032] Некоторые или все из WTRU 102a, 102b, 102c, 102d в системе 100 связи могут включать в себя многорежимные способности, то есть WTRU 102a, 102b, 102c, 102d могут включать в себя множество приемопередатчиков для осуществления связи с разными беспроводными сетями по разным линиям радиосвязи. Например, показанный Фиг.1A WTRU 102c может конфигурироваться для осуществления связи с базовой станцией 114a, которая может применять сотовую технологию радиосвязи, и с базовой станцией 114b, которая может применять технологию радиосвязи IEEE 802.

[0033] Фиг.1B - схема системы примерного WTRU 102. Как показано на Фиг.1B, WTRU 102 может включать в себя процессор 118, приемопередатчик 120, элемент 122 передачи/приема, динамик/микрофон 124, клавишную панель 126, дисплей/сенсорную панель 128, несъемное запоминающее устройство 130, съемное запоминающее устройство 132, источник 134 питания, набор 136 микросхем системы глобального позиционирования (GPS) и другую периферию 138. Нужно будет принять во внимание, что WTRU 102 может включать в себя любую подкомбинацию вышеупомянутых элементов, оставаясь при этом в соответствии с вариантом осуществления.

[0034] Процессор 118 может быть универсальным процессором, процессором специального назначения, традиционным процессором, цифровым процессором сигналов (DSP), множеством микропроцессоров, одним или более микропроцессорами совместно с ядром DSP, контроллером, микроконтроллером, специализированными интегральными схемами (ASIC), схемами на программируемой пользователем вентильной матрице (FPGA), любым другим типом интегральной схемы (IC), конечным автоматом и т.п. Процессор 118 может выполнять кодирование сигналов, обработку данных, регулирование мощности, обработку ввода/вывода и/или любые другие функциональные возможности, которые дают WTRU 102 возможность работать в беспроводной среде. Процессор 118 может соединяться с приемопередатчиком 120, который может соединяться с элементом 122 передачи/приема. Хотя Фиг.1B изображает процессор 118 и приемопередатчик 120 как отдельные компоненты, нужно будет принять во внимание, что процессор 118 и приемопередатчик 120 могут объединяться в электронном блоке или микросхеме.

[0035] Элемент 122 передачи/приема может конфигурироваться для передачи сигналов или приема сигналов от базовой станции (например, базовой станции 114a) по радиоинтерфейсу 116. Например, в одном варианте осуществления элемент 122 передачи/приема может быть антенной, сконфигурированной для передачи и/или приема радиочастотных сигналов. В другом варианте осуществления элемент 122 передачи/приема может быть излучателем/детектором, сконфигурированным, например, для передачи и/или приема сигналов инфракрасного излучения, ультрафиолетового излучения или видимого света. В еще одном варианте осуществления элемент 122 передачи/приема может конфигурироваться для передачи и приема радиочастотных и световых сигналов. Нужно будет принять во внимание, что элемент 122 передачи/приема может конфигурироваться для передачи и/или приема любого сочетания беспроводных сигналов.

[0036] К тому же, хотя элемент 122 передачи/приема изображается на Фиг.1B как одиночный элемент, WTRU 102 может включать в себя любое количество элементов 122 передачи/приема. Более конкретно, WTRU 102 может применять технологию MIMO. Таким образом, в одном варианте осуществления WTRU 102 может включать в себя два или более элементов 122 передачи/приема (например, множество антенн) для передачи и приема беспроводных сигналов по радиоинтерфейсу 116.

[0037] Приемопередатчик 120 может конфигурироваться для модуляции сигналов, которые нужно передать с помощью элемента 122 передачи/приема, и демодуляции сигналов, которые принимаются элементом 122 передачи/приема. Как отмечалось в этом документе, WTRU 102 может иметь многорежимные способности. Таким образом, приемопередатчик 120 может включать в себя множество приемопередатчиков для предоставления WTRU 102 возможности осуществлять связь посредством множества RAT, например, UTRA и IEEE 802.11.

