Проточная камера для флуорометра реального времени

Иллюстрации

Показать все

Изобретение относится к области оптических измерений. Система флуоресцентного анализа может включать в себя головку датчика, которая имеет источник света, сконфигурированный с возможностью излучать свет в поток текучей среды, детектор, сконфигурированный с возможностью обнаруживать флуоресцентные излучения из потока текучей среды, и температурный датчик. Система также может включать в себя проточную камеру, которая включает в себя корпус, задающий полость, в которую может быть вставлена головка датчика. Корпус может иметь такую конфигурацию, в которой когда поток текучей среды входит в корпус, поток текучей среды разделяется, по меньшей мере, на главный поток, проходящий рядом с источником света и детектором, и второстепенный поток, проходящий рядом с температурным датчиком. Такая проточная камера может направлять текучую среду мимо различных сенсорных компонентов при недопущении образования твердых частиц, образования воздушных пробок или других проблем при протекании, сопровождающих непрерывную или полунепрерывную работу в реальном времени. 3 н. и 17 з.п. ф-лы, 10 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Данное раскрытие сущности относится к оптическому датчику, а более конкретно, к проточной камере для оптического датчика, который может быть использован для оптических измерений реального времени.

Уровень техники

[0002] Водные химические растворы используются во множестве случаев. Например, в различных вариантах применения, водные растворы для очистки используются для того, чтобы очищать, санировать и/или дезинфицировать кухни, ванные комнаты, школы, больницы, промышленные предприятия и другие аналогичные объекты. Водные растворы для очистки типично включают в себя одну или более химических частиц, растворенных в воде. Химические частицы передают, различные функциональные свойства воде, к примеру, очищающие свойства, антибактериальную активность и т.п.

[0003] Обеспечение того, что водный химический раствор имеет надлежащую химическую формулу для намеченного варианта применения, может помогать гарантировать то, что раствор предоставляет подходящие функциональные свойства. Например, функциональные свойства некоторых водных растворов для очистки варьируются согласно температуре и концентрации химических частиц, растворенных в воде, в числе прочих факторов. Соответственно, измерение различных характеристик водного раствора перед использованием может быть полезным для того, чтобы понимать свойства раствора и определять то, требуется или нет регулирование. Хотя пробы водного раствора могут быть извлечены из источника и транспортированы в лабораторию для анализа, такая технология не всегда предоставляет возможность экспресс-анализа раствора, который является полезным для чувствительных ко времени вариантов применения.

[0004] Оптический датчик представляет собой один тип устройства, которое может быть использовано для того, чтобы анализировать водный раствор. Когда оптический датчик реализуется в реальном времени с возможностью чтобы принимать пробу непосредственно из источника, оптический датчик может анализировать характеристики пробы сравнительно быстро, предоставляя своевременную обратную связь для мониторинга и регулирования свойств раствора. Обеспечение того, что оптический датчик надлежащим образом сконфигурирован с возможностью принимать и обрабатывать пробу на непрерывной или полунепрерывной основе, может быть полезным для точного и быстрого мониторинга и/или регулирования свойств источника проб.

Сущность изобретения

[0005] В общем, это раскрытие сущности направлено на оптические датчики и оптические технологии для определения характеристики текучей среды, такой как, например, водный химический раствор. В некоторых примерах, оптический датчик включает в себя проточную камеру и головку датчика, которая сконфигурирована с возможностью вставки в проточную камеру. Головка датчика может представлять собой флуорометр, который сконфигурирован с возможностью излучать свет в поток текучей среды, проходящий через проточную камеру, и обнаруживать флуоресцентные излучения из текучей среды. В зависимости от варианта применения, проточная камера может иметь такую конфигурацию, в которой когда поток текучей среды входит в проточную камеру, поток текучей среды разделяется, по меньшей мере, на главный поток, проходящий рядом с источником света и детектором головки датчика, и второстепенный поток, проходящий рядом с температурным датчиком головки датчика. Посредством разделения потока текучей среды на главный поток и второстепенный поток, проточная камера может направлять текучую среду мимо различных датчиков, ассоциированных с головкой датчика, при недопущении образования твердых частиц, образования воздушных пузырьков или воздушных пробок или других проблем при протекании, сопровождающих непрерывную или полунепрерывную работу в реальном времени.