[0038] Процессор 118 в WTRU 102 может соединяться и может принимать пользовательские входные данные от динамика/микрофона 124, клавишной панели 126 и/или дисплея/сенсорной панели 128 (например, жидкокристаллического дисплея (LCD) или дисплея на органических светоизлучающих диодах (OLED)). Процессор 118 также может выводить пользовательские данные в динамик/микрофон 124, клавишную панель 126 и/или дисплей/сенсорную панель 128. К тому же процессор 118 может обращаться к информации и сохранять данные в любом типе подходящего запоминающего устройства, например, несъемном запоминающем устройстве 130 и/или съемном запоминающем устройстве 132. Несъемное запоминающее устройство 130 может включать в себя оперативное запоминающее устройство (RAM), постоянное запоминающее устройство (ROM), жесткий диск или любой другой тип запоминающего устройства. Съемное запоминающее устройство 132 может включать в себя карту модуля идентификации абонента (SIM), карту памяти Memory Stick, карту памяти Secure Digital (SD) и т.п. В других вариантах осуществления процессор 118 может обращаться к информации и сохранять данные в запоминающем устройстве, которое физически не располагается в WTRU 102, например, на сервере или домашнем компьютере (не показаны).

[0039] Процессор 118 может получать питание от источника 134 питания и может конфигурироваться для распределения и/или управления питанием для других компонентов в WTRU 102. Источник 134 питания может быть любым подходящим устройством для питания WTRU 102. Например, источник 134 питания может включать в себя одну или более батарей на сухих элементах (например, никель-кадмиевые (NiCd), никель-цинковые (NiZn), никель-металлогидридные (NiMH), литий-ионные (Li-ion) и т.д.), солнечные элементы, топливные элементы и т.п.

[0040] Процессор 118 также может соединяться с набором 136 микросхем GPS, который может конфигурироваться для предоставления информации о местоположении (например, долгота и широта) касательно текущего местоположения WTRU 102. В дополнение или вместо информации от набора 136 микросхем GPS WTRU 102 может принимать информацию о местоположении по радиоинтерфейсу 116 от базовой станции (например, базовых станций 114a, 114b) и/или определять свое местоположение на основе распределения во времени сигналов, принятых от двух или более ближайших базовых станций. Нужно будет принять во внимание, что WTRU 102 может получать информацию о местоположении посредством любого подходящего способа определения местоположения, оставаясь при этом в соответствии с вариантом осуществления.

[0041] Процессор 118 дополнительно может соединяться с другой периферией 138, которая может включать в себя один или более программных и/или аппаратных модулей, которые предоставляют дополнительные функции, функциональные возможности и/или возможность проводного или беспроводного соединения. Например, периферия 138 может включать в себя акселерометр, электронный компас, спутниковый приемопередатчик, цифровую камеру (для фотографий или видео), порт универсальной последовательной шины (USB), вибрационное устройство, телевизионный приемопередатчик, гарнитуру громкой связи, модуль Bluetooth®, радиоприемник частотно-модулированных сигналов (FM), цифровой музыкальный проигрыватель, мультимедийный проигрыватель, модуль видеоигр, Интернет-обозреватель и т.п.

[0042] Фиг.1C - схема системы RAN 104 и базовой сети 106 в соответствии с вариантом осуществления. Как отмечалось в этом документе, RAN 104 может применять технологию радиосвязи E-UTRA для осуществления связи с WTRU 102a, 102b, 102c по радиоинтерфейсу 116. RAN 104 также может осуществлять связь с базовой сетью 106.

[0043] RAN 104 может включать в себя усовершенствованные Узлы B (eNode-B) 140a, 140b, 140c, хотя нужно будет принять во внимание, что RAN 104 может включать в себя любое количество eNode-B, оставаясь при этом в соответствии с вариантом осуществления. eNode-B 140a, 140b, 140c могут включать в себя один или более приемопередатчиков для осуществления связи с WTRU 102a, 102b, 102c по радиоинтерфейсу 116. В одном варианте осуществления eNode-B 140a, 140b, 140c могут реализовывать технологию MIMO. Таким образом, eNode-B 140a может использовать множество антенн для передачи беспроводных сигналов и приема беспроводных сигналов от WTRU 102a.

[0044] Каждый из eNode-B 140a, 140b, 140c может ассоциироваться с конкретной сотой (не показано) и может конфигурироваться для принятия решений по управлению радиоресурсами, решений по передаче обслуживания, планированию пользователей в восходящей линии связи и/или нисходящей линии связи, и т.п. Как показано на Фиг.1C, eNode-B 140a, 140b, 140c могут осуществлять связь друг с другом по интерфейсу X2.

[0045] Базовая сеть 106, показанная на Фиг.1C, может включать в себя шлюз 142 управления мобильностью (MME), обслуживающий шлюз 144 и шлюз 146 сети с коммутацией пакетов (PDN). Хотя каждый из вышеупомянутых элементов изображается как часть базовой сети 106, нужно будет принять во внимание, что любым из этих элементов может владеть и/или управлять некий объект, отличный от оператора базовой сети.

[0046] MME 142 может быть подключен к каждому из eNode-B 140a, 140b, 140c в RAN 104 по интерфейсу S1 и может служить в качестве узла управления. Например, MME 142 может отвечать за аутентификацию пользователей WTRU 102a, 102b, 102c, активацию/деактивацию однонаправленного канала, выбор конкретного обслуживающего шлюза во время начального присоединения WTRU 102a, 102b, 102c и т.п. MME 142 также может предоставлять функцию плоскости управления для переключения между RAN 104 и другими RAN (не показаны), которые применяют другие технологии радиосвязи, например, GSM или WCDMA.

[0047] Обслуживающий шлюз 144 может быть подключен к каждому из eNode B 140a, 140b, 140c в RAN 104 по интерфейсу S1. Обслуживающий шлюз 144 может в целом направлять и перенаправлять пакеты пользовательских данных к/от WTRU 102a, 102b, 102c. Обслуживающий шлюз 144 также может выполнять другие функции, например, привязку плоскостей пользователя во время передач обслуживания между eNode B, инициирование поискового вызова, когда данные нисходящей линии связи доступны для WTRU 102a, 102b, 102c, управление и хранение контекстов WTRU 102a, 102b, 102c и т.п.

[0048] Обслуживающий шлюз 144 также может подключаться к шлюзу 146 PDN, который может предоставлять WTRU 102a, 102b, 102c доступ к сетям с коммутацией пакетов, например, Интернету 110, чтобы содействовать осуществлению связи между WTRU 102a, 102b, 102c и устройствами с поддержкой IP.

[0049] Базовая сеть 106 может содействовать осуществлению связи с другими сетями. Например, базовая сеть 106 может предоставить WTRU 102a, 102b, 102c доступ к сетям с коммутацией каналов, например, PSTN 108, чтобы содействовать осуществлению связи между WTRU 102a, 102b, 102c и традиционными устройствами наземной связи. Например, базовая сеть 106 может включать в себя или может осуществлять связь с IP-шлюзом (например, сервером мультимедийной подсистемы на основе IP (IMS)), который служит в качестве интерфейса между базовой сетью 106 и PSTN 108. К тому же базовая сеть 106 может предоставить WTRU 102a, 102b, 102c доступ к сетям 112, которые могут включать в себя другие проводные или беспроводные сети, которыми владеют и/или управляют другие поставщики услуг.

[0050] Чтобы поддерживать более высокие скорости передачи данных и способствовать спектральной эффективности, Система долгосрочного развития (LTE) Проекта партнерства третьего поколения (3GPP) внесена в Версию 8 3GPP (R8) (Версия 8 LTE в этом документе может называться LTE R8 или R8-LTE). В LTE передачи по восходящей линии связи могут выполняться с использованием Множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA). Например, SC-FDMA, используемый в восходящей линии связи LTE, основывается на технологии Мультиплексирования с ортогональным частотным разделением с расширением на Дискретном преобразовании Фурье (DFT-S-OFDM). При использовании в дальнейшем термины SC-FDMA и DFT-S-OFDM могут использоваться взаимозаменяемо.