[0006] В одном примере, описывается система флуоресцентного анализа, которая включает в себя головку датчика и проточную камеру. Головка датчика включает в себя, по меньшей мере, один источник света, сконфигурированный с возможностью излучать свет в поток текучей среды, по меньшей мере, один детектор, сконфигурированный с возможностью обнаруживать флуоресцентные излучения из потока текучей среды, и температурный датчик, сконфигурированный с возможностью считывать температуру потока текучей среды. Проточная камера включает в себя корпус, задающий полость, в которую вставляется головка датчика, впускной порт, протягивающийся через корпус и сконфигурированный с возможностью передавать поток текучей среды за пределами полости внутрь полости, и выпускной порт, протягивающийся через корпус и сконфигурированный с возможностью передавать поток текучей среды изнутри полости обратно за пределы полости. Согласно примеру, корпус имеет такую конфигурацию, в которой когда поток текучей среды входит в корпус через впускной порт, поток текучей среды разделяется, по меньшей мере, на главный поток, проходящий рядом с источником света и детектором, и второстепенный поток, проходящий рядом с температурным датчиком.

[0007] В другом примере, описывается проточная камера, которая включает в себя корпус, впускной порт и выпускной порт. Корпус задает полость, сконфигурированную с возможностью принимать головку датчика и размещать головку датчика в потоке текучей среды для анализа, причем головка датчика включает в себя, по меньшей мере, один источник света, сконфигурированный с возможностью излучать свет в поток текучей среды, по меньшей мере, один детектор, сконфигурированный с возможностью обнаруживать флуоресцентные излучения из потока текучей среды, и температурный датчик, сконфигурированный с возможностью считывать температуру потока текучей среды. Впускной порт протягивается через корпус и сконфигурирован с возможностью передавать поток текучей среды за пределами полости внутрь полости. Выпускной порт протягивается через корпус и сконфигурирован с возможностью передавать поток текучей среды изнутри полости обратно за пределы полости. Согласно примеру, корпус имеет такую конфигурацию, в которой когда головка датчика вставляется в корпус, и поток текучей среды входит в корпус через впускной порт, поток текучей среды разделяется, по меньшей мере, на главный поток, проходящий рядом с источником света и детектором, и второстепенный поток, проходящий рядом с температурным датчиком.

[0008] В другом примере, описывается система

флуоресцентного анализа, которая включает в себя средство для обнаружения флуоресцентных излучений из потока текучей среды, средство для считывания температуры потока текучей среды и средство для приема и размещения средства для обнаружения флуоресцентных излучений и средства для считывания температуры. Согласно примеру, средство для приема и размещения задает множество каналов для текучей среды, которые включают в себя, по меньшей мере, главный канал для текучей среды, сконфигурированный с возможностью направлять текучую среду рядом со средством для обнаружения флуоресцентных излучений, и второстепенный канал для текучей среды, сконфигурированный с возможностью направлять текучую среду рядом со средством для считывания температуры.

[0009] Подробности одного или более примеров изложены на прилагаемых чертежах и в нижеприведенном описании. Другие признаки, цели и преимущества должны становиться очевидными из описания и чертежей и из формулы изобретения.

Краткое описание чертежей

[0010] Фиг. 1 является схемой, иллюстрирующей примерную систему с текучей средой, которая включает в себя оптический датчик согласно примерам раскрытия сущности.

[ООН] Фиг. 2 является блок-схемой, иллюстрирующей примерный оптический датчик, который может быть использован в примерной системе с текучей средой по фиг.1.

[0012] Фиг. 3 и 4 являются схематичными чертежами примерной физической конфигурации оптического датчика, который может быть использован посредством оптических датчиков на фиг.1 и 2.

[0013] Фиг. 5 и 6 являются альтернативными видами примерной головки датчика, которая может быть использована для примерного оптического датчика по фиг. 3 и 4.

[0014] Фиг. 7-9 являются различными видами примерной проточной камеры, которая может быть использована для примерного оптического датчика по фиг. 3 и 4.

[0015] Фиг. 10 является видом в поперечном сечении примерной проточной камеры по фиг.7.

Подробное описание изобретения

[0016] Нижеприведенное подробное описание является примерным по своему характеру и не имеет намерение каким-либо образом ограничивать объем, применимость или конфигурацию изобретения. Наоборот, нижеприведенное описание предоставляет некоторые практические иллюстрации для реализации примеров настоящего изобретения. Примеры конструкций, материалов, размеров и процессов изготовления предоставляются для выбранных элементов, и все остальные элементы используют конструкции, материалы, размеры и процессы изготовления, которые известны для специалистов в данной области техники. Специалисты в данной области техники должны признавать, что многие указанные примеры имеют множество подходящих альтернатив.

[0017] Текучие среды с активными химическими агентами используются во множестве различных отраслей для множества различных вариантов применения. Например, в индустрии чистоты, растворы текучей среды, которые включают в себя хлор или другие активные химические агенты, зачастую используются для того, чтобы очищать и дезинфицировать различные поверхности и оборудование. В этих растворах концентрация активного химического агента, температура раствора или другие параметры могут влиять на очищающие и дезинфицирующие свойства текучей среды. Соответственно, обеспечение того, что текучая среда имеет надлежащую химическую формулу и подготавливается для намеченного варианта применения, может помогать обеспечивать то, что текучая среда предоставляет подходящие очищающие и дезинфицирующие свойства при последующем использовании.

[0018] Это раскрытие сущности описывает оптический датчик для определения характеристики текучей среды. В частности, это раскрытие сущности описывает способы, системы и устройства, связанные с оптическим датчиком, который может быть использован для того, чтобы определять характеристику текучей среды. Оптический датчик может быть использован для того, чтобы определять множество (например, две, три или более) характеристик текучей среды, таких как, например, концентрация одной, двух или более химических частиц в текучей среде, температура текучей среды и т.п.В зависимости от варианта применения, оптический датчик может быть реализован как датчик реального времени, который принимает поток текучей среды из источника текучей среды на непрерывной или периодической основе и анализирует текучую среду для того, чтобы определять множество характеристик практически в реальном времени. Например, оптический датчик может соединяться с потоком текучей среды через трубу, трубку или другой трубопровод. Оптический датчик затем может принимать пробу текучей среды из источника через трубопровод и анализировать текучую среду для того, чтобы определять множество характеристик текучей среды.

[0019] В одном примере, оптический датчик сконфигурирован как флуорометр, который направляет свет в текучую среду и обнаруживает флуоресцентные излучения, испускаемые посредством текучей среды. Оптический датчик может включать в себя головку датчика, которая включает в себя источник света, чтобы излучать свет в текучую среду, и детектор, чтобы обнаруживать флуоресцентные излучения из текучей среды. Головка датчика также может включать в себя другой тип датчика, такой как, например, температурный датчик, для считывания другого типа характеристики текучей среды. Когда головка датчика вставляется в проточную камеру, которая соединяется с источником текучей среды, головка датчика может быть сконфигурирована с возможностью определять несколько свойств текучей среды.

[0020] В соответствии с технологиями, описанными в этом раскрытии сущности, предоставляется проточная камера с впускным отверстием для приема пробы текучей среды и выпускным отверстием для выпуска пробы текучей среды. Проточная камера может задавать ограниченную полость, в которую может быть вставлена головка датчика. При работе, проточная камера может направлять текучую среду мимо различных сенсорных компонентов головки датчика, чтобы определять характеристику текучей среды. Например, проточная камера может иметь такую конфигурацию, в которой когда текучая среда входит в проточную камеру, текучая среда разделяется, по меньшей мере, на главный поток, проходящий рядом (например, между) с источником света и детектором головки датчика, и второстепенный поток, проходящий рядом с другим датчиком головки датчика. В зависимости от конфигурации проточной камеры и головки датчика, проточная камера может разбивать текучую среду, входящую через впускное отверстие, на главный поток, который проходит практически параллельно продолговатому корпусу датчика, и второстепенный поток, который проходит практически ортогонально главной оси продолговатого корпуса датчика.