[0051] В LTE модуль беспроводной передачи/приема (WTRU), в качестве альтернативы называемый пользовательским оборудованием (UE), может передавать по восходящей линии связи с использованием ограниченного, непрерывного набора назначенных поднесущих в компоновке Множественного доступа с частотным разделением каналов (FDMA). С целью иллюстрации, если весь сигнал Мультиплексирования с ортогональным частотным разделением каналов (OFDM) или полоса пропускания системы в восходящей линии связи состоит из поднесущих, пронумерованных от 1 до 100 в частотной области, то первому WTRU можно назначить передачу по поднесущим 1-12, второму WTRU можно назначить передачу по поднесущим 13-24, и так далее. Хотя каждый из разных WTRU может передавать в поднаборе доступной полосы пропускания передачи, усовершенствованный Узел B (eNodeB), обслуживающий эти WTRU, может принимать составной сигнал восходящей линии связи по всей полосе пропускания передачи.

[0052] LTE Advanced (которая включает в себя Версию 10 LTE (R10) и может включать в себя будущие версии, например, Версию 11, также называемая в этом документе LTE-A, LTE R10 или R10-LTE) является расширением стандарта LTE, которое обеспечивает полностью совместимое направление модернизации к 4G для сетей LTE и 3G. В LTE-A поддерживается агрегирование несущих, и в отличие от LTE, можно назначить множество несущих восходящей линии связи, нисходящей линии связи или обеим. Несущие, используемые для агрегирования несущих, могут называться составляющими несущими или сотами (например, основными сотами/Pcell, вспомогательными сотами/Scell и т.п.).

[0053] Характерные для UE опорные сигналы или опорные сигналы демодуляции (DM-RS) могут использоваться для демодуляции Физического совместно используемого канала нисходящей линии связи (PDSCH). При использовании в данном документе можно взаимозаменяемо ссылаться на DM-RS и характерные для UE опорные сигналы. DM-RS может встраиваться в данные, которые переданы для определенного WTRU. Например, DM-RS может включаться в части частотно-временной сетки, включающие в себя PDSCH (например, вне унаследованной области управления для унаследованного Физического канала управления нисходящей линии связи (PDCCH)). Поскольку сигналы DM-RS могут передаваться в блоках ресурсов (RB), содержащих данные, то они могут подвергаться такому же предварительному кодированию, что и данные, если используется множество методик передачи с многими входами и выходами (MIMO). Например, такие же весовые коэффициенты предварительного кодирования могут применяться к DM-RS, как применяются к пользовательским данным для WTRU, которые принимаются через PDSCH.

[0054] WTRU может использовать принятые DM-RS, чтобы принимать свои данные PDSCH нисходящей линии связи (например, в режиме 7 передачи). Например, если характерный для UE опорный сигнал передается и предварительно кодируется точно так же, как и PDSCH для того WTRU, то WTRU может использовать принятый характерный для UE опорный сигнал, чтобы вывести оценку канала для демодуляции данных в соответствующих RB PDSCH. WTRU может принимать характерные для UE опорные сигналы в определенном порте антенны, например, порте 5 антенны.

[0055] В дополнение к одноуровневой передаче характерные для UE опорные сигналы могут использоваться для содействия многоуровневой передаче и приему. Например, характерные для UE опорные сигналы/DM-RS могут использоваться для содействия передаче на множестве пространственных уровней к определенному WTRU. В примере характерные для UE опорные сигналы могут содействовать одноуровневой передаче к каждому из множества WTRU в виде многопользовательской передачи с многими входами и выходами (MU-MIMO). Использование характерных для UE опорных сигналов может поддерживать работу с множеством антенн, например, формирование луча, соответственно позволяя WTRU должным образом оценивать канал, который испытывает воздействие данных, из которых eNB сформировал луч и передал к WTRU. В примере могут использоваться пары Элементов ресурсов (RE), чтобы характерные для UE опорные сигналы могли мультиплексироваться по коду для множества (например, двух или более) уровней. Например, характерные для UE RS для двухуровневой передачи могут передаваться по портам 7 и/или 8 антенны. WTRU, сконфигурированный для использования двухуровневых характерных для UE опорных сигналов, может конфигурироваться в режиме 8 передачи PDSCH.