[0021] Посредством разделения потока текучей среды впускного отверстия на главный поток и второстепенный поток, проточная камера может направлять текучую среду мимо нескольких различных датчиков головки датчика при предотвращении образования воздушной пробки в проточной камере посредством газовых пузырьков в текучей среде. Например, когда текучая среда является жидкой текучей средой, которая включает в себя растворенные или суспендированные воздушные пузырьки, воздушные пузырьки могут отделяться от текучей среды в проточной камере. Хотя такие воздушные пузырьки могут не быть проблематичными, если датчик размещается в стационарном резервуаре текучей среды, или если проточная камера имеет только один поток текучей среды, проходящий через проточную камеру, воздушные пузырьки могут создавать воздушную пробку, когда проточная камера разделяется на несколько различных потоков. Тем не менее, посредством разделения потока текучей среды впускного отверстия на главный поток и второстепенный поток, причем главный поток направлен через область, в которой вероятно накопляются газовые пузырьки, проточная камера может быть сконфигурирована с возможностью направлять текучую среду мимо нескольких различных датчиков при недопущении образования воздушной пробки. В зависимости от конфигурации, главный поток может содержать большую часть текучей среды, входящей в проточную камеру (например, большую или равную 50 процентов объема текучей среды, входящей в проточную камеру), в то время как второстепенный поток может содержать меньшую часть текучей среды, входящей в проточную камеру.

[0022] Ниже подробнее описываются примерный оптический датчик и проточные камеры относительно фиг. 2-10. Тем не менее, сначала описывается примерная система с текучей средой, включающая в себя примерную систему с оптическим датчиком, относительно фиг. 1.

[0023] Фиг. 1 является концептуальной схемой, иллюстрирующей примерную систему 100 с текучей средой, которая может быть использована для того, чтобы формировать химический раствор, имеющий флуоресцентные свойства. Система 100 с текучей средой включает в себя оптический датчик 102, резервуар 104, контроллер 106 и насос 108. Резервуар 104 может хранить концентрированный химический агент, который может быть смешан с разбавителем, таким как вода, для того чтобы формировать химический раствор. Оптический датчик 102 оптически соединяется с магистралью 110 для текучей среды и сконфигурирован с возможностью определять одну или более характеристик раствора, проходящего через магистраль для текучей среды. При работе, оптический датчик 102 может обмениваться данными с контроллером 106, и контроллер 106 может управлять системой 100 с текучей средой на основе характеристической информации текучей среды, сформированной посредством оптического датчика.

[0024] Контроллер 106 функционально соединен с оптическим датчиком 102 и насосом 108. Контроллер 106 включает в себя процессор 112 и запоминающее устройство 114. Контроллер 106 обменивается данными с насосом 108 через соединение 116. Сигналы, сформированные посредством оптического датчика 102, передаются в контроллер 106 через проводное или беспроводное соединение, которое в примере по фиг. 1 проиллюстрировано в качестве проводного соединения 118. Запоминающее устройство 109 сохраняет программное обеспечение для работы контроллера 106, а также может сохранять данные, сформированные или принятые посредством процессора 112, например, из оптического датчика 102. Процессор 112 выполняет программное обеспечение, сохраненное в запоминающем устройстве 114, чтобы управлять работой системы 100 с текучей средой.

[0025] Как подробнее описано ниже, оптический датчик 102 включает в себя проточную камеру и головку датчика, вставленную в проточную камеру. Головка датчика может быть сконфигурирована с возможностью определять множество характеристик текучей среды, проходящей через проточную камеру, таких как, например, концентрация химического соединения в текучей среде, температура текучей среды и т.п.В одном примере, проточная камера задает ограниченную полость, которая включает в себя одно впускное отверстие текучей среды и одно выпускное отверстие текучей среды. Проточная камера дополнительно может задавать множество каналов для текучей среды (например, два, три или более каналов для текучей среды) в проточной камере, которые сконфигурированы с возможностью направлять текучую среду рядом с множеством различных датчиков головки датчика. Например, проточная камера может задавать главный проточный канал, ограниченный между корпусом проточной камеры и частью головки датчика, которая включает в себя источник света, и детектор для обнаружения флуоресцентных излучений из текучей среды, протекающей через проточную камеру. Проточная камера также может задавать второстепенный проточный канал, ограниченный между корпусом проточной камеры и частью головки датчика, которая включает в себя другой датчик, такой как температурный датчик для определения температуры текучей среды, протекающей через проточную камеру.

[0026] В примере по Фиг. 1, система 100 с текучей средой сконфигурирована с возможностью формировать химический раствор, имеющий флуоресцентные свойства. Система 100 с текучей средой может комбинировать один или более концентрированных химических агентов, хранимых в резервуаре 104, с водой или другой растворяемой текучей средой, чтобы формировать химические растворы. Примерные химические растворы, которые могут формироваться посредством системы 100 с текучей средой, включают в себя, но не только, очищающие средства, санирующие средства, охлаждающую воду для промышленных градирен, биоциды, такие как пестициды, антикоррозийные средства, средства для удаления накипи, средства для удаления загрязнений, стиральные порошки, очистители для очистки на месте, напольные покрытия, составы для мойки машин, составы для очистки воды, составы для мытья бутылок и т.п.

[0027] Химические растворы, сформированные посредством системы 100 с текучей средой, могут испускать флуоресцентное излучение в ответ на оптическую энергию, направляемую в растворы посредством оптического датчика 102. Оптический датчик 102 затем может обнаруживать испускаемое флуоресцентное излучение и определять различные характеристики раствора, такие как концентрация одного или более химических соединений в растворе, на основе абсолютной величины испускаемого флуоресцентного излучения. Чтобы предоставлять возможность оптическому датчику 102 обнаруживать флуоресцентные излучения, текучая среда, сформированная посредством системы 100 с текучей средой и принимаемая посредством оптического датчика 102, может включать в себя молекулу, которая демонстрирует флуоресцентные характеристики. В некоторых примерах, текучая среда может включать в себя полициклическое соединение и/или молекулу бензола, которая имеет одну или более замещающих электронодонорных групп, таких как, например, -OH, -NH2 и -OCH3, которые могут демонстрировать флуоресцентные характеристики. В зависимости от варианта применения, эти соединения могут естественно присутствовать в химических растворах, сформированных посредством системы 100 с текучей средой вследствие функциональных свойств (например, очищающих и санирующих свойств), передаваемых растворам посредством соединений.

[0028] В дополнение или вместо естественного флуоресцирующего соединения, текучая среда, сформированная посредством системы 100 с текучей средой и принимаемая посредством оптического датчика 102, может включать в себя флуоресцентный химический индикатор (который также может упоминаться в качестве флуоресцентного маркера). Флуоресцентный химический индикатор может быть включен в текучую среду, в частности, для того чтобы передавать флуоресцирующие свойства текучей среде. Примерные соединения флуоресцентного химического индикатора включают в себя, но не только нафталиндисульфонат (NDSA), 2-нафталинсульфокислоту, кислотную желтую соль натрия 7,1,3,6,8-пирентетрасульфокислоты и флуоресцеин.

[0029] Независимо от конкретного состава текучей среды, сформированной посредством системы 100 с текучей средой, система может формировать текучую среду любым подходящим способом. Под управлением контроллера 106, насос 108 может механически выкачивать заданное количество концентрированного химического агента из резервуара 104 и комбинировать химический агент с водой, чтобы формировать жидкий раствор, подходящий для намеченного варианта применения. Магистраль 110 для текучей среды затем может транспортировать жидкий раствор в намеченное местоположение выпуска. В некоторых примерах, система 100 с текучей средой может формировать поток жидкого раствора непрерывно в течение определенного периода времени, такого как, например, период, превышающий 5 минут, период, превышающий 30 минут, либо даже период, превышающий 24 часа. Система 100 с текучей средой может формировать раствор непрерывно в том отношении, что поток раствора, проходящий через магистраль 110 для текучей среды, может быть практически или полностью непрерываемым в течение периода времени.