[0056] В примере могут использоваться множество DM-RS, чтобы передавать на 8 уровнях передачи включительно (хотя также может поддерживаться более 8 уровней, и настоящее раскрытие изобретения не ограничивается никаким количеством портов антенны). Поэтому могут использоваться отображения, чтобы связать или отобразить переданный (переданные) DM-RS в соответствующие порты (например, порты передачи, порты антенны и т.п.). Поскольку DM-RS могут предварительно кодироваться (например, формироваться в луч) на основе условий канала между eNB и WTRU, DM-RS могут использоваться для поддержки большей эффективности для оценки и демодуляции канала, приводя к большей общей эффективности для канала PDSCH. В R-8/9/10 общие опорные сигналы (CRS) (также называемые характерными для соты опорными сигналами) могут быть основными опорными сигналами, используемыми для оценки канала, например, для надлежащего обнаружения PDCCH. В R-10 эффективность PDSCH можно повысить путем применения DM-RS. Однако повышения эффективности канала PDSCH могут стать ограниченными, если каналы управления, которые поддерживают прием PDSCH, не изменяются для поддержки функциональных возможностей с большей эффективностью. Соответственно, раскрываются методики для повышения эффективности канала управления, так что, например, можно сохранить эффективность канала управления вместе с улучшениями в канале PDSCH.

[0057] Поскольку схема передачи в LTE-A опирается на DM-RS в нисходящей линии связи, и каналы управления нисходящей линии связи можно улучшить на основе DM-RS, использование общего опорного сигнала (CRS) может стать менее важным в системе. Например, можно задать новый тип субкадра без CRS, чтобы увеличить использование ресурсов. Унаследованные WTRU (R-8/9/10) могут не поддерживаться в новом типе субкадра (например, субкадр без обратной совместимости). Поэтому исполнение расширенного канала управления может быть оптимизировано для нового субкадра без обратной совместимости.

[0058] Варианты осуществления настоящего раскрытия изобретения предоставляют методики для расширенного канала управления, чтобы поддерживать улучшения в PDSCH. Примерные методики обработки могут включать в себя одно или более из: обнаружения наличия и расположения расширенного канала управления, задания ресурсов передачи для расширенного канала управления, улучшений в физическом канале индикатора гибридного автоматического запроса на повторение (HARQ) (PHICH), задания отображений ресурсов физического канала управления восходящей линии связи (PUCCH), измерений отказа линии радиосвязи (RLF) и/или любого их сочетания.

[0059] Системы и способы, раскрытые в этом документе, ссылаются на передачу информации о канале управления с использованием нового, расширенного канала управления. При использовании в этом документе термин "расширенный физический канал управления нисходящей линии связи (E-PDCCH)" может использоваться для описания канала управления, который может использоваться для оптимизации связи с использованием расширенных методик в LTE и LTE-A; однако описанные в этом документе методики не ограничиваются LTE или LTE-A и могут применяться в любой системе беспроводной связи.

[0060] Фиг.2 - блок-схема алгоритма примерного процесса передачи расширенного канала управления. Фиг.2 предназначается для общего описания примерных этапов обработки для передачи E-PDCCH, и каждый из этапов будет подробнее описываться в этом документе. Таким образом, Фиг.2 предназначается для изучения совместно и в сочетании с другим раскрытием изобретения, содержащемся в этом подробном описании. Как можно понять, в некоторых обстоятельствах и вариантах осуществления передатчик и/или eNB могут выполнять не все этапы обработки, показанные на Фиг.2. Например, если E-PDCCH включается в одноуровневую передачу, то передатчик/eNB может воздержаться от выполнения отображения уровней и/или предварительного кодирования. В примере eNB может передавать один или более E-PDCCH одному или более WTRU. eNB (и/или сеть) может определить поднабор субкадров, в которых нужно передавать E-PDCCH. В одном примере E-PDCCH может передаваться в каждом субкадре. В другом примере E-PDCCH может передаваться не в каждом субкадре. В примере E-PDCCH может передаватьс