[0030] В некоторых примерах, мониторинг характеристик текучей среды, протекающей через магистраль 110 для текучей среды, может помогать обеспечивать то, что текучая среда имеет надлежащую химическую формулу для намеченного варианта применения для переработки. Мониторинг характеристик текучей среды, протекающей через магистраль 110 для текучей среды, также может предоставлять информацию обратной связи, например, для регулирования параметров, используемых для того, чтобы формировать новый раствор текучей среды. По этим и другим причинам, система 100 с текучей средой может включать в себя датчик, чтобы определять различные характеристики текучей среды, сформированной посредством системы.

[0031] В примере по Фиг. 1, система 100 с текучей средой включает в себя оптический датчик 102. Оптический датчик 102 сконфигурирован с возможностью определять одну или более характеристик текучей среды, протекающей через магистраль 110 для текучей среды. Примерные характеристики включают в себя, но не только, концентрацию одного или более химических соединений в текучей среде, температуру текучей среды, pH текучей среды и/или другие характеристики текучей среды, которые могут помогать обеспечивать то, что текучая среда имеет надлежащую химическую формулу для намеченного варианта применения. Оптический датчик 102 передает обнаруженную характеристическую информацию в контроллер 106 через соединение 118.

[0032] В ответ на прием обнаруженной характеристики, процессор 112 контроллера 106 может сравнивать определенную характеристическую информацию с одним или более пороговых значений, сохраненных в запоминающем устройстве 114, к примеру, с одним или более пороговых значений концентрации. На основе сравнения, контроллер 106 может регулировать систему 100 с текучей средой, например, таким образом, что обнаруженная характеристика совпадает с целевым значением для характеристики. В некоторых примерах, контроллер 106 запускает и/или останавливает насос 108 или увеличивает и/или снижает скорость подачи насоса 108, чтобы регулировать концентрацию химического соединения, протекающего через магистраль 110 для текучей среды. Запуск насоса 108 или увеличение рабочей скорости подачи насоса 108 может увеличивать концентрацию химического соединения в текучей среде. Остановка насоса 108 или снижение рабочей скорости подачи насоса 108 может снижать концентрацию химического соединения в текучей среде. Хотя не проиллюстрировано в примерной системе 100 с текучей средой по Фиг. 1, контроллер 10 6 также может функционально соединяться с теплообменником, нагревателем и/или охладителем, чтобы регулировать температуру текучей среды, протекающей через магистраль 110 для текучей среды, на основе характеристической информации, принимаемой из оптического датчика 102.

[0033] Оптический датчик 102 может быть реализован рядом различных способов в системе 100 с текучей средой. В примере, показанном на Фиг. 1, оптический датчик 102 размещается в поточной линии с магистралью 110 для текучей среды, чтобы определять характеристику текучей среды, протекающей через магистраль для текучей среды. В других примерах, труба, трубка или другой трубопровод может быть соединен между магистралью 110 для текучей среды и проточной камерой оптического датчика 102. В таких примерах, трубопровод может соединять с возможностью обмена текучей средой проточную камеру (например, впускное отверстие проточной камеры) оптического датчика 102 с магистралью 110 для текучей среды. По мере того, как перемещается текучая среда через магистраль 110 для текучей среды, часть текучей среды может входить в трубопровод и проходить рядом с головкой датчика, размещенной в камере для текучей среды, в силу этого обеспечивая возможность оптическому датчику 102 определять одну или более характеристик текучей среды, протекающей через магистраль для текучей среды. При реализации для того, чтобы принимать текучую среду непосредственно из магистрали 110 для текучей среды, оптический датчик 102 может характеризоваться как оптический датчик реального времени. После прохождения через проточную камеру проанализированная текучая среда может возвращаться или не возвращаться в магистраль 110 для текучей среды, например, через другой трубопровод, соединяющий выпускное отверстие проточной камеры с магистралью для текучей среды.

[0034] В еще других примерах, оптический датчик 102 может быть использован для того, чтобы определять одну или более характеристик стационарного объема текучей среды, которая не протекает через проточную камеру оптического датчика. Когда оптический датчик 102 включает в себя проточную камеру с впускными и выпускными портами (фиг. 7-10), впускные и выпускные порты могут быть закупорены для того, чтобы создавать ограниченную полость для удерживания стационарного (например, непротекающего) объема текучей среды. Ограниченная проточная камера может быть полезной для калибровки оптического датчика 102. Во время калибровки проточная камера может быть заполнена текучей средой, имеющей известную характеристику (например, известную концентрацию одного или более химических соединений, известную температуру), и оптический датчик 102 может определять оцененные характеристики калибровочного раствора. Оцененные характеристики, определенные посредством оптического датчика, могут сравниваться с известными характеристиками (например, посредством контроллера 106) и использоваться для того, чтобы калибровать оптический датчик 102.

[0035] Система 100 с текучей средой в примере по фиг.1 также включает в себя резервуар 104, насос 108 и магистраль 110 для текучей среды. Резервуар 104 может представлять собой любой тип контейнера, который хранит химический агент для последующей доставки, включающий в себя, например, бак, транспортную тару, бутылку и ящик. Резервуар 104 может хранить жидкость, твердое тело (например, порошок) и/или газ. Насос 108 может представлять собой любую форму механизма накачки, который подает текучую среду из резервуара 104. Например, насос 108 может содержать перистальтический насос или другую форму насоса с непрерывной накачкой, насос с прямым объемным вытеснением либо любой другой тип насоса, подходящий для конкретного варианта применения. В примерах, в которых резервуар 104 хранит твердое тело и/или газ, насос 108 может быть заменен другим типом дозатора, сконфигурированного с возможностью доставлять газообразный и/или твердый химический агент в намеченное местоположение выпуска. Магистраль 110 для текучей среды в системе 100 с текучей средой может представлять собой любой тип гибкой или негибкой системы трубок, системы труб или трубопровода.

[0036] В примере по фиг. 1, оптический датчик 102 определяет характеристику текучей среды, протекающей через магистраль 110 для текучей среды (например, концентрацию химического соединения, температуру и т.п.), и контроллер 106 управляет системой 100 с текучей средой на основе определенной характеристики и, например, целевой характеристики, сохраненной в запоминающем устройстве 109. Фиг. 2 является блок-схемой, иллюстрирующей пример оптического датчика 200, который определяет характеристику текучей среды. Датчик 200 может быть использован в качестве оптического датчика 102 в системе 100 с текучей средой, или датчик 200 может быть использован в других вариантах применения, помимо системы 100 с текучей средой.

[0037] Со ссылкой на фиг. 2, датчик 200 включает в себя контроллер 220, один или более оптических излучателей 222 (упоминаемых в данном документе как "оптический излучатель 222"), один или более оптических детекторов 224 (упоминаемых в данном документе как "оптический детектор 224") и температурный датчик 221. Контроллер 220 включает в себя процессор 226 и запоминающее устройство 228. При работе, оптический излучатель 222 направляет свет в текучую среду, протекающую через канал 230 для текучей среды, и оптический детектор 224 обнаруживает флуоресцентные излучения, сформированные посредством текучей среды. Свет, направляемый в текучую среду посредством оптического излучателя 222, может формировать флуоресцентные излучения посредством возбуждения электронов флуоресцирующих молекул в текучей среде, что приводит к тому, что молекулы излучают энергию (т.е. флуоресцируют), которая может быть обнаружена посредством оптического детектора 224. Например, оптический излучатель 222 может направлять свет на одной частоте (например, на ультрафиолетовой частоте) в текучую среду, протекающую через канал 230 для текучей среды, и приводить к тому, что флуоресцирующие молекулы излучают световую энергию на другой частоте (например, на частоте видимого света). Температурный датчик 221 в датчике 200 может измерять температуру потока текучей среды рядом (например, в контакте) с датчиком. В некоторых примерах, датчик 200 обменивается данными с внешними устройствами, такими как контроллер 106 (фиг. 1).

[0038] Запоминающее устройство 228 сохраняет программное обеспечение и данные, используемые или сформированные посредством контроллера 220. Например, запоминающее устройство 228 может сохранять данные, используемые посредством контроллера 220 для того, чтобы определять концентрацию одного или более химических компонентов в текучей среде, отслеживаемой посредством датчика 200. В некоторых примерах, запоминающее устройство 228 сохраняет данные в форме уравнения, которое связывает флуоресцентные излучения, обнаруженные посредством оптического детектора 224, с концентрацией одного или более химических компонентов.

[0039] Процессор 226 выполняет программное обеспечение, сохраненное в запоминающем устройстве 228, чтобы выполнять функции, приписанные датчику 200 и контроллеру 220 в этом раскрытии сущности. Компоненты, описанные в качестве процессоров в контроллере 220, в контроллере 106 или в любом другом устройстве, описанном в этом раскрытии сущности, могут включать в себя один или более процессоров, к примеру, один или более микропроцессоров, процессоров цифровых сигналов (DSP), специализированных интегральных схем (ASIC), программируемых пользователем вентильных матриц (FPGA), программируемых логических схем и т.п., отдельно или в любой подходящей комбинации.

[0040] Оптический излучатель 222 включает в себя, по меньшей мере, один оптический излучатель, который излучает оптическую энергию в текучую среду, присутствующую в канале 230 для текучей среды. В некоторых примерах, оптический излучатель 222 излучает оптическую энергию в диапазоне длин волн. В других примерах, оптический излучатель 222 излучает оптическую энергию с одной или более дискретных длин волн. Например, оптический излучатель 222 может осуществлять излучение с двумя, тремя, четырьмя или более дискретных длин волн.

[0041] В одном примере, оптический излучатель 222 излучает свет в ультрафиолетовом спектре. Свет в ультрафиолетовом спектре может включать в себя длины волн в диапазоне приблизительно 10-400 нанометров. Свет, излучаемый посредством оптического излучателя 222, направлен в текучую среду в канале 230 для текучей среды. В ответ на прием оптической энергии, могут возбуждаться флуоресцирующие молекулы в текучей среде, что приводит к тому, что молекулы формируют флуоресцентные излучения. Флуоресцентные излучения, которые могут иметь или не иметь другую частоту относительно энергии, излучаемой посредством оптического излучателя 222, могут быть сформированы в качестве возбужденных электронов во флуоресцирующих молекулах, изменяют энергетические состояния. Энергия, излучаемая посредством флуоресцирующих молекул, может быть обнаружена посредством оптического детектора 224. Например, оптический излучатель 222 может излучать свет в частотном диапазоне приблизительно 280-310 нм и, в зависимости от состава текучей среды, вызывать флуоресцентные излучения в диапазоне приблизительно 310-400 нм.

[0042] Оптический излучатель 222 может быть реализован множеством различных способов в датчике 200. Оптический излучатель 222 может включать в себя один или более источников света, чтобы возбуждать молекулы в текучей среде. Источники света примера включают в себя светоизлучающие диоды (светодиоды), лазеры и лампы. В некоторых примерах, оптический излучатель 222 включает в себя оптический фильтр для того, чтобы фильтровать свет, излучаемый посредством источника света. Оптический фильтр может быть размещен между источником света и текучей средой и выбран с возможностью пропускать свет в определенном диапазоне длин волн. В некоторых дополнительных примерах, оптический излучатель включает в себя коллиматор, например, коллиматорную линзу, колпак или отражатель, размещенный рядом с источником света, чтобы коллимировать свет, излучаемый из источника света. Коллиматор может уменьшать дивергенцию света, излучаемого из источника света, уменьшая оптический шум.

[0043] Датчик 200 также включает в себя оптический детектор 224. Оптический детектор 224 включает в себя, по меньшей мере, один оптический детектор, который обнаруживает флуоресцентные излучения, испускаемые посредством возбужденных молекул в канале 230 для текучей среды. В некоторых примерах, оптический детектор 224 размещается на другой стороне канала 230 для текучей среды относительно оптического излучателя 222. Например, оптический детектор 224 может быть размещен на стороне канала 230 для текучей среды, которая смещена приблизительно на 90 градусов относительно оптического излучателя 222. Такая компоновка может уменьшать количество света, которое испускается посредством оптического излучателя 222, пропускается через текучую среду в канале 230 для текучей среды и обнаруживается посредством оптического детектора 224. Этот пропускаемый свет потенциально может вызывать помехи для флуоресцентных излучений, обнаруженных посредством оптического детектора.

[0044] При работе, величина оптической энергии, обнаруженной посредством оптического детектора 224, может зависеть от содержания текучей среды в канале 230 для текучей среды. Если канал